

Algorithmen für Routenplanung

20. Vorlesung, Sommersemester 2023

Adrian Feilhauer | 3. Juli 2023

Gegeben:

- Öffentliches Verkehrsnetz
- Liste mit erwarteter Nachfrage (Tupel aus: Startknoten, Zielknoten, Abfahrtszeit)

Gesucht:

Auslastung der Fahrzeuge

Gegeben:

- Öffentliches Verkehrsnetz
- Liste mit erwarteter Nachfrage (Tupel aus: Startknoten, Zielknoten, Abfahrtszeit)

Gesucht:

Auslastung der Fahrzeuge

Anwendung:

- Planung von neuen Linien
- Optimierung von Umleitungen

Ansatz:

- Weise jedem Passagier (aus Nachfrage) eine Journey zu
- Algorithmus basiert auf CSA

Ansatz:

- Weise jedem Passagier (aus Nachfrage) eine Journey zu
- Algorithmus basiert auf CSA

Aber:

- Verhalten der Passagiere nicht immer eindeutig
- Erlaube suboptimale Journeys
- Erlaube (anteilig) mehrere Journeys pro Passagier

Gefühlte Ankunftszeit (PAT)

PAT (perceived arrival time):

- PAT für eine Connection c und Zielstop d
- Misst, wie nützlich c ist, um d zu erreichen
- Hauptbestandteil: Tatsächliche optimale Ankunftszeit an d
- Vier zusätzliche Parameter:
 - Umstiegskosten λ_{trans}
 - Wartekosten λ_{wait}
 - **Laufkosten** λ_{walk}
 - Maximale erwartete Verspätung $\Delta_{\tau}^{\text{max}}$

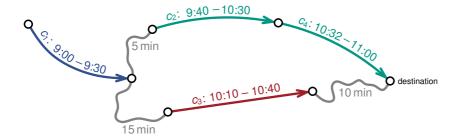
Annahme:

Passagiere versuchen, die PAT zu minimieren

Beispiel:

 $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min

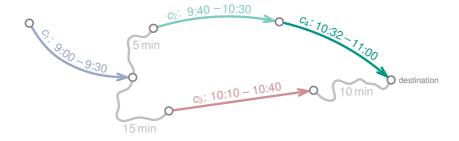
Connection	PAT
<i>C</i> ₄	
<i>C</i> ₃	
<i>C</i> ₂	
<i>C</i> ₁	



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- Fall 1: Connection c erreicht Ziel

$$\Rightarrow$$
 PAT = arrival time $\tau_{arr}(c)$

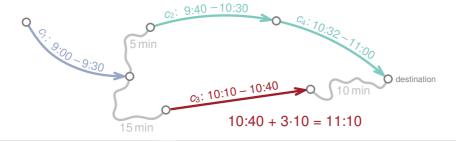
Connec	tion PAT	ſ
<i>C</i> ₄	11:00	
c ₃		
<i>C</i> ₂		
<i>C</i> ₁		



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- Fall 2: Laufen von Connection c zum Ziel

$$\Rightarrow$$
 PAT = $au_{\mathsf{arr}}(c) + (\lambda_{\mathsf{walk}} \cdot au_{\mathsf{walk}})$

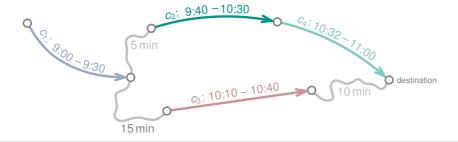
c ₄ 11:00 c ₃ 11:10	Connection	PAT
<i>c</i> ₃ 11:10	c_4 1	1:00
	c_3 1	1:10
<i>C</i> ₂	<i>C</i> ₂	
<i>C</i> ₁	<i>C</i> ₁	



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- **Fall 3:** Weiterfahren mit Con. *c'* (gleicher Trip)

$$\Rightarrow$$
 PAT = PAT c'

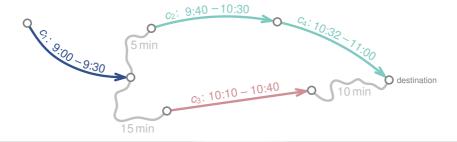
Connec	tion PAT
C ₄	11:00
<i>C</i> ₃	11:10
<i>C</i> ₂	11:00
<i>C</i> ₁	



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- Fall 4: Weiterfahren mit Con. c' (anderer Trip)

$$\Rightarrow$$
 PAT = PAT $c' + \lambda_{\text{trans}} + (\lambda_{\text{walk}} \cdot \tau_{\text{walk}}) + (\lambda_{\text{wait}} \cdot \tau_{\text{wait}})$

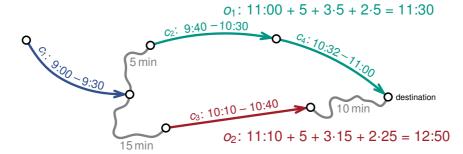
Conne	ction	PAT
C ₄	11	:00
<i>C</i> ₃	11	1:10
<i>C</i> ₂	11	:00
<i>C</i> ₁		



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- **Fall 4:** Weiterfahren mit Con. c' (anderer Trip)

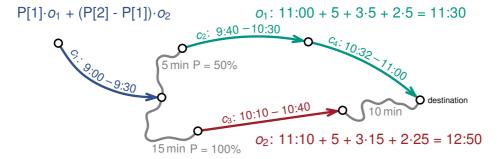
$$\Rightarrow$$
 PAT = PAT $c' + \lambda_{\text{trans}} + (\lambda_{\text{walk}} \cdot \tau_{\text{walk}}) + (\lambda_{\text{wait}} \cdot \tau_{\text{wait}})$

Connec	tion F	PAT
<i>C</i> ₄	11:0	00
C ₃	11:	10
<i>C</i> ₂	11:0	00
<i>C</i> ₁		



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- **Fall 4:** Weiterfahren mit einer Option o_i ⇒ PAT = \sum_i (transfer probability $(o_i) \cdot o_i$)

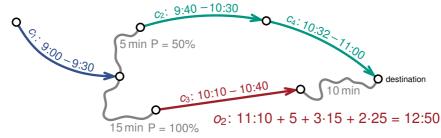
Connection	n	PAT
C ₄	1	1:00
<i>C</i> ₃	1	1:10
c_2	1	1:00
<i>C</i> ₁		



- $\lambda_{\text{walk}} = 3$, $\lambda_{\text{wait}} = 2$, $\lambda_{\text{trans}} = 5$ min
- **Fall 4:** Weiterfahren mit einer Option o_i $\Rightarrow PAT = \sum_i (transfer probability(o_i) \cdot o_i)$

Connection	on	PAT
C ₄	11:	00
C ₃	11:	10
C ₂	11:	00
<i>C</i> ₁	12:	10

$$0.5 \cdot 11:30 + 0.5 \cdot 12:50 = 12:10$$
 $o_1: 11:00 + 5 + 3.5 + 2.5 = 11:30$



Entscheidungsmodell

Ziel:

- Entscheidet, welche Connection ein Passagier nimmt
- lacktriangle Hängt von der Verspätungstoleranz $\lambda_{\Delta \max}$ des Passagiers ab

Entscheidungsmodell

Ziel:

- Entscheidet, welche Connection ein Passagier nimmt
- lacktriangle Hängt von der Verspätungstoleranz $\lambda_{\Delta \max}$ des Passagiers ab

Definition:

- Gegeben sind die Optionen o_1, \ldots, o_k und ihre PATs
- Bestimme den Nutzen g(i) jeder Option i:

$$g(i) \coloneqq \max(0, \min_{j \neq i}(\mathsf{PAT}(o_j)) - \mathsf{PAT}(o_i) + \lambda_{\Delta \mathsf{max}})$$

■ Die Wahrscheinlichkeit *P*[*i*], dass ein Passagier Option *i* wählt, ist:

$$P[i] := \frac{g(i)}{\sum_{j=1}^k g(j)}$$

Umlegungsalgorithmus

Ansatz:

- Simuliere Bewegung der Passagiere im Netzwerk
- Entscheide pro Connection c, wer c benutzt
- Passagiere mit selbem Ziel werden sich treffen
 - \Rightarrow Müssen dieselben Entscheidungen treffen
 - ⇒ Algorithmus profitiert von Synergieeffekten
- Passenger Multiplier λ_{mul}
 - lacktriangle Generiere für jeden Passagier in der Nachfrage λ_{mul} Kopien
 - ⇒ Erlaubt (anteilig) mehrere Journeys pro Passagier

Umlegungsalgorithmus

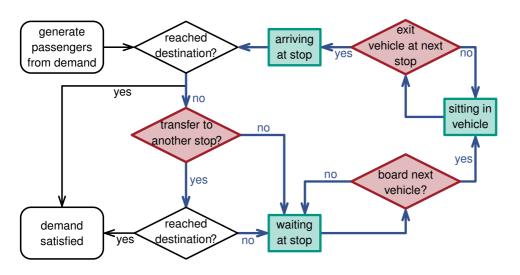
Ansatz:

- Simuliere Bewegung der Passagiere im Netzwerk
- Entscheide pro Connection c, wer c benutzt
- Passagiere mit selbem Ziel werden sich treffen
 - ⇒ Müssen dieselben Entscheidungen treffen
 - ⇒ Algorithmus profitiert von Synergieeffekten
- Passenger Multiplier λ_{mul}
 - Generiere für jeden Passagier in der Nachfrage λ_{mul} Kopien
 - ⇒ Erlaubt (anteilig) mehrere Journeys pro Passagier

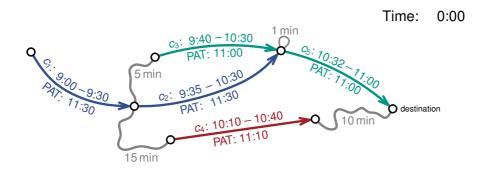
Überblick:

- Gruppiere Passagiere nach Zielstop
- Berechne Umlegung pro Zielstop in 3 Schritten:
 - Berechne PATs für jede Connection
 - Simuliere Bewegung der Passagiere basierend auf PATs
 - Entferne überflüssige Kreise aus Journeys (optional)

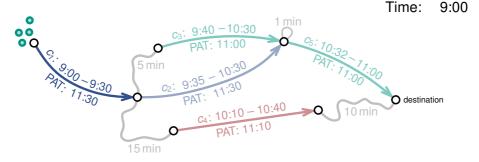
Umlegungsberechnung Übersicht



- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen

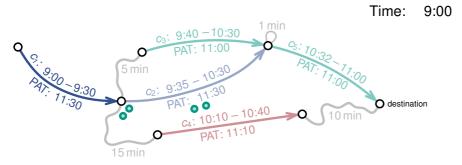


- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 1. Erzeuge Passagiere entsprechend der Nachfrage

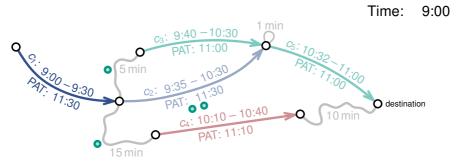


- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 2. Entscheide, welche Passagiere einsteigen

- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 3. Entscheide, welche Passagiere aussteigen

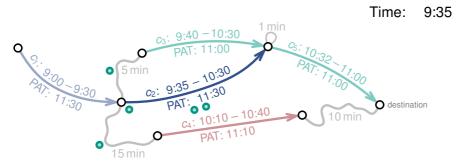


- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 4. Verschiebe ausgestiegene Passagiere zum nächsten Stop

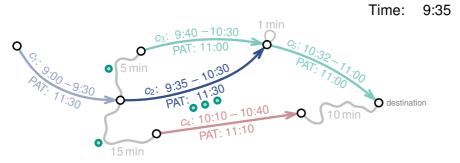


3. Juli 2023

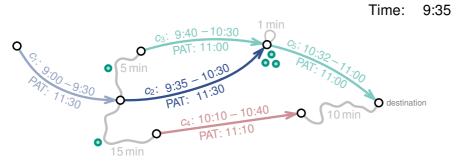
- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 1. Erzeuge Passagiere entsprechend der Nachfrage



- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 2. Entscheide, welche Passagiere einsteigen

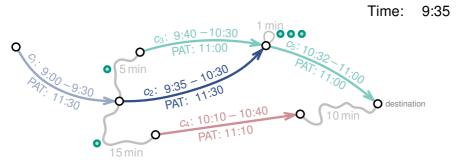


- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 3. Entscheide, welche Passagiere aussteigen

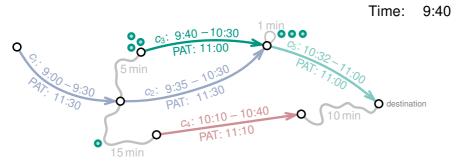


3. Juli 2023

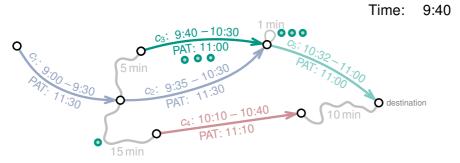
- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 4. Verschiebe ausgestiegene Passagiere zum nächsten Stop



- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 1. Erzeuge Passagiere entsprechend der Nachfrage

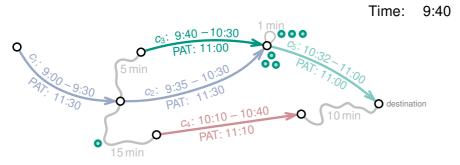


- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen
- 2. Entscheide, welche Passagiere einsteigen



- Bearbeite Connections chronologisch (nach Abfahrtszeit)
- Entscheide, welche Passagiere die Connection benutzen

3. ...



Kreise

- Journeys können Kreise enthalten, d.h. Stops mehrfach besuchen
- Umlegungen mit Kreisen können unerwünscht sein
- Eine Journey mit Kreisen kann optimal bezüglich PAT sein
- Hohe Wartekosten können zu Kreisen führen.

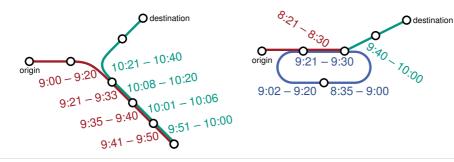
Kreise

- Journeys können Kreise enthalten, d.h. Stops mehrfach besuchen
- Umlegungen mit Kreisen können unerwünscht sein
- Eine Journey mit Kreisen kann optimal bezüglich PAT sein
- Hohe Wartekosten können zu Kreisen führen



Kreise

- Journeys können Kreise enthalten, d.h. Stops mehrfach besuchen
- Umlegungen mit Kreisen können unerwünscht sein
- Eine Journey mit Kreisen kann optimal bezüglich PAT sein
- Hohe Wartekosten können zu Kreisen führen.

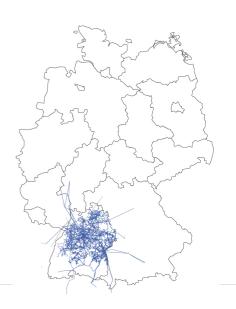


Auswertung

Instanzen:

- Großraum Stuttgart
- Enthält auch Frankfurt, Basel und München
- Beschreibt den Verkehr eines Tages

Anzahl Knoten	15115
Anzahl Stops	13941
Anzahl Kanten	33 890
Anzahl Kanten ohne Schlaufen	18775
Anzahl Connections	780 042
Anzahl Trips	47 844
Anzahl Passagiere	1 249 910



Auswertung – Laufzeiten

Benutzte Parameter:

- Laufkosten $\lambda_{\text{walk}} = 2$
- Wartekosten $\lambda_{\text{wait}} = 0.5$
- Umstiegskosten $\lambda_{\text{trans}} = 5 \text{ min}$
- Verspätungstoleranz $\lambda_{\Delta max} = 5 \text{ min}$
- lacktriangle Maximale erwartete Verspätung $\Delta_{ au}^{ ext{max}}=1$ min

Laufzeitvergleich:

- Kommerzielles Tool VISUM: Laufzeit ≈ 30 min (mit 8 Threads)
- PAT-basierte Umlegung: (mit $\lambda_{\text{mul}} = 10$)

Anzahl Threads	1	2	4
Laufzeit [sec]	108.92	65.57	38.41

Auswertung – Umlegungsqualität

- Beide Umlegungen sind sehr ähnlich
- VISUM berechnet etwas kürzere Fahrzeiten
- PAT-basierter Algorithmus berechnet Journeys mit weniger Umstiegen

	VISUM			PAT-b	asierter Al	gorithmus
Eigenschaft	min	mean	max	min	mean	max
Reisezeit [min]	2.98	46.885	429.00	2.98	47.199	429.00
Zeit im Fahrzeug [min]	0.02	21.059	380.00	0.02	21.231	323.97
Laufdauer [min]	2.00	22.394	149.00	2.00	22.476	149.00
Wartezeit [min]	0.00	3.432	217.02	0.00	3.492	217.02
Züge pro Passagier	1.00	1.771	6.00	1.00	1.746	8.00
Connections pro Passagier	1.00	9.396	109.00	1.00	9.474	97.00
Passagiere pro Connection	0.00	12.740	1 290.10	0.00	12.847	1 233.60

Literatur I

Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch, Dorothea Wagner, and Tobias Zündorf. Efficient traffic assignment for public transit networks.

In 16th International Symposium on Experimental Algorithms (SEA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Appendix: Gefühlte Ankunftszeit (PAT)

Formale Definition:

$$\begin{split} \tau_{\text{arr}}^{\text{p}}(c,\textit{d}) &\coloneqq \min\{\tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{walk}), \tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{trip}), \tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{trans})\} \\ \tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{walk}) &\coloneqq \begin{cases} \tau_{\text{arr}}(c) & \text{if } v_{\text{arr}}(c) = \textit{d} \\ \tau_{\text{arr}}(c) + \lambda_{\text{walk}} \cdot \tau_{\text{trans}}(v_{\text{arr}}(c),\textit{d}) & \text{otherwise} \end{cases} \\ \mathcal{T}(c) &\coloneqq \{c' \in \mathcal{C} \mid \text{trip}(c') = \text{trip}(c) \wedge \tau_{\text{dep}}(c') \geq \tau_{\text{arr}}(c)\} \\ \tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{trip}) &\coloneqq \begin{cases} \min\{\tau_{\text{arr}}^{\text{p}}(c',\textit{d}) \mid c' \in \mathcal{T}(c)\} & \text{if } \mathcal{T}(c) \neq \emptyset \\ \infty & \text{otherwise} \end{cases} \\ \tau_{\text{arr}}^{\text{p}}(c,\textit{c}',\textit{d}) &\coloneqq \tau_{\text{trans}}^{\text{p}}(c,\textit{c}') + \tau_{\text{wait}}^{\text{p}}(c,\textit{c}') + \tau_{\text{arr}}^{\text{p}}(c',\textit{d}) \\ \mathcal{R}(c) &\coloneqq \{c' \in \mathcal{C} \mid \tau_{\text{wait}}(c,\textit{c}') \geq 0\} \\ \mathcal{R}_{\text{opt}}(c) &\coloneqq \{c' \in \mathcal{R}(c) \mid \forall \bar{c} \in \mathcal{R}(c) : \tau_{\text{wait}}(c,\bar{c}) \geq \tau_{\text{wait}}(c,\textit{c}') \Rightarrow \tau_{\text{arr}}^{\text{p}}(c,\bar{c},\textit{d}) \geq \tau_{\text{arr}}^{\text{p}}(c,\textit{c}',\textit{d})\} \\ \langle c_{1},\ldots,c_{k}\rangle &\text{with } \forall i \in [1,k] : c_{i} \in \mathcal{R}_{\text{opt}}(c) \wedge \forall i \in [2,k] : \tau_{\text{wait}}(c,c_{i}) \geq \tau_{\text{wait}}(c,c_{i-1}) \end{cases} \\ \tau_{\text{wait}}^{\text{p}}(i) &\coloneqq \begin{cases} \tau_{\text{wait}}(c,c_{i}) &\text{if } i \in [1,k] \\ -\infty &\text{otherwise} \end{cases} \\ \tau_{\text{arr}}^{\text{p}}(c,\textit{d} \mid \text{trans}) &\coloneqq \begin{cases} \sum_{i=1}^{k} \left(\frac{P[\tau_{\text{wait}}^{\text{c}}(i-1) < \Delta_{\tau}^{\text{c}} \leq \tau_{\text{wait}}^{\text{c}}(i)]}{P[\Delta_{\tau}^{\text{c}} \leq \tau_{\text{wait}}^{\text{c}}(k)]} \cdot \tau_{\text{arr}}^{\text{p}}(c,c_{i},\textit{d}) \end{pmatrix} &\text{if } k > 0 \\ \text{otherwise} \end{cases} \end{cases} \\ \text{otherwise} \end{cases}$$