

Algorithmic Graph Theory Problem Session 4

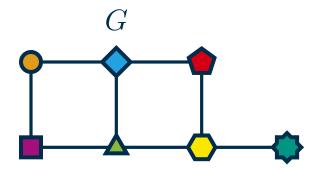
Laura Merker and Samuel Schneider, June 4, 2025

Pathwidth

Let G be a graph.

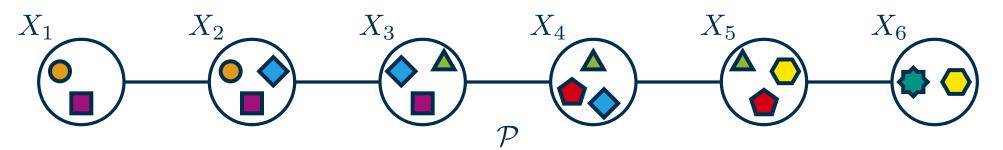
Path decomposition:

A path $\mathcal{P} \coloneqq (v_1, \ldots, v_r)$ with **bags** $X_1, \ldots, X_r \subseteq V(G)$ such that:



(i) $X_1 \cup \cdots \cup X_r = V(G)$ (ii) $uv \in E(G) \Rightarrow u, v \in X_i$ for at least one bag X_i (iii) for every vertex $v \in V(G)$ the graph induced by the bags containing v is connected

Width of a path decomposition: $\max\{|X_i|: i \in [r]\} - 1$ Pathwidth of *G*: minimal width of all path decompositions of *G*



Pathwidth Treewidth

Let G be a graph.

Tree **Path** decomposition:

A path $\mathcal{P} \coloneqq (v_1, \ldots, v_r)$ with **bags** $X_1, \ldots, X_r \subseteq V(G)$ such that: tree \mathcal{T}

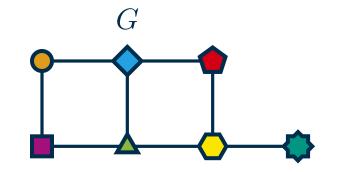
(i) $X_1 \cup \cdots \cup X_r = V(G)$

(ii) $uv \in E(G) \Rightarrow u, v \in X_i$ for at least one bag X_i

(iii) for every vertex $v \in V(G)$ the graph induced by the bags containing v is connected

Width of a path decomposition:
$$\max\{|X_i|: i \in [r]\} - 1$$

Pathwidth of *G*: minimal width of all path decompositions of *G*
Treewidth
 X_1
 X_2
 X_3
 X_4
 X_5
 X_6
 X_7
 X_7



Evaluation

https://onlineumfrage.kit.edu/evasys/online.php?p=L3ZK6

- Do you like the format of the excercise class?
 - Would you prefer less/more focus on discussing the excercise sheets?
- Would you prefer easier/harder problems?

Problems

(1) Prove that a graph G is an interval graph if and only if it admits a path decomposition such that each bag is a clique in G.

(2) Find an algorithm for computing the treewidth of chordal graphs.

(3) Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

(4) Find fun facts on (tw, ω) -boundedness: definition, examples, sufficient conditions, related parameters, related exercises, algorithmic implications, open questions, ...

Path (tree) decomposition:

A path (tree) $\mathcal{P} \coloneqq (v_1, \ldots, v_r)$ with **bags** $X_1, \ldots, X_r \subseteq V(G)$ such that: (i) $X_1 \cup \cdots \cup X_r = V(G)$ (ii) $uv \in E(G) \Rightarrow u, v \in X_i$ for at least one bag X_i (iii) for every vertex $v \in V(G)$ the graph induced by the bags containing v is connected Width of decomposition: $\max\{|X_i|: i \in [r]\} - 1$ Pathwidth (treewidth) of G: min. over all decompositions

k-tree: obtained from a K_k by iteratively adding degree-*k* vertices to some *k*-clique

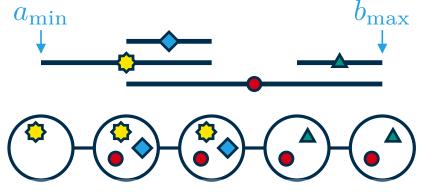
subgraph of a k-tree

Interval graphs and path decompositions

Prove that a graph G is an interval graph if and only if it admits a path decomposition such that each bag is a clique in G.

"⇒":

- Let G be the interval graph corresponding to the intervalls $I_v = [a_v, b_v] \subset \mathbb{N}$ with $v \in V(G)$.
- Let $a_{\min} = \min\{a_v \colon v \in V(G)\}$ and $b_{\max} = \max\{b_v \colon v \in V(G)\}.$
- We construct a path decomposition $\mathcal{P} \coloneqq (v_{a_{\min}}, \dots, v_{b_{\max}})$ with bags $X_{a_{\min}}, \dots, X_{b_{\max}}$
- Let $v \in V(G)$ with $I_v = [a_v, b_v]$. Then, we add v to every bag X_i with $a_v \le i \le b_v$. **Claim:** Every bag is a clique.
- Let $u, v \in X_i$ for some $a_{\min} \leq i \leq b_{\max}$.
- Then, $i \in I_u \cap I_v$ and thus $uv \in E(G)$. Claim: Every $uv \in E(G)$ is in some bag X_i^*
- There is some $i \in I_u \cap I_v$ and thus $u, v \in X_i$ *this is property (ii) of path decompositions, property (i) and (iii) clearly hold.



Interval graphs and path decompositions

Prove that a graph G is an interval graph if and only if it admits a path decomposition such that each bag is a clique in G.

"⇐":

- Let $\mathcal{P} \coloneqq (v_1, \ldots, v_r)$ with bags X_1, \ldots, X_r be a path decomposition of G with all X_i cliques.
- We construct intervals $I_v = [a_v, b_v]$ for all $v \in V(G)$.
- For every vertex $v \in V(G)$ let X_a^v, \ldots, X_b^v be the bags that contain v. We set $I_v = [a, b]$.
- Note that [a, b] is an interval as the bags containing v induce a connected graph in \mathcal{P} Claim: G is the interval graph of these intervals.
- As every bag is a clique two distinct vertices share a bag if and only if they are adjacent.
- Two intervals I_u and I_v intersect if and only if u and v share a bag.
- $\Rightarrow uv \in E(G)$ if and only if I_u and I_v intersect.

Treewidth in chordal graphs

Claim: For every chordal graph G, we have $tw(G) = \omega(G) - 1$.

 $\operatorname{tw}(K_n) = n - 1 \implies \operatorname{tw}(G) \ge \omega(G) - 1$ for all graphs G (chordality not needed)

By induction: $tw(G) \le \omega(G) - 1$ and for every clique C there is a bag containing CBase case: $tw(K_1) = 0$

Recall (lecture): Every chordal graph has a simplicial vertex x. G - x admits a tree decomposition of width $\omega(G - x) - 1$ by induction N(x) is a clique (since x is simplicial) \implies there is a bag B containing N(x) by induction

Case 1: $\omega(G) > \omega(G - x) \rightarrow \text{add } x \text{ to } B \rightarrow \text{increases width by } 1 \checkmark$ **Case 2:** $\omega(G) = \omega(G - x)$ $\rightarrow \text{ add new bag } N[x] \text{ of size } \omega(G) \text{ adjacent to } B \rightarrow \text{ width } \omega(G) - 1$ N(x)

In both cases: For all cliques C containing $x: C \subseteq N[x] \rightarrow \text{contained in new/extended bag}$

Treewidth in chordal graphs

Claim: For every chordal graph G, we have $tw(G) = \omega(G) - 1$.

Algorithm to compute the treewidth in chordal graphs: compute clique number (LexBFS, PES), subtract 1

Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

k-tree: obtained from a K_k by iteratively adding degree-*k* vertices to some *k*-clique

"←"

Observation: Treewidth is *monotone*, i.e., $G \subseteq H \implies \operatorname{tw}(G) \leq \operatorname{tw}(H) \rightarrow$ we only need to consider non-partial *k*-trees

- Sheet 3, Exercise 6: *k*-trees are chordal
- Just shown (previous exercise): G chordal $\implies \operatorname{tw}(G) = \omega(G) 1$
- $\omega(k\text{-tree}) \le k+1 \implies \operatorname{tw}(k\text{-tree}) \le k$

 $/ \rightarrow / \rightarrow / \rightarrow / /$

Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

k-tree: obtained from a K_k by iteratively adding degree-*k* vertices to some *k*-clique

Find construction sequence by induction on the tree:

- **Base case:** If $|V(G)| \le k+1$ we are done as $G \subseteq K_{n+1}$ and K_{n+1} is a k-tree
- Assume |V(G)| > n+1 and let \mathcal{T} be a tree decomposition with bags X_1, \ldots, X_r and width k.
- We assume w.l.o.g. that $|X_i| = k + 1$ for all X_i and that every X_i is a clique in G.

adding edges allowed since we only need a *partial* k-tree

 $/ \to \land \to \land \checkmark \to \land \checkmark$

Treewidth and k-trees

Prove that the treewidth of a graph is at most k if and only if it is a partial k-tree.

k-tree: obtained from a K_k by iteratively adding degree-*k* vertices to some *k*-clique

"'**⇒**"

Find construction sequence by induction on the tree:

- **Base case:** If $|V(G)| \le k+1$ we are done as $G \subseteq K_{n+1}$ and K_{n+1} is a k-tree
- Assume |V(G)| > n+1 and let \mathcal{T} be a tree decomposition with bags X_1, \ldots, X_r and width k.
- We assume w.l.o.g. that $|X_i| = k + 1$ for all X_i and that every X_i is a clique in G.
- Let X_i be a leaf bag, X_j be its parent and $v \in X_i X_j$. $\Rightarrow N[v] = X_i$
- By induction G v is a partial k-tree.
- As $N(v) = X_i v$ is a k-clique, G is a partial k-tree.

 $/ \to \land \to \land \lor \to \land \checkmark$

(tw, ω)-Boundedness

Definition:

A graph class \mathcal{G} is called $(\mathbf{tw}, \boldsymbol{\omega})$ -**bounded** if \exists function f s.t. $\mathrm{tw}(G) \leq f(\boldsymbol{\omega}(G))$ for all $G \in \mathcal{G}$ Some relevant papers:

- [1] Dallard, Milanič, Štorgel, 2021, https://doi.org/10.1137/20M1352119
- [2] Dallard, Milanič, Štorgel, 2023, https://doi.org/10.1016/j.jctb.2023.10.006
- [3] Chaplick, Töpfer, Voborník, Zeman, 2021, https://doi.org/10.1007/s00453-021-00846-3 ... and follow-up papers (use "cited by"-function by Journals / Google Scholar) **Examples / sufficient conditions:**
- chordal graphs: $tw(G) \le \omega(G) 1$ (see Exercise (3))
- graphs with bounded tree-independence number [2]
- line graphs of bounded-treewidth graphs [2]

Algorithmic implications:

k-clique, *k*-list coloring polynomially solvable [3]
 Open Problems:

Is Independent Set solvable in polynomial time for (tw, ω) -bounded graph classes?

