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Pathwidth
Let G be a graph.

Path decomposition:
A path P := (v1, . . . , vr) with bags X1, . . . , Xr ⊆ V (G) such that:

Width of a path decomposition: max{|Xi| : i ∈ [r]} − 1
Pathwidth of G: minimal width of all path decompositions of G

G

X1 X2 X3 X4 X5 X6

P

(i) X1 ∪ · · · ∪ Xr = V (G)
(ii) uv ∈ E(G) ⇒ u, v ∈ Xi for at least one bag Xi

(iii) for every vertex v ∈ V (G) the graph induced by the bags containing v is connected
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Pathwidth
Let G be a graph.

Path decomposition:
A path P := (v1, . . . , vr) with bags X1, . . . , Xr ⊆ V (G) such that:

Width of a path decomposition: max{|Xi| : i ∈ [r]} − 1
Pathwidth of G: minimal width of all path decompositions of G

G

X1 X2 X3 X4 X5 X6

P

(i) X1 ∪ · · · ∪ Xr = V (G)
(ii) uv ∈ E(G) ⇒ u, v ∈ Xi for at least one bag Xi

(iii) for every vertex v ∈ V (G) the graph induced by the bags containing v is connected
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Evaluation

Do you like the format of the excercise class?
Would you prefer less/more focus on
discussing the excercise sheets?

Would you prefer easier/harder problems?

https://onlineumfrage.kit.edu/evasys/online.php?p=L3ZK6

https://onlineumfrage.kit.edu/evasys/online.php?p=L3ZK6
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Problems

A path (tree) P := (v1, . . . , vr) with bags X1, . . . , Xr ⊆ V (G) such that:

Width of decomposition: max{|Xi| : i ∈ [r]} − 1 Pathwidth (treewidth) of G: min. over all decompositions

(i) X1 ∪ · · · ∪ Xr = V (G)
(ii) uv ∈ E(G) ⇒ u, v ∈ Xi for at least one bag Xi

(iii) for every vertex v ∈ V (G) the graph induced by the bags containing v is connected

Path (tree) decomposition:

X1 X2 X3 X4 X5 X6

P

k-tree: obtained from a Kk by iteratively adding degree-k vertices to some k-clique

(3) Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

(1) Prove that a graph G is an interval graph if and only if it admits a path decomposition such
that each bag is a clique in G.

(2) Find an algorithm for computing the treewidth of chordal graphs. subgraph of a k-tree

(4) Find fun facts on (tw, ω)-boundedness: definition, examples, sufficient conditions,
related parameters, related exercises, algorithmic implications, open questions, . . .
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Interval graphs and path decompositions

Prove that a graph G is an interval graph if and only if it admits a path decomposition such
that each bag is a clique in G.

“⇒”:
Let G be the interval graph corresponding to the intervalls Iv = [av, bv] ⊂ N with v ∈ V (G).
Let amin = min{av : v ∈ V (G)} and bmax = max{bv : v ∈ V (G)}.
We construct a path decomposition P := (vamin , . . . , vbmax) with bags Xamin , . . . , Xbmax

Let v ∈ V (G) with Iv = [av, bv]. Then, we add v to every bag Xi with av ≤ i ≤ bv.
Claim: Every bag is a clique.

Let u, v ∈ Xi for some amin ≤ i ≤ bmax.
Then, i ∈ Iu ∩ Iv and thus uv ∈ E(G).

Claim: Every uv ∈ E(G) is in some bag Xi

There is some i ∈ Iu ∩ Iv and thus u, v ∈ Xi

amin bmax

*

*this is property (ii) of path decompositions, property (i) and (iii) clearly hold.
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Interval graphs and path decompositions

Prove that a graph G is an interval graph if and only if it admits a path decomposition such
that each bag is a clique in G.

“⇐”:
Let P := (v1, . . . , vr) with bags X1, . . . , Xr be a path decomposition of G with all Xi cliques.
We construct intervals Iv = [av, bv] for all v ∈ V (G).
For every vertex v ∈ V (G) let Xv

a , . . . , Xv
b be the bags that contain v. We set Iv = [a, b].

Note that [a, b] is an interval as the bags containing v induce a connected graph in P
Claim: G is the interval graph of these intervals.

As every bag is a clique two distinct vertices share a bag if and only if they are adjacent.
Two intervals Iu and Iv intersect if and only if u and v share a bag.

⇒ uv ∈ E(G) if and only if Iu and Iv intersect.
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Treewidth in chordal graphs

By induction: tw(G) ≤ ω(G) − 1 and for every clique C there is a bag containing C
Base case: tw(K1) = 0
Recall (lecture): Every chordal graph has a simplicial vertex x.
G − x admits a tree decomposition of width ω(G − x) − 1 by induction

tw(Kn) = n − 1 =⇒ tw(G) ≥ ω(G) − 1 for all graphs G (chordality not needed)

Case 1: ω(G) > ω(G − x) → add x to B → increases width by 1 X

Case 2: ω(G) = ω(G − x)
→ add new bag N [x] of size ω(G) adjacent to B → width ω(G) − 1

N(x) is a clique (since x is simplicial) =⇒ there is a bag B containing N(x) by induction

Claim: For every chordal graph G, we have tw(G) = ω(G) − 1.

In both cases: For all cliques C containing x: C ⊆ N [x] → contained in new/extended bag
N(x)

x
N [x]



June 4, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory6

Treewidth in chordal graphs

Claim: For every chordal graph G, we have tw(G) = ω(G) − 1.

Algorithm to compute the treewidth in chordal graphs:
compute clique number (LexBFS, PES), subtract 1



June 4, 2025 Laura Merker and Samuel Schneider – Algorithmic Graph Theory7

Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

“⇐”

k-tree: obtained from a Kk by iteratively adding degree-k vertices to some k-clique

Observation: Treewidth is monotone, i.e., G ⊆ H =⇒ tw(G) ≤ tw(H)
→ we only need to consider non-partial k-trees

Sheet 3, Exercise 6: k-trees are chordal
Just shown (previous exercise): G chordal =⇒ tw(G) = ω(G) − 1
ω(k-tree) ≤ k + 1 =⇒ tw(k-tree) ≤ k
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Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

Base case: If |V (G)| ≤ k + 1 we are done as G ⊆ Kn+1 and Kn+1 is a k-tree
Assume |V (G)| > n + 1 and let T be a tree decomposition with bags X1, . . . , Xr and width k.
We assume w. l. o. g. that |Xi| = k + 1 for all Xi and that every Xi is a clique in G.

“⇒”

k-tree: obtained from a Kk by iteratively adding degree-k vertices to some k-clique

Find construction sequence by induction on the tree:

adding edges allowed since we only need a partial k-tree
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Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

Base case: If |V (G)| ≤ k + 1 we are done as G ⊆ Kn+1 and Kn+1 is a k-tree
Assume |V (G)| > n + 1 and let T be a tree decomposition with bags X1, . . . , Xr and width k.
We assume w. l. o. g. that |Xi| = k + 1 for all Xi and that every Xi is a clique in G.
Let Xi be a leaf bag, Xj be its parent and v ∈ Xi − Xj .
By induction G − v is a partial k-tree.
As N(v) = Xi − v is a k-clique, G is a partial k-tree.

“⇒”

k-tree: obtained from a Kk by iteratively adding degree-k vertices to some k-clique

Find construction sequence by induction on the tree:

⇒ N [v] = Xi
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(tw, ω)-Boundedness
Definition:
A graph class G is called (tw, ω)-bounded if ∃ function f s.t. tw(G) ≤ f(ω(G)) for all G ∈ G

Examples / sufficient conditions:
chordal graphs: tw(G) ≤ ω(G) − 1 (see Exercise (3))
graphs with bounded tree-independence number
line graphs of bounded-treewidth graphs

Algorithmic implications:

Some relevant papers:

. . . and follow-up papers (use “cited by”-function by Journals / Google Scholar)

k-clique, k-list coloring polynomially solvable
Open Problems:
Is Independent Set solvable in polynomial time for (tw, ω)-bounded graph classes?
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[3] Chaplick, Töpfer, Voborník, Zeman, 2021, https://doi.org/10.1007/s00453-021-00846-3
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