property P :	G is a comparability graph.
property \overline{P} :	\overline{G} is a comparability graph.
property C:	G is a chordal graph.
property \overline{C} :	\overline{G} is a chordal graph.

P	\overline{P}	C	\overline{C}	graph class
\checkmark				comparability graphs
		\checkmark		chordal graphs
	\checkmark	\checkmark		interval graphs
		\checkmark	\checkmark	split graphs
\checkmark	\checkmark			permutation graphs
\checkmark		\checkmark		cycle-free partial orders

Chap.4 Chap.3 Chap.7 Chap.5 Chap.6

Thm.

For every (undirected) graph G = (V, E) the following are equivalent: (i) G and \overline{G} are comparability graphs. (ii) There exists a vertex ordering σ of G and without without (iii) There exists an embedding $V \to \mathbb{R}^2$ such that $uv \in E$ if and only if $u_x < v_x \Leftrightarrow u_y < v_y$

segments, intersection

property P :	G is a comparability graph.
property \overline{P} :	\overline{G} is a comparability graph.
property C:	G is a chordal graph.
property \overline{C} :	\overline{G} is a chordal graph.

P	\overline{P}	C	\overline{C}	graph class
\checkmark				comparability graphs
		\checkmark		chordal graphs
	\checkmark	\checkmark		interval graphs
		\checkmark	\checkmark	split graphs
\checkmark	\checkmark			permutation graphs
\checkmark		\checkmark		cycle-free partial orders

Chap.4 Chap.3 Chap.7 Chap.5 Chap.6

Thm 7.1.

For every graph G = (V, E) the following are equivalent: (i) G is an interval graph. (ii) \exists vertex ordering σ without (iii) G is chordal and \overline{G} is a comparability graph. (iv) $C_4 \not\subseteq_{\text{ind}} G$ and \overline{G} is a comparability graph. (v) There exists an ordering A_1, \ldots, A_x of the inclusion-maximal cliques in G such that $\forall v \in V$ the numbers in $\{i \mid v \in A_i\}$ are consecutive in $\{1, \ldots, x\}$.

Compute σ_1 with LexBFS; 1

- Compute σ_1 with LexBFS; 1
- **2** Compute σ_2 with LexBFS using σ_1 as tie breaker;

- Compute σ_1 with LexBFS; 1
- Compute σ_2 with LexBFS using σ_1 as tie breaker; 2
- Compute σ_3 with LexBFS using σ_2 as tie breaker; 3

- Compute σ_1 with LexBFS; 1
- Compute σ_2 with LexBFS using σ_1 as tie breaker; 2
- Compute σ_3 with LexBFS using σ_2 as tie breaker; 3
- Compute σ_4 with LexBFS using σ_3 as tie breaker; 4

- Compute σ_1 with LexBFS; 1
- Compute σ_2 with LexBFS using σ_1 as tie breaker;
- Compute σ_3 with LexBFS using σ_2 as tie breaker; 3
- Compute σ_4 with LexBFS using σ_3 as tie breaker; 4
- **Return** whether σ_4 contains forbidden pattern; 5