

Algorithmic Graph Theory

Problem Class 2 | 7 May 2025

Laura Merker, Samuel Schneider

Update from the faculty

exams may be taken in English or German

Graph G on vertices x_1, \ldots, x_n , tuple $h = (h_1, \ldots, h_n)$ of nonnegative integers

Recall $H = G \circ h$: $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}, E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$

 $\begin{aligned} \widehat{\text{New definition: } H = G \ominus h \text{ with}} \\ V(H) &= \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}, \\ E(H) &= \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\} \end{aligned}$

(1) What is the difference between \circ and Θ ?

(2) Can ○, resp. ⊖, be realized by elementary operations?
 I.e., is there a sequence h¹, h²,... of tuples, each with all entries 1 except for one 0 or 2, such that G * h = G * h¹ * h² * ... for each * ∈ {○, ⊖}? If so, does the order matter?

(3) Find a largest cycle, a largest induced cycle, ω, χ, α , and κ of $K_n \ominus (2, \ldots, 2)$.

(4) Prove or disprove: If G is perfect, then ...

- $\omega(G \ominus h) = \chi(G \ominus h)$ (follow a proof of the lecture)
- $G \ominus h$ is perfect

Let $G_0 = K_2$ and $H_i = G_{i-1} \ominus (2, \ldots, 2)$, $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$, where u is a new vertex, $i \ge 1$

(5) Prove that G_1, G_2, \ldots are not perfect.

(6) Prove that G_0, G_1, \ldots are "far from perfect". For this, find $\omega(G_i)$ and $\chi(G_i)$, $i \ge 0$.

What is the difference?

Graph G on vertices x_1, \ldots, x_n , tuple $h = (h_1, \ldots, h_n)$ of nonnegative integers Recall: $H = G \circ h$ defined as $\bullet \circ \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} = \bullet$ $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$ $E(H) = \{ x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j] \}$ **New definition:** $H = G \ominus h$ with $\Theta \begin{pmatrix} 3\\ 2\\ 2 \end{pmatrix} = \Phi$ $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$ $E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$ **Claim:** $(G \circ h) \circ h' = G \circ (h + h' - (1, ..., 1))$ (padding h' with 1's as necessary) so $G \circ (3,0,1) = G \circ (2,0,1) \circ (2,1) = G \circ (1,0,1) \circ (2,1) \circ (2,1,1)$ • same number of vertices: $n + \sum (h_i - 1) + \sum (h'_i - 1) = n + (\sum (h_i + h'_i - 1) - n)$ $(x_1^b)^1 = x_1^c$ Identify vertices: Denote twins (due to h') of $x_i^b \in V(G \circ h)$ by x_i^c with suitable c > b $x_{2} \longrightarrow \mathbf{1} \longrightarrow \mathbf{1} \longrightarrow \mathbf{1} \longrightarrow \mathbf{1} \longrightarrow \mathbf{1}$ • edges with both endpoints in $G \circ h$: definitions coincide • $x_i^a x_i^c \in E(G \circ h \circ h')$ with x_i^c twin of some x_i^b in $G \circ h$ $\implies x_i^a x_j^b \in E(G \circ h) \implies x_i x_j \in E(G) \implies x_i^a x_j^c \in E(G \circ h + h' - (1, \dots, 1))$ other direction analoguous \implies elementary operations $G \circ x_i$ and $G - x_i$ suffice (in any order)

Institute of Theoretical Informatics

What is the difference?

Graph G on vertices x_1, \ldots, x_n , tuple $h = (h_1, \ldots, h_n)$ of nonnegative integers Recall: $H = G \circ h$ defined as $V(H) = \{x_i^1, \ldots, x_i^{h_i} \mid i \in [n]\}$ $E(H) = \{x_i^a x_j^b \mid x_i x_j \in E(G), a \in [h_i], b \in [h_j]\}$ $\circ \begin{pmatrix} 3\\2\\2 \end{pmatrix} = \begin{pmatrix} 3\\2\\2 \end{pmatrix}$

New definition:
$$H = G \ominus h$$
 with
 $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$
 $E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$

Does the same work for \bigcirc ? \rightarrow **No!** What about other sequences?

What in the proof for \circ fails for Θ ?

Claim: The graphs obtained form K_2 by elementary Θ -replications are exactly the complete bipartite graphs. \rightarrow no P_4

Therefore: single operation for all new vertices necessary for new vertices with Θ

What is the difference?

Graph G on vertices x_1, \ldots, x_n , tuple $h = (h_1, \ldots, h_n)$ of nonnegative integers Recall: $H = G \circ h$ defined as $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$

New definition:
$$H = G \ominus h$$
 with
 $V(H) = \{x_i^1, \dots, x_i^{h_i} \mid i \in [n]\}$
 $E(H) = \{x_i^a x_j^1 \mid x_i x_j \in E(G), a \in [h_i], h_j > 0\}$

Does the same work for Θ ? What about other sequences?

• same number of vertices: $n + \sum (h_i - 1) + \sum (h'_i - 1) = n + (\sum (h_i + h'_i - 1) - n)$

• Identify vertices: Denote twins (due to h') of $x_i^b \in V(G \circ h)$ by x_i^c with suitable c > b

$x_i^a x_i^c \in E(G \circ h \circ h') \text{ with } x_j^c \text{ twin of some } x_j^b \text{ in } G \circ h$ $x_i^a x_i^b \in E(G \circ h) \quad \nleftrightarrow \quad r \in E(G) \quad h \in G \circ h$ $\implies x_i^a x_j^b \in E(G \circ h) \iff x_i x_j \in E(G) \implies x_i^a x_j^c \in E(G \circ h + h' - (1, \dots, 1))$ other direction analoguous

 \implies elementary operations $G \circ x_i$ and $G - x_i$ suffice (in any order)

 $(x_1^b)^1 = x_1^c$

What in the proof for \circ fails for Θ ?

$K_n \ominus (2,\ldots,2)$

- Hamilton cycle (length 2n)
- largest induced cycle: triangle
 - larger induced cycle contains ≤ 2 black vertices (clique)
 - all black vertices are consecutive (clique)
 - \blacksquare blue vertices not adjacent \implies only one blue vertex

$$\omega = \chi = \alpha = \kappa = n$$

Perfect?

Lemma (lecture): If G is perfect, then $G \circ h$ is perfect. **Goal:** adapt proof for Θ

Observation: If h is a 0-1-tuple, then $G \ominus h = G \circ h \subseteq_{ind} G$

Let
$$h'$$
 be such that $h'_i = \begin{cases} 1 & \text{if } h_i > 0 \\ 0 & \text{if } h_i = 0 \end{cases}$ and $G' = G \ominus h' \subseteq_{\text{ind}} G$

Since G is perfect, we have $\omega(G') = \chi(G')$.

• new vertices in $G \ominus h$ form an independent set $\implies \leq 1$ new vertex in every clique If new vertex x_i^a in largest clique C, then $C - x_i^a + x_i^1 \subseteq G'$ is clique of same size. $\implies \omega(G \ominus h) = \omega(G')$

• Observe:
$$N(x_i^a) \subseteq N(x_i)$$
 for each twin x_i^a of x_i
Let $c': V(G') \rightarrow [\chi(G')]$ be a proper coloring.
Now $c(x_i^a) = c'(x_i)$ is a proper coloring of $G \ominus h$.
 $\implies \chi(G \ominus h) = \chi(G')$

So, $\omega(G \ominus h) = \omega(G') = \chi(G') = \chi(G \ominus h)$

Perfect?

Lemma (lecture): If G is perfect, then $G \circ h$ is perfect. **Goal:** adapt proof for Θ **Observation:** If h is a 0-1-tuple, then $G \Theta h = G \circ h \subseteq_{ind} G$ **Have:** $\omega(G \Theta h) = \chi(G \Theta h)$

But what about induced subgraphs?

Far from perfect (Mycielski 1955)

Let $G_0 = K_2$ and $H_i = G_{i-1} \ominus (2, ..., 2)$, $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$, where u is a new vertex, $i \ge 1$

- G_0 H_1 G_1 G_2 G_1 H_2
- $G_0 = K_2$ is perfect
- $\bullet G_i, i > 0$ contain induced $C_5 \implies$ not perfect
- $\omega(G_i) = 2$ for all *i* by induction:
 - triangle does not contain
 - only one o
 - so at least two •, but they form triangle with twin of chosen o
 - contradiction: do not form a triangle by induction

Far from perfect (Mycielski 1955)

 G_1

 G_2

Let $G_0 = K_2$ and $H_i = G_{i-1} \ominus (2, ..., 2)$, $G_i = H_i + u + \{uv \mid v \in V(H_i) - V(G_{i-1})\}$, where u is a new vertex, $i \ge 1$

- $\chi(G_i) \ge i+2$ by induction:
 - let k = i + 1
 - let c be a k-coloring that minimizes the number of vertices colored in the same color as ◇
 - w. l. o. g $c(\diamondsuit) = k$
 - If there is a \bullet -vertex x_i colored with k, then its neighborhood contains all other colors (choice of c)
 - thus, the neighborhood of its twin x_i^2 contains all colors $1,\ldots,k-1$ and $c(x_i^2)=k$
 - not a proper coloring
 - \blacksquare so the $\bullet\mbox{-vertices}$ admit a $(k-1)\mbox{-coloring},$ contradiction to induction
- $\chi(G_i) \leq i+2$: copy colors for \circ and use new color for \diamond

 G_0

 G_1

 H_1

 H_{2}