

Algorithmic Graph Theory

Problem Class 1 | 30. April 2025

Laura Merker, Samuel Schneider

Problem Classes

problem solving in class (new problems not on exercise sheets)

discussion of exercise sheets (published at least one week beforehand and to be solved at home): https://illwww.iti.kit.edu/teaching/sommer2025/algorithmic_graph_theory

 language: English (if you feel uncomfortable with English, you may ask questions in German)

the oral exam will be in English

you can choose between German and English for the oral exam

How to contact us:

- use first names (in German "du")
- laura.merker2@kit.edu, samuel.schneider@kit.edu
- Discord channel (optional): https://discord.gg/pQ7WDfhwv8

Any other suggestions / questions?

Karlsruhe Institute of Technology

Show that...

(1) There exist graphs G and G' with: (a) $\alpha(G) = \kappa(G)$ but $\omega(G) < \chi(G)$ (b) $\omega(G') = \chi(G')$ but $\alpha(G') < \kappa(G')$

(2) For every graph G the following are equivalent:

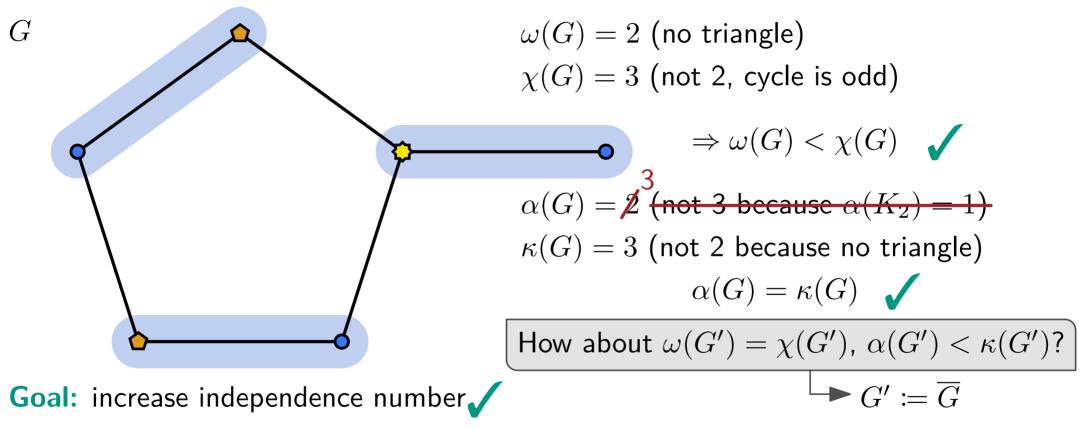
- G is bipartite
- every cycle in G is even (i. e. the length is even)
- every induced cycle in *G* is even
- (3) For every bipartite graph, the size of the largest matching equals the size of the smallest vertex cover. *Hint: Find a property of bipartite graphs connected to the lecture.*

Matching: subgraph of maximum degree 1, i.e. a set of independent edges **Vertex Cover:** vertex set C such that every edge has at least one endpoint in C

- (4) For every $k \ge 1$, construct a bipartite graph on 2k vertices and a vertex ordering such that a greedy coloring uses at least k colors.
- (5) Every connected graph G on n vertices with minimum degree δ contains a path on $\min(2\delta, n)$ vertices.

Somewhat perfect

We need a graph that is not perfect:



Doesn't this contradict the *Weak Perfect Graph Theorem*? No: C_5 as induced subgraph with $\alpha(C_5) = 2 < 3 = \kappa(C_5)$

G is bipartite \iff every cycle in G is even

" \Rightarrow ": Let G be a bipartite graph. We show that G contains no odd cycle

 \blacksquare Assume that G contains an odd cycle C

 $\Box C$ is not 2-colorable $\implies G$ is not 2-colorable and therefore not bipartite \checkmark

" \Leftarrow ": Let G be a graph that contains no odd cycle. We show that G is bipartite.

• Assume w. l. o. g. that G is connected (otherwise we argue on every component of G).

- Choose a $w \in V$.
- Color all vertices with even distance to w red and all other vertices blue.
- \blacksquare Assume there exist two adjacent vertices u und v with the same color

Goal: Find an odd cycle in G for a contradiction

- Look at a shortest path P_1 from w to uand a shortest path P_2 from w to v.
- Let w' the last shared vertex of P_1 and P_2 and let P'_i be the path P_i starting at w'.
- Then, P'_1 , uv, P'_2 is a cycle with length $|E(P'_1)| + |E(P'_2)| + 1 \rightarrow \text{odd}$

5 Laura Merker, Samuel Schneider – Algorithmic Graph Theory

 \mathcal{W}

 P_2'

We show: This coloring

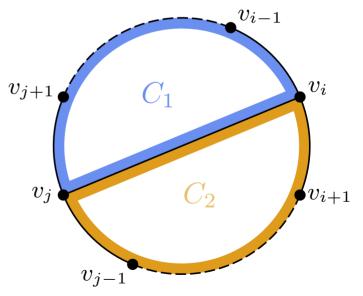
is a proper 2-coloring

all cycles even \iff all induced cycles even

" \Rightarrow ": obvious

- " \Leftarrow ": Let G be a graph with an odd cycle. We show that G contains an induced odd cycle.
- Let $C \coloneqq (v_1, \ldots, v_k)$ be a smallest odd cycle in G.
- Assume that C is not an induced cycle and let $v_i v_j$ be a chord of C
- Let $C_1 \coloneqq (v_1, \ldots, v_i, v_j, \ldots, v_n)$ and $C_2 \coloneqq (v_i, \ldots, v_j)$ be the two induced cycles in $C + v_i v_j$
- Then, $|V(C_1)| + |V(C_2)| = |V(C)| + 2$
- As |V(C)| is odd, one of $|V(C_1)|$ and $|V(C_2)|$ is odd

This contradicts that C is a smallest odd cycle in G



König's Theorem

Define: M(G): size of a maximum matching, vc(G): size of a minimum vertex cover.

Intermediate steps:

Bipartite graphs are perfect

Subgraphs of bipartite graphs are bipartite
nonempty bipartite graph G: ω(G) = 2 und χ(G) = 2

• empty bipartite graph G: $\omega(G) = 1$ und $\chi(G) = 1$

Karlsruhe Institute of Technology

$$\operatorname{vc}(G) = n - \alpha(G)$$

 \blacksquare Let $A \subseteq V(G)$ be a minimum vertex cover

- \blacksquare no edge has both endpoints in $V(G) \setminus A$
- ${\hfill \ \ } V(G) \setminus A$ is an independent set

$$\bullet \alpha(G) \ge n - \mathrm{vc}(G)$$

- \blacksquare Let $I \subseteq V(G)$ be a max. independent set
 - $V(G) \setminus I$ covers all edges

$${\scriptstyle \bullet } \operatorname{vc}(G) \leq n - \alpha(G)$$

Goal: For all bipartite graphs G: vc(G) = M(G)Only cliques of sizes 1 and 2. Use as many 2-cliques for the clique cover as possible. $\Rightarrow \kappa(G) = M(G) + (n - 2 \cdot M(G)) = n - M(G)$

• As G is perfect we have $\alpha(G) = \kappa(G)$ and thus $vc(G) = n - \alpha(G) = n - \kappa(G) = n - (n - M(G)) = M(G).$

Institute of Theoretical Informatics

First: super-constant colors

Institute of Theoretical Informatics

Bad greedy colorings

Goal: For every $k \ge 1$ find ...

- \blacksquare a bipartite graph on 2k vertices
- a vertex ordering

such that a greedy coloring uses k colors.

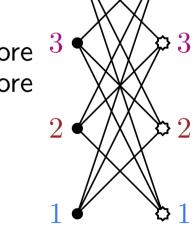
In each step:

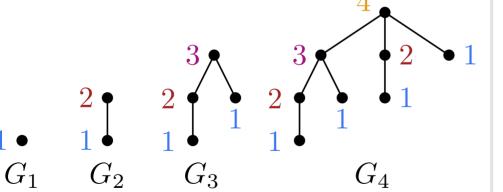
Now: k colors

- connect new to all \diamond before $\frac{3}{2}$
- connect new ◇ to all before

vertex ordering: from bottom to top

⇒complete bipartite graph minus a perfect matching





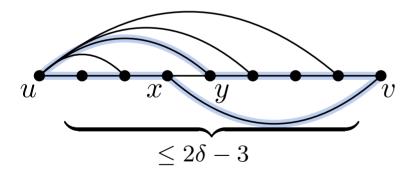
vertex ordering: from bottom to top

Paths on 2δ vertices

Claim: Let G be a connected graph G with minimum degree δ . Then, G contains a path on $\min(2\delta, |V(G)|)$ vertices. We prove a "stronger" statement (and assume w.l.o.g that $2\delta \leq |V(G)|$): **Goal:** G contains a cycle or path on 2δ vertices.

• Let H be a largest cycle or path, where we choose a cycle if possible. • Assume $|V(H)| < 2\delta$.

Case 1: *H* is a path



- $\blacksquare u, v$ have only neighbors in H, otherwise H is not maximal
- there is a neighbor x of v that is followed (in H) by a neighbor y of u (counting argument).
- So, there is a cycle on |V(H)| vertices.
 - \implies Contradiction to the choice of H

Case 2: *H* is a cycle

- only neighbors in H, otherwise H not maximal
- \blacksquare since G is connected, H contains all vertices of G