
Lecture notes for Algorithmic Graph Theory1

Sven Geißler #2

Karlsruhe Institute of Technology, Germany3

AGT Script © 2025 by Sven Geißler is licensed under CC BY 4.0. To view a copy of this4

license, visit https://creativecommons.org/licenses/by/4.0/5

1 Preliminaries6

We begin these lecture notes by defining the basic structures used in this course.7

▶ Definition 1. A graph G = (V, E) consist of a finite vertex set V with |V | ≥ 1 and a set8

of edges E ⊆ {{u, v}|u, v ∈ V, u ̸= v} =
(

V
2
)
.9

Note, that this definition allows for neither parallel edges nor loops and thus can be seen as10

a undirected simple graph. In the following we use the simplified notation {u, v} = uv for11

edges. Note, that this implies uv = vu.12

2 Introduction13

In this section we introduce some simple graph families as well as the parameters studied in14

this course. Furthermore, the graph class of perfect graphs and their two most important15

structural results are introduced.16

2.1 Important graphs17

In this section we introduce some graph families used throughout this lecture.18

For n ≥ 1 we define Kn =
(

[n],
([n]

2
))

as the complete graph on n vertices. Here, we used19

[n] = {1, . . . , n}. So using the naturally defined functions V and E, we have: V (Kn) = [n]20

and E(Kn) =
([n]

2
)
.21

K1 K2 K3 K4 K5

For n, m ≥ 1 we define Kn,m = ({a1, . . . , an} ∪ {b1, . . . , bm}, {aibj |i ∈ [n], j ∈ [m]}) as22

the complete bipartite graph on n + m vertices.23

K1,1
∼= K2 K1,2 K1,3 K2,1

∼= K1,2 K2,2

For n ≥ 3 we define Cn = ([n], {{i, i + 1}|i ∈ [n− 1]} ∪ {1n}) as the cycle on n vertices.24

mailto:sven.geissler@student.kit.edu
https://creativecommons.org/licenses/by/4.0/

2 Notes on AGT

C3
∼= K3 C4

∼= K2,2 C5

For n ≥ 1 we define Pn = ([n], {{i, i + 1}|i ∈ [n − 1]}) as the path on n vertices. Note25

that [0] = ∅ and Pn = Cn − 1n for n ≥ 3.26

P1
∼= K1 P2

∼= K2
∼= K1,1 P3

∼= K1,2
∼= K2,1 P4

For n ≥ 1 we define En = ([n], ∅) as the empty graph on n vertices.27

E1
∼= K1 E2

∼= K1 +K1 = 2 ·K1 E3

2.2 The parameters28

We continue by introducing four parameters studied in this lecture. To formally define the29

parameters we need some terminology, which we introduce first.30

Sven Geißler 3

▶ Definition 2. For a graph G = (V, E) and a vertex subset A ⊆ V the induced subgraph31

GA is defined by V (GA) = A and E(GA) = {uv ∈ E|u, v ∈ A}.32

We use the notation GA ⊆ G.33

G

A

GA

We denote the disjoint union of sets as A + B = A ∪B but if A ∩B = ∅. We use this in34

the next definition.35

▶ Definition 3. A partition in t parts, t ≥ 1, of a set V is V1 + · · ·+ Vt = V .36

We are now ready to introduce our parameters.37

▶ Definition 4. For a graph G = (V, E), a set A ⊆ V and a partition V1 + · · ·+ Vt = V we38

define:39

A clique if GA is a complete graph.40

A independent set if GA is an empty graph.41

clique number ω(G) = max{|A| : A ⊆ V (G)is clique}.42

independence number α(G) = max{|A| : A ⊆ V (G)is independent set}.43

V1 + · · ·+ Vt is a coloring if Vi is an independent set, ∀i ∈ [t].44

V1 + · · ·+ Vt is a clique cover if Vi is an clique, ∀i ∈ [t].45

chromatic number χ(G) = min{t : ∃ coloring V1 + · · ·+ Vt of G}.46

clique cover number κ(G) = min{t : ∃ clique cover V1 + · · ·+ Vt of G}.47

Note that a single vertex v is a clique as well as an independent set, so we always have48

1 ≤ α(G), ω(G) ≤ |V |. Also note that V1 + · · ·+ Vt with |Vi| = 1,∀i ∈ [t] is a coloring and a49

clique cover. Thus, we always have 1 ≤ χ(G), κ(G) ≤ |V |.50

The following table tracks the four parameters across the five important graph families.51

Kn Km,n Cn Pn En

ω(G) n 2
{

2 n ≥ 4
3 n = 3

{
2 n ≥ 2
1 n = 1 1

α(G) 1 max(m, n) ⌊ n
2 ⌋ ⌈ n

2 ⌉ n

χ(G) n 2
{

2 n even
3 n odd

{
2 n ≥ 2
1 n = 1 1

κ(G) 1 max(m, n)
{

⌈ n
2 ⌉ n ≥ 4

1 n = 3 ⌈ n
2 ⌉ n

52

Consider the following notes and observations: We use the following terms interchangeably53

2-colorable ⇔ χ(G) ≤ 2⇔ bipartite. We can observe that ω, χ and α, κ often are the same54

or similar.55

Our aim in this lecture will be a polynomial algorithm for all 4 parameters.56

2.3 Perfect graphs57

This section introduces perfect graphs, their defining properties and the two important58

structural results (Theorem 9 and Theorem 16).59

We begin with an observation.60

4 Notes on AGT

▶ Observation 5. For every Graph G we have χ(G) ≥ ω(G) and κ(G) ≥ α(G).61

Proof. If I ⊆ VG is independent and C ⊆ VG is a clique, then |I ∩ C| ≤ 1. Hence, for any62

coloring V1 + · · ·+ Vt = VG and any clique C, we have |C ∩ Vi| ≤ 1 for i ∈ [t]. If |C| = ω(G),63

then t ≥ |C|. Thus, χ(G) ≥ ω(G).64

Analogously, for any clique-cover V1 + · · ·+ Vt = VG and any independent set I, we have65

|I ∩ Vi| ≤ 1 for i ∈ [t]. If |I| = α(G), then t ≥ |I|. Thus, κ(G) ≥ α(G). ◀66

The main question of AGT is when these inequalities turn into equalities. Here, the67

boring answer is that any graph may be modified to fulfil these equalities by adding a large68

clique or independent set. Due to this we are interested in the cases when the equalities hold69

for all induced subgraphs.70

In the following we consider two exponential sets of restrictions.71

▶ Definition 6. Consider two properties.72

(P1) ∀A ⊆ VG : χ(GA) = ω(GA)73

(P2) ∀A ⊆ VG : α(GA) = κ(GA)74

We begin by considering our important graph families. Here, we note that Kn, En, Kn,mPn75

and Cn for even n all fulfil (P1) and (P2), while Cn for odd n fulfil neither.76

We also observe the following:77

▶ Observation 7. If G + H are vertex-disjoint, α(G + H) = α(G) + α(H) and κ(G + H) =78

κ(G) + κ(H).79

We are now ready to define perfect graphs.80

▶ Definition 8. A graph G is called perfect, if G has (P1) and (P2).81

We observe that C5 has ω(C5) = 2, but χ(C5) = 3 and α(C5) = 2, but κ(C5) = 3. Thus,82

C5 is not perfect. Furthermore, we note that this is the smallest such graph.83

We continue by considering how (P1) and (P2) relate to each other.84

▶ Theorem 9 (Weak perfect graph theorem (WPGT)). For every graph G it holds: G has85

(P1) ⇔ G has (P2).86

Warning: ∀A ⊆ VG : χ(GA) = ω(GA)⇔ κ(GA) = α(GA) is not true. This is due to the fact87

that (P1) and (P2) may break on different subsets.88

Before proving this theorem we consider a different approach of defining perfect graphs89

and stating the WPGT.90

▶ Definition 10. For graph G = (V, E) the complement of G is the graph G = (V, E), where91

E =
(

V
2
)
− E.92

Sven Geißler 5

P4 P4

P4 +K1 (P4 +K1)

We can observe the following relations:93

graph G A clique V1 + · · · + Vt coloring
complement G A independent set V1 + · · · + Vt clique cover

Thus, α(G) = ω(G) and χ(G) =94

κ(G). Similarly, (P1) for G ⇔ (P2) for G and (P2) for G ⇔ (P1) for G.195

To prove the WPGT we consider (P3) ∀A ⊆ VG : ω(GA) · α(GA) ≥ |A|. This property96

connects ω and α and informally states that not both parameters can be small. Note that97

C5 has α(C5) · ω(C5) = 2 · 2 ≱ 5 = |C5| and thus fails (P3) in addition to (P1) and (P2).98

We prove that G has (P1) ⇔ G has (P2) ⇔ G has (P3).99

We first introduce a technique called vertex replication.100

▶ Definition 11. For a graph G = (V, E) and h ∈ NV we define G◦h as the graph on the vertex101

set V (G ◦ h) =
⋃

v∈V

{v1, . . . , vh(v)} and edges uivj if and only if i ∈ [h(u)], j ∈ [h(v)], uv ∈ G.102

This is called a vertex replication or a vertex repetition of G.103

Note that for us N = {0, 1, 2, . . . }.104

▶ Definition 12. Let 1 be

 1
. . .

1

 ∈ NV and let G = (V, E) be a graph. Let ei be



0
. . .

0
1
0

. . .

0


the105

i-th unit vector in NV . For vertex v ∈ V define G ◦ v as G ◦ h with h(x) =
{

1 x ̸= v

2 x = v
.106

So h = 1+ ei, if v is the i-th vtx. Define G− v as G ◦ h with h = 1− ei. These are called107

elementary operations.108

▶ Observation 13. Every G◦h can be obtained from G by a sequence of elementary operations.109

We consider how vertex replication interrelates with our properties.110

▶ Lemma 14 (Lemma 2.6). For G and H = G ◦ h, we have:111

i) (P1) for G⇒ (P1) for H.112

1 In literature sometimes perfect graphs are defined as fulfilling (P1). Then, the WPGT states that G

perfect ⇔ G perfect.

6 Notes on AGT

ii) (P2) for G⇒ (P2) for H.113

Proof. We consider the two statements separately.114

i) We assume w.l.o.g H = G ◦ v or H = G− v. We now consider two cases:115

Case H = G− v: Then H = GV −v hence (P1) for G⇒ (P1) for H as H is a induced116

subgraph of G.117

Case H = G ◦ v: Here, the vertex v is replaced by the vertices v1, v2. We note118

that H − v1 ∼= H − v2 ∼= G and take A ⊆ VH . If |A ∩ {v1, v2}| < 2, then A ⊆ VG,119

hence χ(HA) = χ(GA) (P1) on G= ω(GA) = ω(HA). Thus, let v1, v2 ∈ A and consider120

A′ = A− v1 ⊆ VG.121

By (P1) for G we have χ(GA′) = ω(GA′). Since we can modify this coloring by adding122

v1 to the same color class as v2, as the two vertices have the same neighbours but123

share no edge, we get χ(HA) ≤ χ(GA′). As adding a vertex cannot decrease the clique124

number, we get ω(GA′) ≤ ω(HA). Using a previous observation (Observation 5) we125

can puzzle this together: χ(HA) ≤ χ(GA′) = ω(GA′) ≤ ω(HA) ≤ χ(HA). Since this126

chain of inequalities starts and ends with the same parameter, all inequalities must be127

equal. So we have (P1) for H.128

ii) Let G have (P2). We assume w.l.o.g. H = G ◦ x (or trivially H = G− v). Let x, x′ be129

the two copies of x in H. As argued before we assume that w.l.o.g. A′ contains x, x′.130

Let A = A′ − x′ ⊆ VG. We note that (P2) for G ⇒ κ(GA) = α(GA) ⇒ V1 + · · · + Vt131

clique cover of GA = HA with t = α(HA). So every independent set I of HA with |I| = t132

contains one vertex per Vi. We now distinguish on whether x is in any such independent133

set.134

Case 1: ∃I ⊆ A independent set of HA with |I| = t, x ∈ I, then I + x′ is independent135

set in HA′ . So α(HA′) ≥ t + 1. We also note that V1 + · · · + Vt + {x′} is a clique136

cover of HA′ . Thus, we have κ(HA′) ≤ t + 1 ≤ α(HA′) using previous observations137

(Observation 5) we obtain equalities.138

Case 2: ∀I ⊆ A i-set of HA with |I| = t : x /∈ I. Let C = V1 − x then HA−C has139

α(HA−C) ≤ t − 1. Due to (P2) for G we know ∃ clique cover V ′
1 + · · · + V ′

t−1 of140

GA−C = HA−C with ≤ t− 1 cliques. We construct a new clique cover and note that141

V ′
1 + · · ·+V ′

t−1 +(C +x′) is clique cover of HA′ . Thus, κ(HA′) ≤ t ≤ α(HA′) ≤ κ(HA′).142

Again we have equality.143

◀144

The proof of ii) is visualized in the following graphic.145

Sven Geißler 7

A

V1 V2 . . . Vt

x

x′

A

V1 V2 . . . Vt

x

x′

C

t− 1 cliques

We use this result to prove a lemma needed for the WPGT.146

▶ Lemma 15 (Lemma 2.7). If H = G ◦ h then,147

(P2) for all proper induced subgraphs of G

(P3) for G
⇒ (P3) for H.148

Proof. Assume f.s.o.c. that (P3) does not hold for H. We assume w.l.o.g. ∀A ⊆ VH , A ≠149

VH : ω(HA) · α(HA) ≥ |A| but ω(H) · α(H) < |VH |. Otherwise we take a smaller H as150

counterexample. So some vertex s of G has h(s) ≥ 2, since otherwise H is subset of G. So in151

H we have S = {s1, . . . , sh}. Consider H − sh, this graph has (P3) per assumption. Thus,152

|VH | − 1 ≤ ω(H − sh) · α(H − sh) ≤ ω(H) · α(H) ≤ |VH | − 1 using the above inequality.153

Again, we get a chain of equalities. Due to this we know ω(H) ·α(H) = |VH |−1, α(H−sh) =154

α(H), ω(H−sh) = ω(H). By iteratively applying α(H) = α(H−sh) we get α(H−S) = α(H).155

As H−S is obtained from G−S by vertex multiplication and since G−S has (P2) we know156

due to Lemma 2.6 (Lemma 14) that H − S has (P2). Take a clique cover V1 + · · ·+ Vα(H) of157

H−S. Then, we can use |VH−S| = VH−h = ω(H)·α(H)−(h−1). Here, the minus one is due158

to the VH − 1. Also |S| = h ≤ α(H) since S is an independent set in H. As we have a clique159

cover of α(H) cliques in a graph of ω(H) ·α(H) vertices, each clique -bar one - in the cover has160

size ω(H) before removing S. So at most h−1 of V1, . . . , Vα(H) have size < ω(H). We assume161

w.l.o.g. |V1| = · · · = |Vα(H)−(h−1)| = ω(H). Let X = V1 + · · ·+ Vα(H)−(h−1) + s1. We can162

compute the size of X. |X| = (α(H)− (h−1)) ·ω(H)+1. Due to our definition of X we have163

ω(HX) = ω(H). Due to (P3) for HX we have α(HX) ≥ ⌈ |X|
ω(HX)⌉ = ⌈ (α(H)−(h−1))·ω(H)+1

ω(H) ⌉ =164

α(H)− (h− 1) + 1. Here, we use the ceiling as we consider integer values and lower bounds.165

So ∃I independent set in HX , |I| = α(H) − (h − 1) + 1, s1 ∈ I. So I + {s2, . . . , sh} is an166

independent set in H ⇒ α(H) ≥ α(H) + 1 which is a contradiction. ◀167

This proof is visualized below.168

8 Notes on AGT

h-1

s1, . . . , sn

S

α(H)

V1 . . . Vα(H)

ω(H)

VH−SX

We can now prove the WPGT.169

Proof. Let G = (V, E) be a graph, we prove (P1)⇔(P2)⇔(P3) by induction on |V |. The170

base case of one vertex graphs is trivial.171

(P1)⇒(P3):172

Say (P1) holds for G. Let A ⊆ G. If A ̸= VG then (P1) holds for GA and by induction173

⇒ (P3) holds for GA, i.e. ω(GA) · α(GA) ≥ |GA|. So we assume w.l.o.g. A = VG, i.e. we174

need to show that ω(G) = α(G) ≥ |VG|. We know (P1)⇒ ∃ coloring V1 + · · ·+ Vt = VG175

with t = ω(G). Here, |Vi| ≤ α(G),∀i. So ω(G) · α(G) ≥ |VG|.176

(P3) ⇒ (P1):177

Let (P3) hold for G. To show (P1) it is enough (w.l.o.g) to show χ(G) ≤ ω(G). We178

consider all cliques of size ω(G).179

Case 1: ∃I independent set in G ∀C clique, |C| = ω(G):I ∩ C ̸= ∅.180

We consider G−I and note ω(G−I) ≤ ω(G)−1. So due to the induction hypothesis we181

have (P1) for (G-I), i.e. V1 + · · ·+Vt = VG−I with t ≤ ω(G)−1. Thus, V1 + · · ·+Vt +I182

is a coloring of G. So we have χ(G) ≤ t + 1 = ω(G)− 1 + 1 and we are done.183

Case 2: ∀I i-set ∃clique C(I), |C(I)| = ω(G), C(I) ∩ I = ∅:184

Consider the set of all independent sets Y = {I ⊆ VG : I independent set}. We choose185

h(v) = #{I ∈ Y : v ∈ C(I)} and consider H = G · h. Since (P3) for G and (P2) for186

GA, A ⊊ VG, Lemma 2.7 (Lemma 15) tells us that (P3) holds for H. Here, (P2) for all187

proper subgraphs holds due to induction.188

Say VH = X. Then, ω(H) · α(H) ≥ |VH | = |X|. We also know |X| =
∑

v∈VG

h(v) =189

ω(G) · |Y |. Also ω(H) ≤ ω(G) since each clique of H has at most one copy of each190

original vertex. We have α(H) = maxI∈Y

∑
v∈I

h(v) =
∑

I′∈Y

|C(I ′) ∩ I|. Here each191

summand is 0 or 1. The second term is an alternate formulation of the sum where192

we sum over all other independent sets and consider how much they contributed to193

h(v). This is ≤ |Y | − 1 since C(I) ∩ I = ∅. Combining this we have ω(G) · (|Y | − 1) ≥194

ω(H) · α(H) ≥ |X| = ω(G) · |Y | which is a contradiction So case two does not happen.195

(P2)⇔(P3):196

We have (P2) for G ⇔ (P1) for G ⇔ (P3) for G ⇔ (P3) for G. In the last step we used197

that multiplication is commutative and that α and ω switch roles in the complement.198

Sven Geißler 9

◀199

To end this section we summarize our results:200

So we know the following to be equivalent:201

(P1) for G202

(P2) for G203

(P3) for G204

G perfect205

G perfect206

So far we know the following non-perfect graphs:207

odd cycle Ct, t ≥ 5208

complements of Ct, odd t ≥ 5209

every graph with induced odd Ct, odd Ct, t ≥ 5210

It can be shown that these known non-perfect graphs are all that exist.211

▶ Theorem 16 (Strong perfect graph theorem (SPGT)). For every graph G it is equivalent:212

Ct, Ct for t ≥ 5 odd is no induced subgraph of G213

G perfect214

3 Intersection graphs215

So far we have considered perfect graphs without further restrictions. This graph class is still216

to broad to find the desired polynomial algorithms for our four parameters. In this section217

we consider a subclasses of perfect graphs that are also intersection graphs.218

▶ Definition 17. A collection of sets S = {S(v) : v ∈ V } is an intersection representation219

of G = (V, E) if uv ∈⇔ S(u) ∩ S(v) ̸= ∅.220

3.1 Interval graphs221

We begin by considering interval graphs which are a subclass of intersection graphs.222

▶ Definition 18. G is an interval graph if G has an intersection representation with intervals223

of R, i.e. I = {I(v) : v ∈ V }, ∀I(v) = [lv, rv]. uv ∈ E ⇔ I(u) ∩ I(v) ̸= ∅ ⇔ min{ru, rv} ≥224

max{lu, lv}.225

▶ Definition 19. For graph G and integer t ≥ 4 we define:226

a t-hole in G is an induced subgraph GA
∼= Ct.227

a t-anti-hole in G is a induced subgraph GA
∼= Ct.228

Due to the SPGT we know that a graph being perfect is equivalent to there being no odd229

hole and no odd anti-hole.230

To show that interval graphs are perfect we consider their relation to holes.231

▶ Lemma 20. G interval graph ⇒ no t-hole for ≥ 4.232

Proof. Consider an interval representation I = {I(v) = [lV , rv] : v ∈ V } and assume f.s.o.c.233

that there is a t−hole Ct = [v1, . . . , vt], t ≥ 4. Then, I(vi−1), I(vi+1) cover distinct endpoints234

of vi. Thus, I(v1) ∩ I(vt) = ∅ ⇒ v1vt ̸= E. This is a contradiction. ◀235

We use this result to prove perfectness.236

10 Notes on AGT

▶ Lemma 21. G interval graph ⇒ G perfect237

Proof. We use the SPGT. We first note that G has no odd hole due to the previous lemma238

(Lemma 20). To show that G has no odd anti-hole we consider C5 separately. Here, we have239

C5 = C5. For all other odd-anti-holes we find a 4-hole in them. Consider Ct, t ≥ 7 :240

So we find a 4-hole in Ct, which cannot happen by the previous lemma. ◀241

What we showed is actually: G interval graph ⇒ G has no holes ⇒ G is perfect.242

Or more detailed: G interval graph ⇒ G has no t-holes t ≥ 4 ⇒ G has no odd hole, has no243

odd anti-hole ⇒ G is perfect. In the last step we used the SPGT.244

In the next section we generalize these ideas.245

3.2 Definition and recognition of chordal graphs246

We begin by defining chordal graphs.247

▶ Definition 22. G = (V, E) is chordal, if G has no t-hole, t ≥ 4. Equivalently every, not248

necessarily induced, cycle Ct, t ≥ 4 in G has a chord. Here, a chord is an edge uv with u, v249

non-consecutive on the cycle.250

We begin by considering examples of chordal graphs.251

complete graphs252

paths253

empty graphs254

trees, forests255

interval graphs256

more . . .257

Remember, that trees are very nice graphs because we can use divide and conquer to find258

fast algorithms. Furthermore, trees have leaves and thus we can induction-like build up trees.259

We show that chordal graphs have similar vertices.260

▶ Definition 23. G = (V, E) graph and vertex v ∈ V is simplicial if Adj(v)={u ∈ V : uv ∈ E}261

is a clique.262

Our goal in the following is to show that every chordal graph has ≥ 1 simplicial vertex.263

▶ Lemma 24. v simplicial in G

G− v perfect ⇒ G perfect.264

Proof. We verify (P1) ∀A ⊆ VG : χ(GA) = ω(GA). Consider any fixed A ⊆ VG.265

Sven Geißler 11

Case v /∈ A :266

Then, A ⊆ VG−v and χ(GA) = ω(GA) as G− V is perfect267

case v ∈ A :268

Let A′ be A − v ⊆ VG − v. Then, χ(GA′) = ω(GA′) due to (P1) for G. So there is a269

coloring A′ = V1 + · · ·+ Vt with t = ω(GA′). We consider two cases.270

Case 1: |Adj(v) ∩A′| < t = ω(GA′).271

Then, ∃i : Vi ∩ (Adj(v) ∩ A′) = ∅. We add v to this Vi to get V ′
i = Vi + v. So272

χ(GA) ≤ χ(GA′) = ω(GA′) ≤ ω(GA) ≤ χ(GA) and thus all these are equal.273

Case 2: |Adj(v) ∩A′| ≥ t = ω(GA′).274

Then, due to the fact that the neighbourhood of v is a clique we have |Adj(v) ∩A′| =275

t = ω(GA′). So (Adj(v) ∩A′) + v is a clique in GA of size t + 1. So ω(GA) ≥ t + 1 =276

ω(GA′) + 1 = χ(GA′) + 1 ≥ χ(GA) ≥ ω(GA). Here, the second to last inequality is277

due to the fact that V1 + · · ·+ Vt + {v} is a coloring of G on t + 1 colors.278

◀279

In the following we want to remove such simplicial vertices iteratively. We thus must280

show that the class of chordal graphs is closed under the taking of subsets.281

▶ Observation 25. G chordal ⇒ ∀A ⊆ VG : GA is chordal. In particular G− v is chordal282

∀v ∈ V .283

Lemma 3.6
v1

Lemma 3.6

v2

Lemma 3.6

v3

v4

Lemma 3.6
v5

chordal
perfect

chordal
perfect

chordal
perfect

chordal
perfect

chordal
perfect

previous Lemma

previous Lemmaprevious Lemma

previous Lemma

If each chordal graph has a simplicial vertex we can remove one such vertex in each step284

while maintaining chordality. We end with a K1 which is trivially perfect. We then use the285

previous lemma (Lemma 24) to go back and maintain perfectness.286

We formalize this idea:287

▶ Definition 26. For graph G = (V, E), |V | = n, a perfect elimination sceme (PES) of G is288

a vertex ordering σ : [v1, . . . , vn] s.t. vi is simplicial in G{vi,...,vn},∀i ∈ [n].289

So by the previous lemma (Lemma 24) we know that graphs with a PES are perfect.290

We visualize a vertex ordering σ : [v1, . . . , vn] in the following fashion.291

v1 v2 v3 vi vj vn

12 Notes on AGT

We then say that vi is left/before of vj in σ and that vj is right/after vi. If σ is a PES,292

then every right neighbourhood Adj(vi) ∩ {vi, . . . , vn} is a clique.293

In the next step lay the groundwork to prove that each chordal graph has a simplicial294

vertex.295

▶ Definition 27. For a graph G = (V, E), S ⊆ V is a separator if G− S is disconnected. If296

a, b are non-adjacent vertices in G, S is a a,b-separator, if a, b are in different components297

of G− S.298

Our goal is to find a separator S that is a clique in each chordal G that is not complete.299

▶ Lemma 28 (Lemma 3.4). Gchordal, a, b ∈ V, ab /∈ E, a ̸= b

S ⊆ VGis an inclusion-minimal a, b− separator ⇒ S is a300

clique.301

Proof. If |S| ≤ 1, then S is a clique. So we assume |S| ≥ 2 . We take x, y ∈ S, x ≠ y and302

show that xy ∈ E. First, note that S − x is not a a, b-separator. In the following we use303

GA, GB for the components of G− S with a ∈ A and b ∈ B. We know that x has an edge304

to A and to B (so does y). Consider the cycle [x, a1, . . . , ap, y, b1, . . . , bq] and take C to be305

the shortest such cycle. Then, C has at least 4 vertices. Since G is chordal C has a chord e.306

Where is e?307

e = aiaj? No, as C is shortest308

e = bibj? No, as C is shortest309

e = aibj? No, as GA, GB are distinct components310

e = xai? No, as C is shortest311

e = yai? No, as C is shortest312

e = xbi? No, as C is shortest313

e = ybi? No, as C is shortest314

So e must be xy ∈ E. ◀315

We use this lemma to prove the desired result. As we use induction we show a stronger316

result.317

▶ Lemma 29 (Lemma 3.6). Let G be chordal. Then,318

G has a simplicial vertex.319

If G ≇ Kn, then G has two non-adjacent simplicial vertices.320

Proof. We use induction on n = |VG|.321

n = 1: G = K1 and we are done.322

For n ≥ 2:323

If G ∼= Kn, then every vertex is simplicial. So we have G ≇ Kn. Let a, b ∈ VG, ab /∈ E324

and let S be inclusion-minimal a, b-separator. In the following we consider the components325

of G − S. Here, GA contains a and GB contains b. Apply induction on GS+A and GS+B.326

These are smaller since a or b are missing and these are chordal. In GS+A either all vertices327

are simplicial or there are two non-adjacent simplicial vertices, by induction. By Lemma328

3.4 (Lemma 28) there is a simplicial vertex x ∈ A. This is due to the fact that either all329

vertices are simplicial and we can choose any vertex or that at most one non-adjacent vertex330

can be part of the clique S. This vertex is also simplicial in G as AdjGS+A
(x) ⊆ S + A331

Using a symmetrical argument we get: ∃y ∈ B simplicial in G. Since A and B are different332

components we have xy /∈ EG. ◀333

We thus achieved our goal of showing that each chordal graph has a simplicial vertex.334

Consider the following definitions:335

Sven Geißler 13

(i) G chordal, i.e. every cycle of length ≥ 4 has a chord336

(ii) every induced cycle is a triangle (no-t-hole)337

(iii) every inclusion-minimal separator is a clique338

(iv) every induced subgraph has a simplicial vtx339

(v) there is a PES340

So far we have seen the equivalency of (i) and (ii) as well as the implications (ii)⇒(iii) by341

Lemma 3.4 (Lemma 28), (iii)⇒(iv) by Lemma 3.6 (Lemma 29) and (iv)⇒(v). By showing342

(v)⇒ (i) we show that all these definitions are equivalent.343

Proof. Let G be a graph, σ as PES and C cycle of length ≥ 4 in G. Also let v be the344

leftmost vertex of C in σ, say v = σ(i). Consider x, y ∈ Adj(v) ∩ {σ(i + 1), . . . , σ(n)}. Since345

σ is a PES we have xy ∈ EG. So any vertices x, y on C that are right of v must share an346

edge which is a chord. ◀347

So (v) leads to a trivial recognition algorithm with runtime O(n4) as we need to find a348

simplicial vertex n times.349

Consider the following algorithm called LexBFS.350

Input : undirected graph G = (V,E).
Output : vertex ordering σ.

1
2
3

4
5

7

assign each vertex label ∅;
for i← n to 1 do
choose a vertex v

σ(i)← v;
for every vertex w ∈ Adj(v)

end for

with lexicographically largest label;

append i to label(w);

8 end for

Algorithm 1 : LexBFS

with no assigned number in σ

6

with no assign number in σ

We use this algorithm to build a simple recognition algorithm for chordal graphs based351

on property (v). We use LexBFS to find a vertex ordering σ that is a PES if and only if the352

graph was chordal.353

Here, we have two viewpoints of LexBFS.354

Viewpoint 1: We have labels at each vertex and consider strings over the alphabet355

{1, . . . , n}. We use the lexicographical order 1 <lex · · · <lex n. So for label(v)=α1 . . . αs356

and label(u)=β1 . . . βt we have α = α1 . . . αs <lex β1 . . . βt = β


α1 <lex β1
α = ∅, β ̸= ∅
α1 = β1 and α2 . . . αs <lex β2 . . . βt

357

Viewpoint 2: We consider a queue of all not numbered vertices with v ∈First(Q). The358

elements of Q are sets of vertices of the same label, sorted lexicographically in Q. Then359

for Adj(v) we split each set X in Q into Adj(v) ∩X and X−Adj(v).360

14 Notes on AGT

The plan in the following is to run LexBFS and obtain a vertex-ordering σ and then361

test if σ is PES in linear time. For this we must prove σ PES⇔ G chordal and implement362

LexBFS in linear time.363

We use the following lemma to characterize LexBFS results.364

▶ Lemma 30. σ ∈ LexBFS(G), then ∀a, b, c ∈ Va it holds a <σ b <σ c and ac ∈ EG, bc /∈365

EG ⇒ ∃d with c <σ d and ad /∈ EG, bd ∈ EG.366

Proof. Consider such a triplet. When c is processed by LexBFS one of the following cases367

occurs.368

If label(a)=label(b), then afterwards label(a)>lexlabel(b) and thus this will still hold369

when b is processed, contradicting the choice of b.370

If label(a) ̸=label(b), then label(b)<lexlabel(a). Consider the step before the first time,371

when label(a)̸=label(b). This occurs when processing vertex d, c <σ d. It holds that b ∈372

Adj(d) and a /∈ Adj(d) as a <σ b. So we have bd ∈ E, ad /∈ E.373

◀374

Note

If I have , I can conclude, that

We use this property to show the desired result.375

▶ Theorem 31 (Theorem 3.9). G is chordal if and only if LexBFS outputs a PES376

Proof. ‘⇐’ clear377

‘⇒’ We prove the contraposition, i.e. σ not PES ⇒ G not chordal. Consider a σ not PES,378

then ∃a, b, c; a <σ b <σ c; ab, ac ∈ EG; bc /∈ EG. We chose a triplet with maximally right379

c. We use the naming convention a = x0, b = x1, c = x2. By the Lemma 30 we know:380

∃x3 : x2 <σ x3; x1x3 ∈ EG; x0x3 /∈ EG. We consider two cases:381

i) x2x3 ∈ EG:382

Then, x0x1x2x3 induces a C4 and G is not chordal.383

ii) x2x3 /∈ EG:384

By Lemma 30 we know: ∃x4x2x4 ∈ EG, x1x4 /∈ EG, x3 <σ x4. If x0x4 ∈ EG, the choice385

of x2 as rightmost is contradicted. So we have x0x4 /∈ EG: If x3x4 ∈ EG :, then we find386

G[x0, . . . , x4] = C5. If x3x4 /∈ EG, then we find G[x0, . . . , x4] = P5 with endpoints x3, x4.387

We continue and get ∃x5 by Lemma 30. If x0x5 ∈ EG, then x0x2x5 forms a PES-triple388

with x5 further to the right. This is a contradiction. So x0x5 /∈ EG. If x1x5 ∈ EG, then389

we get a contradiction to the choice of x3. Similarly, x4x5 ∈ EG implies an induced C6390

on x0 . . . x5. And, x4x5 /∈ EG implies an induced P6 and the argument continues.391

Since the graph is finite we eventually find the desired induced cycle. ◀392

In the next step we want to show how LexBFS can be implemented in linear time.393

LexBFS in O(|V |+ |E|):394

We use the following datastructure: We use a queue Q with sets that supports First(Q) and395

is implemented as a double-linked list. For each set S of vertices in Q we use a non-empty396

doubly-linked list and a Flag(S) that is true if S has been split. For each vertex w we store397

the set S(w) that includes w. Finally, we need a fixlist L which is a list of all sets, that have398

been split.399

Sven Geißler 15

We then use the following algorithm for the update step.400

1

2

3

4

5

6

for w ∈ Adj(v) not numbered do

insert new set S before Set(w) into Q;

end if

S ← set before Set(w) in Q;

end for

7

end for

Algorithm 2 : Update step in LexBFS

8

9

10

11

12

13

14

15

16

if Flag(Set(w)) = false then

Flag(Set(w))← true; add Set(w) to FixList;

remove w from Set(w); add w to S;

for S ∈ FixList do

Set(w)← S;

Flag(S)← false;

if S empty then

end if

remove S from Q;

remove S from FixList;

We then use the following runtime analysis: Line 1 to 9 is linear in |Adj(v)| and line 10401

to 16 is linear in |FixList| = |Adj(v)|. So the update step can be done in |Adj(v)|. Thus, the402

total runtime of LexBFS is O(
∑
v
|Adj(v)|+ |V |) = O(|V |+ |E|).403

It remains to test, if the output of LexBFS is PES.404

The naive approach for such a test would be to test all triplets for the property. This405

takes Θ(n3). Alternatively one may test the right neighbourhood of each vertex for cliques.406

This takes
∑
v
|Adj(v)|2 ≈ O(n3). This approach looks at vertices more than once, so there is407

potential for improvement.408

The idea is for v to tell its leftmost right neighbour u a set of vertices that should be409

pairwise adjacent. These form a clique. The vertex v also wants u to be adjacent to all of410

those.411

We use the following algorithm.412

1

2

3

4

5

6

for each vertex v do A(v)← ∅;

v ← σ(i);

if X = ∅ then go to line 8;

u← argmin{σ(x) | x ∈ X};

end for

7

Algorithm 3 : Test for perfect elimination scheme

8

9

10

11

12

for i← 1 to n− 1 do

X ← {x ∈ Adj(v) | σ(v) < σ(x)};

add X − {u} to A(u);

return true;

if A(v)−Adj(v) ̸= ∅ then

end if

return false;

Input : graph G = (V,E), vertex ordering σ.
Output : true, if σ PES, false otherwise.

16 Notes on AGT

▶ Theorem 32. Algorithm 3 is correct.413

Proof. We must show: Algo 3 returns true ⇔ σ is PES of G.414

Equivalently we can show: Algo 3 returns false ⇔ σ is not PES of G.415

‘⇒’ ∃ vtx u with A(u)−Adj(u) ̸= ∅, say w ∈ A(u)−Adj(u). Who put w ∈ A(u)? This was416

done by some v earlier. So u is leftmost in Xv, w ∈ Xv−u. We thus found a tripled forbidden417

by PES and the result is no PES.418

‘⇐’ Assume σ is not PES and take a forbidden triplet u, v, w with u, v closest together.419

We claim that u is the leftmost right neighbour of v. To show this we consider a vertex a420

inbetween: Consider a ∈ Xv, v < a < u. If au /∈ EG the choice of the triple is contradicted421

as vau can be used. So au ∈ EG. If aw /∈ EG the choice of the triple is contradicted as vaw422

can be used. So aw ∈ EG, but then auw is a better triple. So u is the leftmost in Xv.423

So Algo 3 puts w into A(u) when processing v. Later when processing u we have424

w ∈ A(u)−Adj(u) and return false. ◀425

Next we consider the runtime of this algorithm.426

▶ Theorem 33. Algo 3 can be done in O(|V |+ |E|).427

Proof. We for-loop over each vertex once. Here, lines 2 to 7 are possible in |Adj(v)|. Line428

7 appends X − u to A(w) without checking for duplicates. So this takes O(
∑
v
|Adj(v)|) =429

O(|V | + |E|). The check in line 8 to 10 uses the below algorithm. Here the test runs in430

O(|A(v)|+ |Adj(v)|). This is also in O(|V |+ |E|) since this list cannot be longer than the431

time spend to build it up. ◀432

1

2

3

4

5

6

for w ∈ Adj(v) do Test(w)← true;

end for

7

Algorithm 4 : Test for A(v)−Adj(v) ̸= ∅ in line 8

8

for w ∈ A(v) do

return false;

if Test(w) = false then

end if

return true;

Input : lists Adj(v), A(v).
Output : true, if A(v)−Adj(v) ̸= ∅, false otherwise.

for w ∈ Adj(v) do Test(w)← false;

So we can recognize in linear time whether G is chordal and compute a PES of G.433

3.3 Algorithms on chordal graphs434

The aim of this section is to compute χ(G), ω(G), α(G) and κ(G) for chordal graphs using a435

PES σ.436

Sven Geißler 17

Algo 5 finds ω(G) and χ(G) with clique C and coloring Φ optimal437

Algo 6 finds α(G) and κ(G) with independent set U and clique cover Ψ optimal438

Note that previously we defined a coloring as V1+· · ·+Vn where Vi is an i-set. Equivalently439

we can use Φ : V → [t] with Φ(v) = i⇔ v ∈ Vi and Φ(v) = 0 for uncolored vertex.440

1

2

3

4

5

6

compute with LexBFS a PES σ of G;

Xv ← Adj(v) ∩ {σ(i+ 1), . . . , σ(n)};

return C and ϕ;

7

Algorithm 5 : Compute ω(G) and χ(G)

8

9

10

11

for i← n to 1 do

v ← σ(i);

end if

Input : chordal graph G = (V,E).
Output : clique C and coloring ϕ.

C ← ∅, ϕ← 0;

ϕ(v)← min(N− {ϕ(w) | w ∈ Xv});
if |C| < |Xv + {v}| then
C ← Xv + {v};

end for

▶ Theorem 34. Algo 5 computes a clique C and a coloring Φ with |C| = ω(G) and441

maxv Φ(v) = χ(G).442

Note that we traverse the PES from right to left.443

Proof. We show the different partial statements.444

C is a clique:445

Note that C is of the form Xv + v. As σ is a PES we know that Xv is a clique. So446

C = Xv + v is clique. We thus have maxv(|Xv|+ 1) = |C| ≤ ω(G).447

Φ is coloring::448

We set the color Φ(v) of each vertex once and never change it, so Φ(v) ≥ 1. Let uv ∈ EG.449

We can assume w.l.o.g. u ∈ Xv. Then, we choose Φ(v) to be different from Φ(u). So we450

obtain a coloring and we have χ(G) ≤ maxv Φ(v).451

C and Φ are optimal:452

For every vertex v we have Φ(v) ≤ |Xv|+ 1 as at most |Xv| colors are blocked. Hence453

χ(G) ≤ maxv Φ(v) ≤ maxv|Xv| + 1 = |C| ≤ ω(G) ≤ χ(G). Again the last inequality454

holds for all graphs. So we have equalities everywhere and thus |C| = ω(G) and455

maxv Φ(v) = χ(G).456

◀457

We consider the runtime.458

▶ Theorem 35. Algo 5 can be done in O(|V |+ |E|).459

Proof. The for-loop iteration for vertex v takes O(|Adj(v)|). Here, line 6 is similarly to Algo460

4 doable in O(|Xv|). Thus, the runtime is O(|V |+ |E|). ◀461

18 Notes on AGT

1

2

3

4

5

6

compute with LexBFS a PES σ of G;

if ψ(v) = 0 then

U ← U + {v};

end for

7

Algorithm 6 : Compute α(G) and κ(G)

8

9

10

11

12

for i← 1 to n do

v ← σ(i), Xv ← Adj(v) ∩ {σ(i+ 1), . . . , σ(n)};

return U and ψ;

ψ(w)← |U |;

end if

end for

Input : chordal graph G = (V,E).
Output : independent set U and clique cover ψ.

U ← ∅, ψ ← 0;

for w ∈ Xv + {v} do

▶ Theorem 36. Algo 6 computes a independent set U and a clique cover Ψ with |U | = α(G)462

and maxv Ψ(v) = κ(G).463

Note that we traverse the PES from left to right.464

Proof. We show the different partial statements.465

U is an independent set:466

We use the following invariant: w ∈ U, v >σ w, Ψ(w) = 0 ⇒ vw /∈ EG equivalently467

w ∈ U : v >σ w : vw ∈ EG ⇒ Ψ(v) = 0. This invariant is true since v ∈ Xw gets assigned468

Ψ(v)← |U | ≠ 0. So we have |U | ≤ ω(G).469

Ψ is a clique cover470

In line 8 we set Ψ(w) ← |U | = i,∀w ∈ Xv + v. Since σ is a PES, Xv + v is a471

clique. Additionally, the value |U | is never assigned again. In the final Ψ we have472

{v : Ψ(v) = i} ⊆ Xv + v and thus this set is a clique.473

U and Ψ are optimal:474

We have κ(v) ≤ maxv Ψ(v) = |U | ≤ α(G) ≤ κ(G). Again the last step is true for all475

graphs. So we have equalities everywhere. I.e. |U | = α(G) and maxv Ψ(v) = κ(G).476

◀477

We consider the runtime.478

▶ Theorem 37. Algo 6 can be done in O(|V |+ |E|).479

Proof. Similar to proof for Algo 5. ◀480

3.4 On the relation between between intersection graphs and chordal481

graphs482

In this section we aim to find an intersection representation of chordal graphs. We consider483

the following representation of substrees of a tree.484

▶ Definition 38. Let G = (VG, EG) be a graph. We find a underlying tree T = (VT , ET)485

such that we can assign each vertex of G a subtree Tv of T . We call the tree a intersection486

representation as subtrees of a tree, when uv ∈ EG if and only if Tv ∩ Tu ̸= ∅.487

Sven Geißler 19

The plan is to show that a graph has such an representation if and only if it is chordal.488

For this remember that interval graphs have a intersection representation of subtrees of a489

path.490

The main ingredient we use in our proof is the Helly-property.491

▶ Definition 39. A family {Ai}i∈I of sets has the Helly property, if ∀J ⊆ I : ∀i, j ∈ J :492

Ai ∩Aj ⇒
⋂

j∈J

Aj ̸= ∅.493

So informally, this property requires pairwise intersection to imply intersection in one element.494

The following proposition was proved in the exercises.495

▶ Proposition 40 (Proposition 3.13). T tree ⇒ {Ti ⊆ T |Ti subtree} has the Helly property.496

We use this in our main theorem:497

▶ Theorem 41. For every graph G = (V, E) the following are equivalent:498

(i) G is chordal499

(ii) ∃ tree T = (VT , ET), {Tv ⊆ T |i ∈ V, T subtree}such that vw ∈ E ⇔ Tv ∩ Tw ̸= ∅.500

(iii) ∃ tree T = (VT , ET) such that VT = {X ⊆ V |X inclusion-maximal clique in G} and501

∀v ∈ V, Kv = {X ∈ VT |v ∈ X} induces a subtree.502

Proof. We show the three implications and close a cycle.503

(ii) ⇒ (i):504

Let G be a intersection graph of subtrees of a tree. Let C = [v1, . . . , vk], k ≥ 4 be a505

cycle in G. We consider three subtrees of T . T1 = Tv1 ∪ Tv2 , T2 = Tv3 ∪ · · · ∪ Tvk−1 and506

T3 = Tv4 ∪· · ·∪Tvk
are subtrees as the trees of adjacent vertices are non distinct. We note507

that T1 ∩ T2 ̸= ∅ as v2v3 ∈ EG, T2 ∩ T3 ≠ ∅ as v3v4 ∈ EG and T1 ∩ T3 ̸= ∅ as vkv1 ∈ EG.508

So using the Helly-Property and Proposition 40 we get ∃x ∈ VT : x ∈ T1, x ∈ T2, x ∈ T3.509

We distinguish two cases:510

Case 1: x ∈ Tv1 :511

Then, x is contained in Tvj
⊆ T2 for j ∈ {3, . . . , k − 1}. So there is a chord.512

Case 2: x ∈ Tv2 :513

Then, x is contained in Tvj
⊆ T2 for j ∈ {4, . . . , k}. So there is a chord.514

(i) ⇒ (iii):515

Let G = (V, E) be chordal. We use the notation K(G) = {X ⊆ V |X inclusion-maximal clique in G}.516

We construct a tree and check for (*) ∀v ∈ V, Kv = {X ∈ K(G)|v ∈ X} ⊆ K(G) induces517

a subtree in T . We find the tree T by induction on |V |. In the base case we have one518

vertex in G and one in K(G) = T . We can verify that (*) holds.519

In the induction step we consider |V | ≥ 2. Let v be a simplicial vertex. By applying the520

induction hypothesis to G− v we get a tree T ′ of K(G− v).521

Case 1: Adj(v) ∈ K(G− v):522

Then, Adj(v) + {v} ∈ K(G) and K(G− v)− Adj(v) = K(G)− (Adj(v) + {v}). We523

relabel the vertex in T ′ and get the new tree. We observe that (*) still holds as ∀w ̸= v524

nothing changes and v is only in one vertex label.525

Case 2:Adj(v) ̸= K(G− v):526

Let X ∈ K(G− v), Adj(v) ⊊ X. Then, there is a vertex for X in T ′. We add a new527

vertex Adj(v)+{v} that is adjacent only to X. Then, (*) holds as ∀w ∈ Adj(v) : w ∈ X.528

(iii) ⇒ (ii):529

Let T = (VT , ET) be the tree with (*). Then, take Tv as the subtree induced by Kv. We530

20 Notes on AGT

verify:531

vw ∈ EG ⇔ ∃X ∈ K(G) : {u, v} ⊆ X532

⇔ ∃X ∈ K(G) : X ∈ Kv, X ∈ Kw533

⇔ ∃X ∈ VT : X ∈ Tv ∩ Tw534

⇔ Tv ∩ Tw ̸= ∅535

Here, the first equality holds as {v, w} is a clique.536

◀537

4 Comparability graphs538

In this section we consider graphs where the vertices are given by elements and the edges by539

a better-than relation. So we consider directed edges (u, v) where v is better than u.540

Formally, we use a binary relation.541

▶ Definition 42. A binary relation ≺⊆ VG × VG = {(u, v) : u ∈ VG, v ∈ VG} is called542

irreflexive, if v ⊀ v,∀v ∈ VG, and transitive, if ∀u, v, w : u ≺ v ∧ v ≺ w ⇒ u ≺ w. We call a543

irreflexive and transitive binary relation a strict partial order.544

Throughout this section we use the following notation: We consider only directed edges545

and have graphs G = (V, E) wit finite V and E ⊆ {(u, v) : u, v ∈ V, u ̸= v} = V ×V −{(w, w) :546

w ∈W}. We again use the shorthand uv for (u, v), but note that now uv ̸= vu. We call a547

graph G = (V, E) undirected, if ∀u ̸= v : uv ∈ E ⇒ vu ∈ E.548

We begin this section by considering how we can orient such undirected graphs.549

▶ Definition 43. An orientation of a graph G = (V, E) is F ⊆ E such that ∀uv ∈ E : uv ∈550

F ⇔ vu ̸= F .551

▶ Definition 44. For a subset F ⊆ E we define F −1 = {vu : uv ∈ F} to be the reversal of F .552

We also define F̂ = F ∪ F −1 = {uv : uv ∈ F or vu ∈ F} to be the (symmetric) closure of F .553

We use this idea of orientations to define comparability graphs.554

▶ Definition 45. For an undirected graph G = (V, E) an orientation F is called transitive,555

if ∀a, b, c : ab ∈ F ∧ bc ∈ F ⇒ ac ∈ F .556

▶ Definition 46. A undirected graph G = (V, E) is a comparability graph, if it admits a557

transitive orientation F . We then call G transitively orientable.558

We note that for example complete graphs and paths are comparability graphs.559

▶ Observation 47. F is transitive orientation ⇔ F −1 is transitive orientation560

We now show that comparability graphs are perfect using the SPGT. This will also be561

implied by later structural results.562

▶ Theorem 48. G comparability graph ⇒ G perfect563

Proof. We use the SPGT and first observe that if G is a comparability graph, then any564

subgraph GA, A ⊆ VG, also is a comparability graph. Hence it suffices to show that Ct and565

Ct are not comparability graphs for odd t ≥ 5. Here, we take a transitive orientation F and566

show a contradiction.567

Sven Geißler 21

We begin with odd cycles. W.l.o.g. we may assume v1v2 ∈ F . Using the transitivity of F568

we can conclude that v2v3 /∈ F ⇒ v3v2 ∈ F and v4v3 /∈ F ⇒ v3v4 ∈ F . In general we know569

that each vi with even i must be a sink and each vi with odd i must be a source. Then,570

vtv1 ∈ F, v1v2 ∈ F but vtv2 /∈ F , so F is not transitive.571

Next, we consider complements of odd cycles. We first note C5 = C5, so this case has572

already been handled. For t ≥ 7, we may assume w.l.o.g. that v1v3 ∈ F . Since v4v3 /∈ E, we573

have v1v4 ∈ F or F not being transitive. So v1 must be a source as this can be repeated574

for the other vertices. Using a symmetric argument, v3 to vt−1 must be sinks. This yields a575

contradiction as this forces v3vt−1 ∈ F and vt−1v3 ∈ F .576

v1

v2

v3

v4 v5

vt−1

vt

. . .

◀577

We note that Ct is a comparability graph for even t or t = 3. More general we note that578

all bipartite graphs are comparability graphs. Here, we use the orientation that orients each579

edge from the left set to the right.580

We observe that the above proof used the following attribute: If F ⊆ E is a transitive581

orientation and ab ∈ F and a′b′ ∈ E where either a = a′ and bb′ /∈ E or a = a′ and aa′ /∈ E,582

then a′b′ ∈ F .583

We formalize this notion.584

▶ Definition 49. We define the Gamma-relation as follows: For ab ∈ E, a′b′ ∈ E define585

abΓa′b′ if a = a′ and bb′ /∈ E or b = b′ and aa′ /∈ E.586

We can restate our observation using this relation.587

▶ Observation 50.
F transitive
ab ∈ F

abΓa′b′
⇒ a′b′ ∈ F .588

We say that ab enforces or implies a′b′.589

We now apply this result iteratively.590

▶ Definition 51. A Γ-chain is a sequence a1b1, . . . , akbk of edges with not-necessarily distinct591

vertices such that aibiΓai+1bi+1,∀i = 1 . . . k. We use a1b1Γ∗akbk, where Γ∗ is the transitive592

closure of Γ.593

We again restate our observation.594

▶ Observation 52.
F transitive
ab ∈ F

abΓ∗a′b′
⇒ a′b′ ∈ F .595

We can see Γ∗ as an equivalence relation of E as it is symmetric, transitive and reflexive.596

Here, symmetry follows from the two symmetric cases in the definition of Γ. Thus, Γ∗ splits597

E into equivalence classes I(G). These are called implication classes.598

22 Notes on AGT

|I(G)| = 6
|Î(G)| = 3

|I(G)| = 2
|Î(G)| = 1

|I(G)| = 1
|Î(G)| = 1

▶ Observation 53. G comparability graph ⇒ number of I(G) even.599

This is due to the fact that if there is a A ∈ I(G) with ab, ba ∈ A then G is no comparability600

graph. The reverse implication is also true but non-trivial. We show this in the following.601

▶ Definition 54. For A ∈ I(G) we call Â = A ∪ A−1 a color class of G. We then define602

Î(G) = {Â : A ∈ I(G)}.603

Since abΓ∗a′b′ ⇔ baΓ∗b′a′ we observe:604

▶ Observation 55. abΓ∗cd⇔ cdΓ∗ab⇔ baΓ∗dc605

A ∈ I(G)⇔ A−1 ∈ I(G)606

This results in the following theorem for transitive orientations.607

▶ Theorem 56 (Theorem 4.1). For A ∈ I(G) and transitive orientation F of G, we have608

F ∩ Â = A or F ∩ Â = A−1.609

Proof. We consider an edge ab ∈ Â. We assume w.l.o.g. ab ∈ A. This is valid due to610

Observation 55. We consider two cases:611

Case 1: ab ∈ F612

Then, we have ab ∈ F ∩ Â. We take an edge cd ∈ A with abΓ∗cd. Due to Observation 52613

we can follow the Γ-relations and get cd ∈ F . Hence, A ⊆ F . Since F is an orientation614

we have F ∩ F −1 = ∅. So A−1 ∩ F = ∅ and thus F ∩ Â = A.615

Case 2: ba ∈ F, ba ∈ A−1
616

Here, we can apply an analogue argument.617

◀618

This theorem yields the following corollary.619

▶ Corollary 57. For a comparability graph G and an implication class A ∈ I we have620

A ∩A−1 = ∅ and not A = A−1.621

Proof. We consider such a graph and take a transitive orientation F . Then, F ∩ Â = A or622

F ∩ Â = A−1. But F ∩ F −1 = ∅ and thus A ∩A−1 = ∅. ◀623

This corollary yields the first direction of the theorem used in our recognition algorithm.624

In the following we prove some preliminary results and then combine them to show the625

backwards direction.626

▶ Lemma 58 (Triangle-Lemma). For an undirected graph G, implication classes A, B, C ∈ I627

with A ̸= B, A ̸= C−1 and a triangle abc in G the following two parts hold.628

Sven Geißler 23

(i) b′c′ ∈ A⇒ ab′ ∈ C, ac′ ∈ B629

a

bc b′c′A

B
C

A

C

B

(ii) a′b ∈ C, b′c′ ∈ A⇒ a′c′ ∈ B630

a

bc b′c′A

B
C

A

a′

CB

Here, the existence of the black edges, vertices and classes implies the orange ones. It is631

important to note that A = C, B−1 = C, . . . as well as a′ = b, b′ = c, . . . is possible.632

Proof. We prove the two parts separately.633

(i) We first note that is enough to consider one step in the Γ-chain bcΓ∗b′c′. Here, two cases634

arise. Either b = b′, cc′ /∈ E or c = c′, bb′ /∈ E.635

Case b = b′, cc′ /∈ E:636

We first observe that c′ ̸= a as cc′ /∈ E. If ac′ /∈ E, then baΓbc′. Thus, ba and bc′ are637

in the same implication class. Thus, A = C−1 which we ruled out. So ac′ ∈ E and638

acΓac′, so ac′ ∈ B.639

a

bc

c′

A

B C

A

B

Case c = c′, bb′ /∈ E:640

We use a similar argument. We first observe that b′ ̸= a as bb′ /∈ E. If ab′ /∈ E, then641

b′cΓac. Thus, b′c and ac are in the same implication class. Thus, A = B which we642

ruled out. So ab′ ∈ E and abΓab′, so ab′ ∈ B.643

24 Notes on AGT

a

bc

b′

A

B C

A

C

(ii) We apply (i) to ā, b̄, c̄, Ā, B̄, C̄. We verify C = Ā ̸= B̄ = A−1. But C = Ā ̸= C̄−1 =644

(B−1)−1 = B may be not true. We consider two cases.645

Case B ̸= C:646

We apply part (i) and get a′c ∈ B, b′c ∈ A. By applying part (i) again to the triangle647

a′b′c and alternative base c′b′ we get a′c′ ∈ B.648

a = b̄

b = c̄c = ā b′ = c̄′c′
A

B C = Ā

A

a′ = b̄′

C = Ā
C̄ = B−1

B̄ = A−1

B

A

B

Case B = C:649

We use part (i) to obtain ab′ ∈ C, ac′ ∈ B. Again if ac′ /∈ E, then b′a′Γb′c′ and650

A = C−1. So ac′ ∈ E.651

We still have to find the implication class of this edge. Now let a′c′ ∈ D ∈ I(G). We652

assume D ̸= B, or we are done. We apply part (i) to ā, b̄, c̄. We verify B−1 = C−1 =653

Ā ̸= B̄ = D−1 and C−1 = Ā ̸= C̄−1 = A. We use ba ∈ Ā = C−1 as the alternative654

base. This gives ac′. But then we have B = D.655

a

bc b′ = b̄
c′ = ĀA

B
C

A

a′ = c̄

CD
C

B

B̄ = D−1

Ā = C−1

C̄ = A−1

◀656

We continue by proving that implication classes are transitive in our cases.657

▶ Theorem 59 (Theorem 4.4.). A ∈ I(G)⇒ A = A−1 or A∩A−1 = ∅ and A, A−1 transitive658

659

Sven Geißler 25

Proof. We know that A = A−1 or A ∩A−1 = ∅ (Theorem 56). In the case A ∩A−1 = ∅ we660

show that A is transitive.661

A A

a

b

c

In this scenario we need to show ac ∈ A. If ac /∈ E, then abΓcb and due to ab ∈ A and662

cb ∈ A−1 we have A = A−1. This contradicts our current case. So ac ∈ E. We consider an663

implication class B ∈ I(G) such that ac ∈ B and show B = A. For this we assume B ̸= A664

for the sake of contradiction. We apply the triangle lemma part (i) with b′c′ = ab as the new665

base. We note that we can apply the lemma as A ≠ B and A ̸= C−1 = A−1. We thus get666

ac′ = ab ∈ B and thus A = B. This is a contradiction.667

C = A A

b′ = a

c′ = b

c

◀668

We use this result to recognize comparability graphs. As this result shows that an669

implication class is transitive we can add an arbitrary implication class to the orientation.670

We then remove the full color class.671

B1

Consider the above graph. After removing B1 one may choose orange and yellow classes672

but not green and orange. So some dependencies exist.673

In the following we consider Algorithm 7 and prove its correctness.674

26 Notes on AGT

Input : undirected graph G = (V,E).
Output : transitive orientation T , if it exists.

1

2

3

5

13

6

i← 1; Ei ← E;

while Ei ̸= ∅ do

if Bi ∩B−1
i ̸= ∅, then

end if

return “G is no comparability graph”;7

end while

Algorithm 7 : Recognition of comparabilty graphs

determine implication class Bi of Ei containing xiyi;

choose xiyi ∈ Ei arbitrarily;4

8

9

12

return T ;

Ei+1 ← Ei − B̂i;

T ← ∅;

add Bi to T ;

11

10

i← i+ 1;

We formalize this notion of iteratively removing color classes.675

▶ Definition 60. [B1, . . . , Bk] is a G-decomposition, if676

B̂1 + · · ·+ B̂k = E677

Bi ∈ I(B̂i + · · ·+ B̂k) for i ∈ [k]678

We note that Algorithm 7 computes a G-decomposition or stops with not a comparability679

graph. To prove the algorithms correctness we first investigate how implication classes change680

when removing color classes. Here, we introduce Theorem 4.6 that states that in this case681

either the color classes are independent and the order of removal could have been changes or682

two former classes were merged.683

This theorem uses rainbow triangle which are structures similar to triangles, but care684

only about color classes.685

b

c

a

Ĉ

B̂Â

Here, we require Â, B̂ and Ĉ to be pairwise distinct.686

▶ Theorem 61 (Theorem 4.6). For A ∈ I(G), D ∈ I(G− Â) we have687

(i) D ∈ I(G) and A ∈ I(G− D̂)688

(ii) D = B + C, Â, B̂, Ĉ in rainbow triangle689

Proof. We first note that all edges in Γ-relation before the removal of Â are still in relation690

afterwards. But removing the color class may introduce additional relations as it introduces691

non-edges. So implication classes can merge. We consider D ∈ I(G− Â) which is a disjoint692

union of some previous implication classes.693

Sven Geißler 27

case 1: D = B + C + . . . , B, C ∈ I(G):694

We show that in this case only two classes merge. In this case there must have been a695

rainbow triangle ÂB̂Ĉ. If B also merges with X, then there must be a rainbow triangle696

ÂB̂X̂. We then apply the triangle lemma part (ii) to get X̂ = Ĉ. So D = B + C.697

case 2: D ∈ I(G)698

By case 1 we know that every implication class of I(G− D̂) is a union of at most two699

implication classes of I(G). If A merges with X in G − D̂, then there is a rainbow700

triangle ÂD̂X̂. But then D merges with X or X−1 in G− Â. This is a contradiction. So701

A ∈ I(G− D̂).702

◀703

We are now ready to show our main theorem.704

▶ Theorem 62. The following statements are equivalent:705

(i) G is a comparability graph706

(ii) A ∩A−1 = ∅,∀A ∈ I(G)707

(iii) Every G-decomposition [B1, . . . , Bk] has Bi ∩B−1
i = ∅,∀i ∈ [k]708

Note that every graph may have a G-decomposition but these may not fulfil the niceness-709

criterion.710

Proof. (i)⇒(ii) is done by Theorem 56.711

(ii)⇒(iii)712

We consider any G-decomposition [B1, . . . , Bk] and use induction on k. For k = 1 we713

have B1 ∈ I(G) so B1 ∩B−1
1 = ∅ by (ii). For k ≥ 2 we again have B1 ∩B−1

1 = ∅ by (ii).714

We note that [B2, . . . , Bk] is a G-decomposition if G− B̂1. We need to verify (ii) for this715

graph, namely A ∩A−1,∀A ∈ I(G− B̂1). By Theorem 61 we have D ∈ I(G) and then716

D ∩D−1 = ∅ by (ii). Alternatively we have D = B + C for B, C ∈ I(G). Then:717

D ∩D−1 = (B + C) ∩ (B + C)−1
718

= (B + C) ∩ (B−1 + C−1)719

= (B ∩B−1) ∪ (B ∩ C−1) ∪ (C ∩B−1) ∪ (C ∩ C−1)720

= ∅721

Here, the first and last are empty due to (ii) and the other two are empty as B ̸= C−1
722

and C ̸= B−1. This is as there is a rainbow triangle B̂1B̂Ĉ and implication classes are723

either the same or disjoint.724

So (ii) holds for G− B̂1 and by induction Bi ∩B−1
i = ∅,∀i ≥ 2.725

(iii)⇒(i)726

We again use induction on k for [B1, . . . , Bk]. For k = 1 we have B1 ∩B−1
1 = ∅ and thus727

by Theorem 59 B1 is a transitive orientation. The orientation part is due to the fact that728

B̂1 contains all edges. For k ≥ 2 we consider the G-decomposition [B2, . . . , Bk] of G− B̂1.729

As this fulfils (iii) the graph G− B̂1 has a transitive orientation T by induction. We claim730

that B1 + T is a transitive orientation of G. The orientation part follows easily from the731

fact that B1 orients all edges added to GG−B̂1
. We show transitivity. As transitivity can732

only break when edges of different parts are involved we consider the two possible cases.733

28 Notes on AGT

a

b

c

TB1

If ac /∈ E, then abΓcb. Then, cb ∈ B1. This contradicts bc ∈ T . So ac ∈ E. But this edge734

may be oriented in the wrong direction. Then, ca is either in T or B1. If ca ∈ T , then T735

is not transitive as ba is missing. If ca ∈ B1, then B1 is not transitive as cb is missing.736

So one must orient ac. The case where B1 and T switch positions follows analogous.737

◀738

This proves our algorithm correct.739

▶ Corollary 63. Algo 7 determines correctly whether G is a comparability graph in O(∆(G) ·740

|E|+ |V |).741

This is as the algorithm stops when is finds a not nice decomposition. We can analogously742

show that the above T is in fact the B2 ∪ · · · ∪ Bk computed by the algorithm. For the743

runtime the critical line is line 5. This can be done by exploring the neighbours of the744

starting edge. This contributes the factor of the maximal degree ∆(G).745

We are now ready to state an algorithms computing our parameters.746

Input : comparability graph G = (V,E).
Output : vertex coloring h and clique C.

1

2

3

5

13

6

compute tological ordering σ of (V, F);

for i← 1 to n do

χ← max{χ, h(v)};
7

end for

Algorithm 8 : Compute χ(G) and ω(G)

h(v)← 1 + max{h(w) | wv ∈ F};
v ← σ(i);4

8

9

12

return h and C;

C ← C + {w};

compute transitive orientation F of G;

11

10

w ← argmax{h(v) | vw ∈ F};

w ← argmax{h(w), h(v)};

for i← χ to 1 do

end for

▶ Theorem 64. Algorithm 8 computes correctly χ(G), ω(G) for a comparability graph G in747

O(|V |+ |E|) (when given a transitive ordering).748

Proof. We show the partial aspects.749

h is a coloring:750

∀uv ∈ E(G) to show: h(u) ̸= h(v). We assume w.l.o.g. uv ∈ F . So since σ is a751

topological ordering we have σ(u) < σ(v). So h(u) is set already when v = σ(i). Thus,752

h(v) = 1 + max{h(w)|wv ∈ F} ≥ 1 + h(u). As this includes u we have the desired753

outcome. We thus know χ = maxv∈V h(v) ≥ χ(G).754

Sven Geißler 29

C is a clique:755

Let C = {wχ, wχ−1, . . . , 1}. Then, h(wχ−i) = χ−i and h(wχ−i) = 1+max{h(v)|vwχ−1 ∈756

F}. So h(wχ−i−1) = χ− i− 1 and wχ−i−1wχ−i ∈ F . So C is a directed path in F . By757

transitivity C is a clique. So we have χ = |C| ≤ ω(G).758

The coloring and clique are optimal:759

We combine these results to get: χ(G) ≤ χ = |C| ≤ ω(G) ≤ χ(G).760

The runtime is linear except for line 1.761

◀762

We now introduce Algo which computes α(G) and κ(G) for comparability graphs. We763

first consider the special case of bipartite graphs. Remember that these are comparability764

graphs as we can orient all edges from the first to the second set.765

We introduce some terminology.766

▶ Definition 65. A set M ⊆ EG is a matching, if ∀v ∈ VG there is at most one e ∈M with767

v ∈ e.768

We note that κ(G) ≤ |V | − max{|M | : M Matching} as each edge of the matching769

improves the trivial clique cover of isolated vertices by one.770

▶ Definition 66. A set S ⊆ VG is a vertex cover, if ∀e ∈ EG there is at least one v ∈ S with771

v ∈ e.772

We note that S is a vertex cover if and only if V − S is an independent set. So we773

have α(G) ≤ |V | − min{|S| : S vertex cover}. These two hold for all graphs as well as774

α(G) ≤ κ(G).775

▶ Theorem 67 (König). For a bipartite graph G we have min{|S| : S vertex cover} =776

max{|M | : M Matching}.777

Proof. We need to show that the two inequalities are in truth equalities. As G is perfect we778

have α(G) = κ(G) and it is clear that we can use a maximal matching to find a minimal779

clique cover by using the matching edges and the remaining isolated vertices. ◀780

So on bipartite graphs we can find the desired properties by computing a maximal781

matching.782

For other graphs we construct a bipartite auxiliary graph B = (V ′, V ′′, E). This graph uses783

two copies of V as vertices. So V ′ = {v′|v ∈ V }, V ′′ = {v′′|v ∈ V } and vw ∈ F ⇔ v′w′′ ∈ E.784

Here, we note a correspondence between clique covers of G and matchings of B. We use785

the following rule: v, w consecutive in the clique cover ⇔ v′w′′ ∈M . Here, two vertices are786

consecutive, if the are neighbours on the oriented path in a clique of the cover.787

clique cover V1 + · · ·+ Vk of G788

⇔ k cliques partition VG789

⇔ k distinct paths in F partition G790

⇔ 2 · k starts and ends of paths791

⇔ 2 · k vertices of B are unmatched792

⇔ 2 · |VG| − 2 · k = 2 · |M |793

⇔ |VG| − k = |M |794

So κ(G) = |V | −max{|M | : M Matching in B} = |V | −min{|S| : S vertex cover in B}795

using the Königs theorem.796

30 Notes on AGT

To show optimality consider a vertex cover S of B. We note that for all v ∈ S the set797

S − v is not a vertex cover due to the minimality. We then use the following observation:798

▶ Observation 68. |S ∩ {v′, v′′}| ≤ 1,∀v ∈ VG.799

Proof. We assume the contrary. Since S − v′ is no vertex cover: ∃w ∈ VG, w′ /∈ S, vw ∈ F .800

Since S − v′′ is no vertex cover: ∃u ∈ VG, u′′ /∈ S, uv ∈ F . By transitivity there is uw ∈ F801

and thus there is an uncovered edge u′w′′ ∈ EB . This is a contradiction. ◀802

Hence, Y = {v ∈ VG|S ∩ {v′, v′′} = ∅}, the set of all vertices where neither copy is covered,803

has exactly |VG| − |S| = |VG| − |M | = κ(G) elements.804

▶ Observation 69. Y is an independent set in G.805

Proof. We assume vw ∈ EG and have w.l.o.g. vw ∈ F . Then, v′w′′ ∈ EB , but S∩{v′, w′′} =806

∅. So there is an uncovered edge and thus a contradiction. ◀807

Hence, α(G) ≥ |Y | = κ(G) ≥ α(G). So |Y | = α(G).808

So we obtain the following algorithm 9.809

1. compute a transitive orientation F810

2. compute the bipartite graph B811

3. compute a maximal matching M in B812

4. compute a minimal vertex cover S in B from M813

5. derive clique cover of |V | − |M | cliques814

6. derive independent set on |V | − |S| vertices815

Here, the first step takesO((|V |+|E|)2), the third takesO(|E|1,5) (with modern algorithms816

nearly linear) and all others take O(|V |+ |E|).817

5 Graph classes derived from chordal and comparability graphs818

We first characterize split graphs.819

▶ Theorem 70 (Theorem 5.3.). For a graph G = (V, E) the following are equivalent.820

(i) G is chordal and G is chordal (G is a split graph)821

(ii) V = K + S with K being a clique and S being an independent set822

(iii) C4, C5 ⊈ind G and C4 ⊈ind G823

Proof. We show the following three implications.824

(ii)⇒(i):825

We have V = K + S such that K is a clique and S is independent. Then, let C be826

a cycle of length at least four. If V (C) ∩ S = ∅, then C has a chord as K is a clique.827

If C = [v1, v2, v3, v4, . . .] with v2 ∈ S, then v1v3 ∈ K as S is an independent set. So828

v1v3 ∈ E and C has a chord. Thus, G is chordal. Analogously, G is also chordal as for G829

the set K is independent and S forms a clique.830

(i)⇒(iii):831

This implication has been shown before.832

(iii)⇒(ii):833

We find a split into K and S. For this we choose K as the maximum clique such that834

GS for S = V −K has the fewest edges. Assume that GS has an edge xy. Then we find835

an induced C4 or C5 in G or an induced C4 in G. In the later case this is equivalent836

to finding an induced 2K2 in G. Since K is maximum there exists u, v ∈ K such that837

Sven Geißler 31

ux /∈ E and vy /∈ E. If u = v for all choices, then K − u + {x, y} is a larger clique. This838

contradicts the maximality. So u ̸= v. If we have vx, uy ∈ E, then a C4 is induced. If839

we have vx, uy /∈ E, then a 2K2 is induced. So we may assume w.l.o.g. that vx ∈ E840

and uy /∈ E. We then find split K ′ and S′. We now consider K ′ = K − v + y and show841

that K ′ is a clique. So take w ∈ K − u, v. Assume that wy /∈ E. If wx /∈ E, then842

v, w, x and y form a 2K2. If wx ∈ E, then u, w, x and y form a C4. So all such w are843

connected to y and thus K ′ forms a clique of the same size. We now show that GV −K′844

has fewer edges than GV −K . To show this we prove |Adj(y) ∩ S| > |Adj(v) ∩ S|. We845

assume t ∈ S, tv ∈ E, ty /∈ E. If tx /∈ E, then xy, v and t form a 2K2. So tx ∈ E. If846

tu /∈ E, then u, v, x and y form an induced C5. If tu ∈ E, then u, t, x and y form an847

induced C4. So no such t exists. Thus, |Adj(y) ∩ S| > |Adj(v) ∩ S| and GV −K′ has fewer848

edges. Then, this is a contradiction of the choice of GV −K .849

◀850

Next, we introduce permutation graphs.851

▶ Theorem 71. For every undirected graph G = (V, E) the following are equivalent:852

(i) G and G are comparability graphs (G is a permutation graph)853

(ii) There exists a vertex ordering σ of G without854

(iii) There exists an embedding V → R2 such that (uv ∈ E) if and only if (ux < vx ⇔ uy < vy).855

Proof. We show the three implications.856

(i)⇒(ii):857

Since they are comparability graphs there exist transitive orientations (V, F1) of G and858

(V, F2) of G. Then, F = F1 + F2 is an orientation of the complete graph on V . We claim859

that if F1 and F2 are transitive, then F is also transitive. The orientation of the complete860

graph is transitive if and only if F is acyclic. So if F is not transitive it contains directed861

cyclic triangles where either all edges are in one orientation or where one edge is in a862

different orientation from the rest. In either case the Fi with two edges is not transitive863

as well. So the claim is true. So let σ be a topological ordering of F . This exists due to864

the transitivity of F . Then, the first pattern contradicts the transitivity of F1 and the865

second the transitivity of F2.866

(ii)⇒(iii):867

We are given a σ without those patterns and can obtain a transitive orientation F1 of G868

and F2 of G by orienting left-to-right. We then take σx = σ as the order of x-coordinates869

of points for each vertex in V . Since F1 +F −1
2 is also a transitive orientation of a complete870

graph, we can use a second ordering σy that is the topological ordering of F1 + F −1
2 .871

So consider two vertices u, v. If uv ∈ E, we have w.l.o.g. uv ∈ F1 and thus ux < vx872

and uy < vy. If uv /∈ E, we have w.l.o.g. uv ∈ F2 and thus ux < vx but vu ∈ F −1
2 and873

uy > vy.874

(iii)⇒(i):875

Given an embedding of V in the plane we orientate uv ∈ E from u to v if and only876

if u is to the bottom-left of v. This is transitive and thus G is a comparability graph.877

Analogously, we use the bottom-right for G.878

◀879

We can also use an alternative definition for permutation graphs. Given an ordering π of880

[n], we define G = Gπ as V (G) = [n] and ij ∈ E(G)⇔ (i− j)(π(i)− π(j)) < 0. That is G881

has an edge if π inverts the two vertices.882

32 Notes on AGT

We can recognize permutation graphs in linear time and can compute χ, ω, α and κ due to883

the connection to comparability graphs. Furthermore χ and ω can be done in O(|V |+ |E|).884

We now consider a different problem. We are given intervals I1, . . . , In with Ii =885

(xi, yi) sorted such that x1 ≤ x2 ≤ · · · ≤ xn. Our goal is to find the number of minimal886

translations such that these intervals do not intersect. So we want (i) x′
1 ≤ · · · ≤ x′

n and887

(ii) y′
i < x′

i+1∀i ∈ [n − 1]. We construct a conflict graph G with V (G) = {I1, . . . , In} and888

IiIj ∈ E(G)⇔ xj − yj <
∑

i<k<j

(yk − xk). We can show that G is a permutation graph and889

that the maximal set of intervals that are not moved is a maximum independent set.890

We are now ready to return to interval graphs and characterize them through chordal891

and comparability graphs.892

▶ Theorem 72. For every G = (V, E) the following are equivalent.893

(i) G is an interval graph894

(ii) there exists a vertex ordering σ without895

(iii) G is chordal and G is a comparability graph896

(iv) G has no induced C4 and G is a comparability graph897

(v) There exists an ordering A1, . . . , Ax of the inclusion-maximal cliques in G such that898

∀v ∈ V the numbers in {i|v ∈ Ai} are consecutive in {1, . . . , x}899

Proof. We show the implications.900

(i)⇒(ii):901

We look at the interval representation of the graph. We may assume w.l.o.g. that all902

endpoints of the intervals are distinct. We then define σ as the left to right ordering of903

these endpoints. So let u <σ v <σ w with uw ∈ E, then the interval of v ends between904

the endpoints of the other two intervals. Since uw ∈ E the interval of w intersects the905

one of u and thus the one of v.906

(ii)⇒(iii):907

The ordering σ has none of the triplets characterizing chordal graphs as they are forbidden908

by the above triplet. Similarly, complement of the forbidden triplet of comparability909

graphs is part of the above triplet.910

(iii)⇒(iv):911

This is trivial.912

(iv)⇒(v):913

We know that C4 is no induced subgraph of G and that G is a comparability graph. So914

2K2 is no induced subgraph of G. Then, let F be a transitive orientation of G and let915

A, B be inclusion-maximal cliques. There is a non-edge ab between A−B and B −A. If916

ab ∈ F , we say A < B. If ba ∈ F , we say B < A. It can be shown that if A < B, then917

NOT B < A by case distinction. So < is well-defined. We now need to show that < is918

acyclic.919

So let A < B < C and show A < C. Then, let a1b1 ∈ F, a1 ∈ A, b1 ∈ B and let920

a2b2 ∈ F, a2 ∈ B, b2 ∈ C. We know b2 /∈ A as otherwise there would be a non-edge from921

B to A. If b1 = a2, we also have a1b2 ∈ F by transitivity and thus A < C. So assume922

b1 ̸= a2. Then, b1a2 ∈ E as B is a clique and a1a2 ∈ E, b1b2 ∈ E as otherwise transitivity923

must be violated. Since C4 is no induced subgraph of G, we know that a1b2 /∈ E. Due to924

the transitivity we get a1b2 ∈ F and thus A < C. So there is an total order A1 < · · · < Ax925

on maximal cliques.926

Let v ∈ Ai ∩ Ak with i < j < k. We have to show that v ∈ Aj . We assume that927

v /∈ Aj and show a contradiction. Then, there is a vertex w ∈ Aj with vw /∈ E as Aj is928

Sven Geißler 33

inclusion-maximal and does not contain v. If vw ∈ F , then Ak < Aj . This contradicts929

j < k. If wv ∈ F , then Aj < Ai. This contradicts i < j. So v ∈ Aj .930

(v)⇒(i):931

We are given an ordering Ai, . . . , Ax on inclusion-maximal cliques. We note that {i|v ∈932

Ai} is an interval. So let Iv be the smallest interval such that {i|v ∈ Ai} ⊆ Iv. So933

vw ∈ E ⇔ ∃i : vw ∈ Ai ⇔ Iv∩Iw = ∅. Here, the first equality is due to the fact that each934

edge forms a clique and thus two neighbours must be in atleast one inclusion-maximal935

clique together. So G is an interval graph.936

◀937

We end with a short overview on these different graph classes.938

property P :

property P :

G is a comparability graph.

G is a comparability graph.

property C:

property C:

G is a chordal graph.

G is a chordal graph.

P graph classP C C

✓

✓

✓✓

✓ ✓

✓✓

✓ ✓

comparability graphs Chap.4

chordal graphs Chap.3

interval graphs Chap.7

split graphs Chap.5

permutation graphs Chap.6

cycle-free partial orders ???

	1 Preliminaries
	2 Introduction
	2.1 Important graphs
	2.2 The parameters
	2.3 Perfect graphs

	3 Intersection graphs
	3.1 Interval graphs
	3.2 Definition and recognition of chordal graphs
	3.3 Algorithms on chordal graphs
	3.4 On the relation between between intersection graphs and chordal graphs

	4 Comparability graphs
	5 Graph classes derived from chordal and comparability graphs

