

Algorithmen für Routenplanung

14. Vorlesung, Sommersemester 2023

Jonas Sauer | 14. Juni 2023

Elektromobilität

Elektrofahrzeuge (EVs):

- Transportmittel der Zukunft
- Emissionsfreie Mobilität

Aber:

- Akkukapazität eingeschränkt (und damit Reichweite)
- Lange Ladezeiten, wenig öffentliche Ladestationen
- "Reichweitenangst"
- ⇒ Berücksichtigung von Energieverbrauch bei der Routenplanung

Ladestopps

Ladestationen

- Reichweite ist stark begrenzt
 - VW e-Up!: 260 km
 - Tesla Model S: 400–600 km
 - Je nach Witterung und Geschwindigkeit deutlich weniger!
- Lange Strecken unmöglich, selbst mit verbrauchsoptimalen Routen
- Nutzung von Ladestationen nicht zu vermeiden
- Problem: Ladestationen sind langsam und wenig verbreitet
 - Tesla Supercharger: ca. 40 min für Aufladen auf 80% Kapazität

Problemstellung

Bisher:

SoC-Query: Gegeben Start s, Ziel t und initialen Ladezustand b_s ,

finde zulässigen s-t-Pfad mit maximalem SoC an t

Immer noch sinnvoll, wenn wir Ladestopps erlauben?

Jonas Sauer: Algorithmen für Routenplanung

Problemstellung

Bisher:

SoC-Query: Gegeben Start s, Ziel t und initialen Ladezustand b_s ,

finde zulässigen s-t-Pfad mit maximalem SoC an t

Immer noch sinnvoll, wenn wir Ladestopps erlauben?

- Finde Ladestation in der Nähe vom Ziel
- Route (beliebig?) zu dieser Station, lade voll auf, fahre zum Ziel

Jonas Sauer: Algorithmen für Routenplanung

Problemstellung

Bisher:

SoC-Query: Gegeben Start s, Ziel t und initialen Ladezustand b_s ,

finde zulässigen s-t-Pfad mit maximalem SoC an t

Immer noch sinnvoll, wenn wir Ladestopps erlauben?

Finde Ladestation in der Nähe vom Ziel

• Route (beliebig?) zu dieser Station, lade voll auf, fahre zum Ziel

Stattdessen:

SoC-Query: Gegeben Start s, Ziel t und initialen Ladezustand b_s ,

finde zulässigen s-t-Pfad, der Energieverbrauch

(inklusive geladener Energie) minimiert

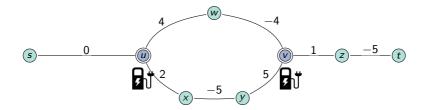
Analog: Maximiere $b_t - r_t$, wobei

• b_t : SoC an t

r_t: Geladene Energie, um t zu erreichen

Zwei Probleme:

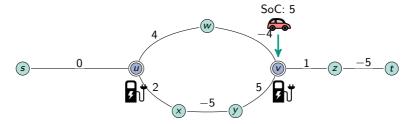
- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

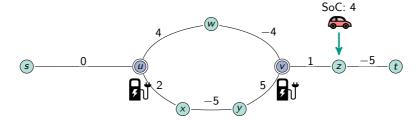
$$b_v - r_v = 5 - 0 = 5$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

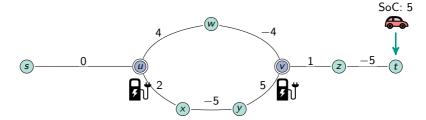
$$b_z - r_z = 4 - 0 = 4$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

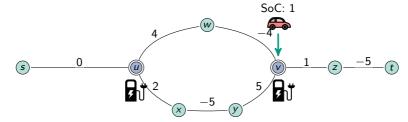
$$b_t - r_t = 5 - 0 = 5$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

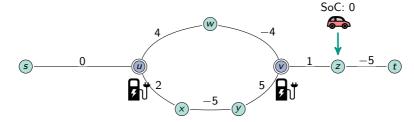
$$b_{v} - r_{v} = 1 - 0 = 1$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

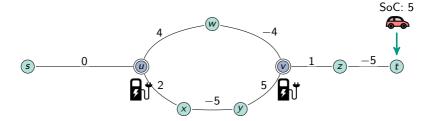
$$b_z - r_z = 0 - 0 = 0$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

$$b_t - r_t = 5 - 0 = 5$$



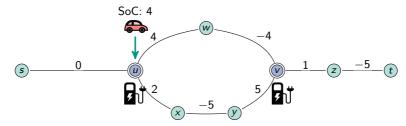
Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

Zwei Probleme:

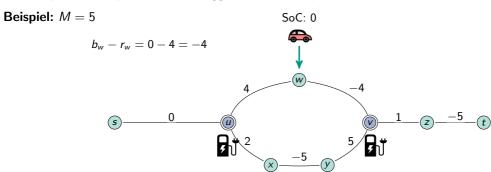
- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

$$b_{ii} - r_{ii} = 4 - 4 = 0$$



Zwei Probleme:

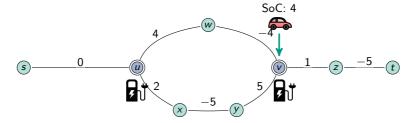
- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

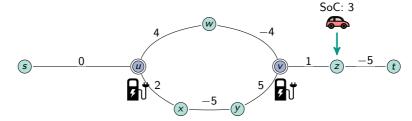
$$b_{v} - r_{v} = 4 - 4 = 0$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

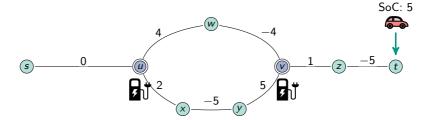
$$b_z - r_z = 3 - 4 = -1$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

$$b_t - r_t = 5 - 4 = 1$$



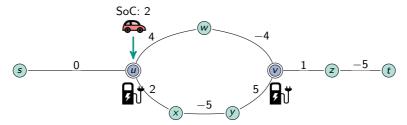
Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

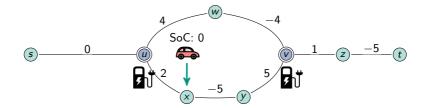
$$b_{ii} - r_{ii} = 2 - 2 = 0$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

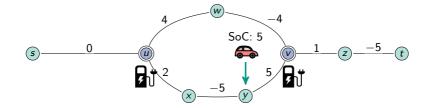
$$b_x - r_x = 0 - 2 = -2$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

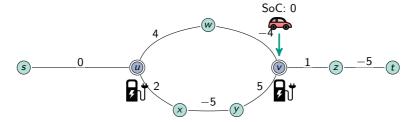
$$b_y - r_y = 5 - 2 = 3$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

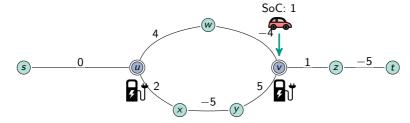
$$b_v - r_v = 0 - 2 = -2$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

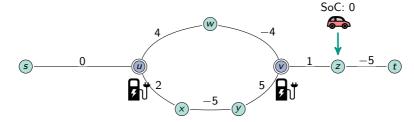
$$b_v - r_v = 1 - 3 = -2$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

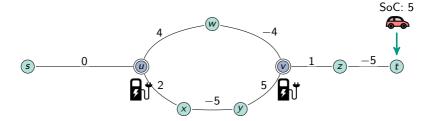
$$b_z - r_z = 0 - 3 = -3$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

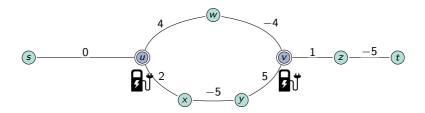
$$b_t - r_t = 5 - 3 = 2$$



Zwei Probleme:

- Volles Aufladen ist ggf. nicht optimal
- Subpfade von optimalen Pfaden ggf. selbst nicht optimal

Beispiel: M = 5



Für Zielknoten v: u-v-Pfad über w immer die optimale Wahl

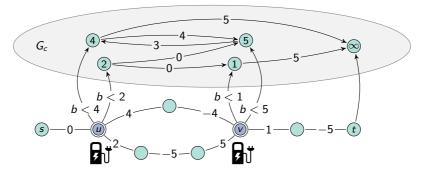
Für Zielknoten *t*: *u*–*v*-Pfad über *x* und *y* ggf. besser

Polynomialzeitalgorithmus

Beobachtung: Teilpfade zwischen Ladestationen (oder von Station zum Ziel) müssen für mind. 1 initialen SoC b_s energieoptimal sein

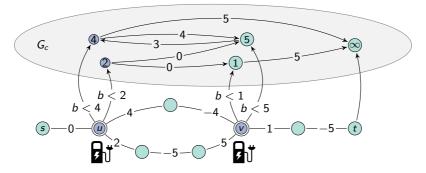
- Berechne zwischen jedem Paar von Ladestationen (+Ziel) ein Profil (Anzahl Pfade linear pro Paar von Stationen)
- Berechne für jeden dieser Pfade den minimal nötigen SoC zum Befahren
- Mehr als das muss nicht geladen werden (man kann an der nächsten Station weiter laden bzw. ist am Ziel)
- ⇒ pro Ladestation polynomiell viele "Abfahrts-SoCs"
- ⇒ Konstruiere polynomiellen Suchgraph:
 - Ein Knoten pro Station und Abfahrts-SoC
 - Speichere Ankunfts-SoC an der Kante

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



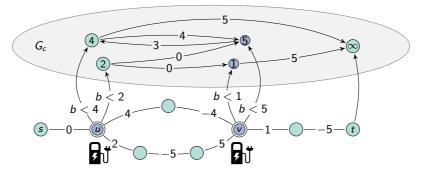
 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



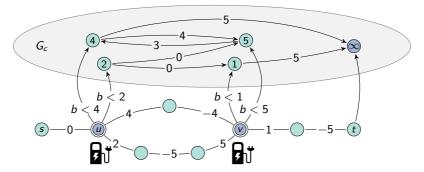
 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



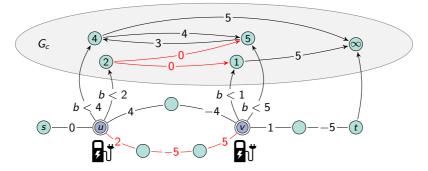
 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



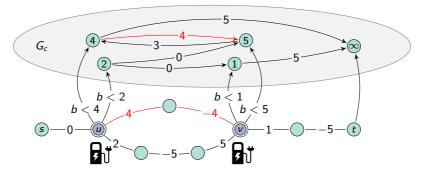
 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

- Berechne Ankunfts-SoC (Wert an der Kante)
- Füge Ladeknoten hinzu (Mindest-Ladewert im Knoten)



 $\mathcal{O}(|V|)$ Pfade pro Ladestationspaar \Rightarrow Suchgraph hat poly. Größe

Heuristische Implementierung

Suchgraph G_s :

Knoten: Alle Ladestationen und Zielknoten t

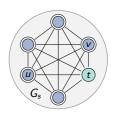
Clique

An den Kanten: SoC-Profile

- Lade genug Energie, um Verbrauch auf *s*–*v*-Pfad zu minimieren
- Nicht beweisbar optimal, aber (fast) immer optimal in der Praxis

Speedup-Techniken:

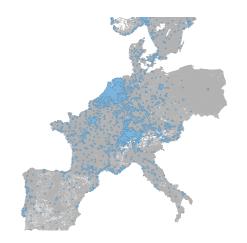
- Contraction Hierarchies (CH): Partielle CH; kontrahiere keine Ladestationen
- A*-Suche: (ähnlich wie bei multikriterieller Suche)
 - Rückwärtssuche vom Ziel mit unendlich großer Batterie (ohne Ladestationen)
 - $lue{}$ Liefert untere Schranke an Energieverbrauch zum Ziel ightarrow A*-Potential



Experimente

Input:

- Straßennetzwerk Europa (ähnlich wie DIMACS)
- 22.2M Knoten, 51.1M Kanten
- Verbrauchsdaten aus PHEM-Emissionsmodell (TU Graz)
- Höhendaten aus SRTM (Shuttle Radar Topography Mission)
- Ladestationen von ChargeMap: 13810 in Europa



Performance

Fahrzeugtypen:

- Peugeot iOn, 16 kWh (100–150 km)
- Künstliches Modell, 85 kWh (400–500 km, ähnl. wie Tesla)

Techniques		Р	Peugeot iOn			Artificial		
G_S	СН	A*	Prepr. [s]	# V. Sc.	Q. [ms]	Prepr. [s]	# V. Sc.	Q. [ms]
0	0	0	_	8 895k	20 161	_	11 034k	32 929
•	0	0	1 487	760k	710	15 062	7754k	6 286
•	•	0	2860	8k	310	3 2 4 6	20k	1 282
•	•	•	2860	4k	128	3 246	10k	298

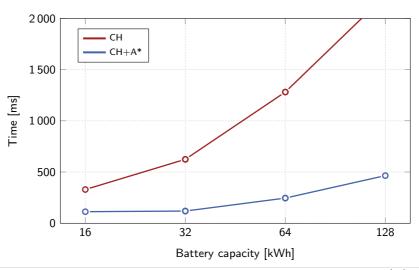
Ladestationsverteilungen

Algorithmus: $G_s + CH + A^*$

Subgraph: Deutschland (4.7M vertices, 10.8M edges)

		P	Prepr.		Queries		
Scenario	5	T. [s]	$ E_S $	# V. Sc.	# E. Sc.	T. [ms]	
ChargeMap	1 966	549	539k	5k	126k	4.22	
random-0.01	469	487	22k	2k	50k	1.30	
random-0.1	4 692	583	2 263k	9k	224k	7.97	
random-1.0	46 920	965	227 514k	61k	1829k	73.46	

Batteriegröße



Electric Vehicle Routing

Bisher: Energieoptimale Routen

- Energiesparendes Fahren
- Wir finden einen zulässigen Pfad, falls dieser existiert

Problem: Wir versuchen Energie zu sparen, selbst wenn:

- die Strecke sehr kurz ist
- der Akkustand mehr als ausreichend für die Strecke ist

Electric Vehicle Routing

Bisher: Energieoptimale Routen

- Energiesparendes Fahren
- Wir finden einen zulässigen Pfad, falls dieser existiert

Problem: Wir versuchen Energie zu sparen, selbst wenn:

- die Strecke sehr kurz ist
- der Akkustand mehr als ausreichend für die Strecke ist

Alternativen?

Electric Vehicle Routing

Bisher: Energieoptimale Routen

- Energiesparendes Fahren
- Wir finden einen zulässigen Pfad, falls dieser existiert

Problem: Wir versuchen Energie zu sparen, selbst wenn:

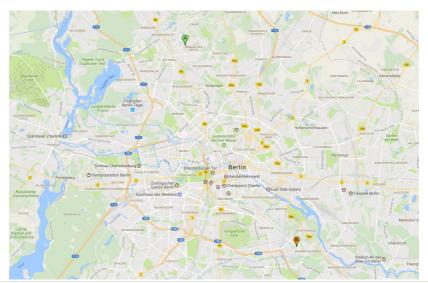
- die Strecke sehr kurz ist
- der Akkustand mehr als ausreichend für die Strecke ist.

Alternativen?

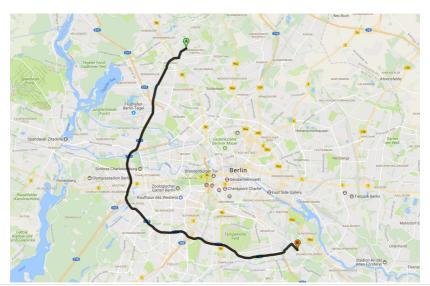
- Berechne schnellste Route. Überprüfe danach, ob SoC ausreichend
- Schnellste Route mit Energieverbrauch als Nebenbedingung

Jonas Sauer: Algorithmen für Routenplanung

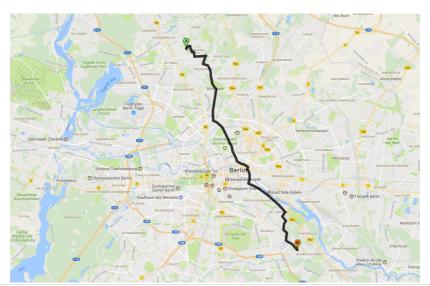
Beispielrouten



Beispielrouten



Beispielrouten



Metrikvergleich

		Extra	Extra
Optimierte Metrik	Unerreichbar	Energie	${\sf Zeit/Dist}.$
Fahrzeit	60 %	62 %	63 %
Distanz	25 %	15 %	4 %

Fazit:

- Energie explizit optimieren zahlt sich aus
- Kürzeste Wege energieeffizienter als schnellste

Aber:

- Fahrzeit viel höher auf energie-optimalen Wegen
- Nur eine Metrik optimieren ist nicht zufriedenstellend

Jonas Sauer: Algorithmen für Routenplanung

Metrikvergleich

		Extra	Extra
Optimierte Metrik	Unerreichbar	Energie	${\sf Zeit/Dist}.$
Fahrzeit	60 %	62 %	63 %
Distanz	25 %	15 %	4 %

Fazit:

- Energie explizit optimieren zahlt sich aus
- Kürzeste Wege energieeffizienter als schnellste

Aber:

- Fahrzeit viel höher auf energie-optimalen Wegen
- Nur eine Metrik optimieren ist nicht zufriedenstellend
- ⇒ Finde schnellste Route mit Energieverbrauch als Nebenbedingung

Schnellste fahrbahre Route

Ziel:

- Finde schnellste Route mit Energieverbrauch als Nebenbedingung
- Zwei Metriken auf den Kanten: Fahrzeit und Energieverbrauch
- Optimiere die Fahrzeit und beschränke den Energieverbrauch
- Erweiterung des CSP-Problems

Wdh: Constrained Shortest Path

Definition: Constrained Shortest Path Problem

Gegeben: G = (V, E), Länge $\ell \colon E \to \mathbb{N}_0$, Gewicht $\omega \colon E \to \mathbb{N}_0$,

Start und Ziel $s,t\in V$ sowie Schranken $L,W\in\mathbb{N}_0$

Problem: Existiert ein einfacher Pfad P von s nach t in G,

für den $\ell(P) \leq L$ und $\omega(P) \leq W$ gelten?

Das entsprechende Optimierungsproblem lautet:

■ Finde einen *s-t*-Pfad *P* mit minimalem $\ell(P)$ und $\omega(P) \leq W$

Theorem

Constrained Shortest Path Problem ist (schwach) \mathcal{NP} -vollständig

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

Jonas Sauer: Algorithmen für Routenplanung

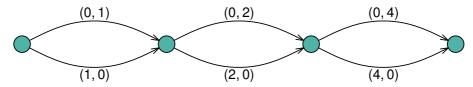
- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

Erinnerung:

- MCD hält pro Knoten eine Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden

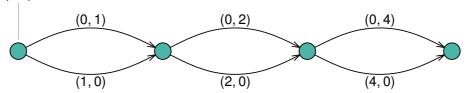


CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

Erinnerung:

- MCD hält pro Knoten eine Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden (0,0)



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

Erinnerung:

- MCD hält pro Knoten eine Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden (0,1)(0,0)(1,0)(0, 2)(0, 1)(0, 4)(1,0)(2, 0)(4, 0)

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen
 - Verwerfe Label mit Gewicht > W

Erinnerung:

MCD hält pro Knoten eine Menge Pareto-optimaler Pfade (0,3)

Pareto-Mengen können
exponentiell groß werden
(0,1)
(0,0)
(1,0)
(0,1)
(0,2)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)
(1,0)

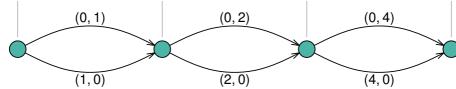
CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum Prunen

	(0.7)
lacktriangle Verwerfe Label mit Gewicht $> W$	(0,7) (1,6)

Erinnerung:

- MCD hält pro Knoten eine Menge Pareto-optimaler Pfade
- Pareto-Mengen können (5,2)exponentiell groß werden (0,1)(6,1)(0,0)(1,0)(3,0)(7,0)



(3,4)

(4,3)

Schnellste zulässige Route

Idee:

- Nutze gleichen Ansatz für EV-Routing
- Label sind Tupel (Fahrzeit, SoC)
- Falls SoC < 0, Pfad nicht weiter verfolgen

Schnellste zulässige Route

Idee:

- Nutze gleichen Ansatz für EV-Routing
- Label sind Tupel (Fahrzeit, SoC)
- Falls SoC < 0. Pfad nicht weiter verfolgen

Verbesserungen: Standard-Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target Pruning (Nutze max. Rekuperation <u>d[t]</u>)
- Knotenkontraktionen (Nutze Verbrauchsfunktionen)

Schnellste zulässige Route

Idee:

- Nutze gleichen Ansatz für EV-Routing
- Label sind Tupel (Fahrzeit, SoC)
- Falls SoC < 0, Pfad nicht weiter verfolgen

Verbesserungen: Standard-Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target Pruning (Nutze max. Rekuperation <u>d[t]</u>)
- Knotenkontraktionen (Nutze Verbrauchsfunktionen)

Beobachtung: Wir brauchen nicht alle Pareto-Optima an t:

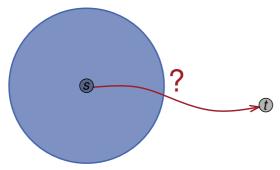
- Sind nur an schnellster zulässiger Route interessiert
- Stoppe, sobald erstes Label an t aus Queue genommen (Queue ist nach Fahrzeit sortiert)

Ladestopps

Finde schnellste Route von s nach t:

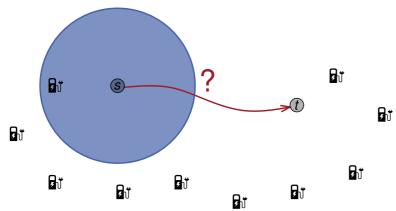
Erreichbares Gebiet

Finde schnellste Route von s nach t:



Erreichbares Gebiet

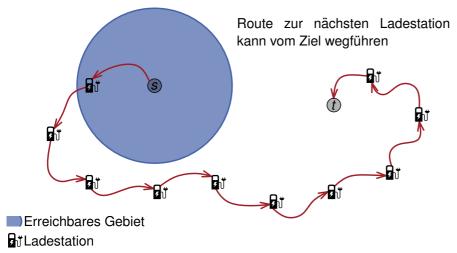
Finde schnellste Route von s nach t:



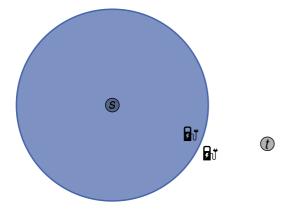
Erreichbares Gebiet

Ladestation

Finde schnellste Route von s nach t:



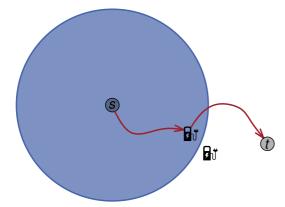
Finde schnellste Route von s nach t:



Erreichbares Gebiet

Ladestation

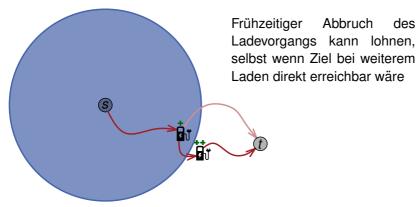
Finde schnellste Route von s nach t:



Erreichbares Gebiet

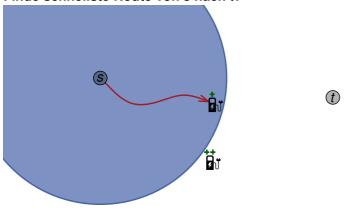
Ladestation

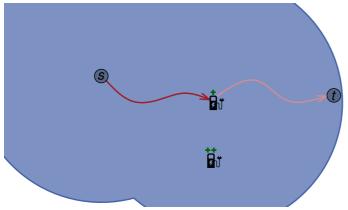
Finde schnellste Route von s nach t:





Finde schnellste Route von s nach t:

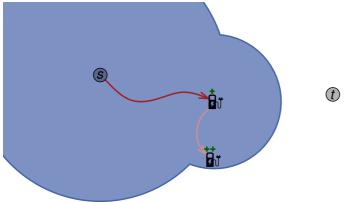


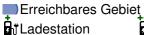


Erreichbares Gebiet

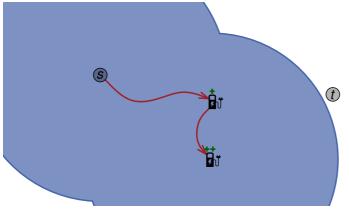
Ladestation

Supercharger/Swapping Station





Supercharger/Swapping Station

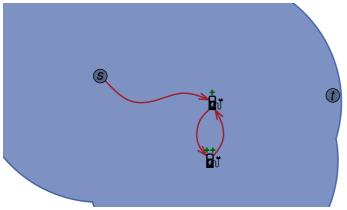


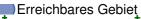
Ladestation

Supercharger/Swapping Station

Ladestationen

Finde schnellste Route von s nach t:



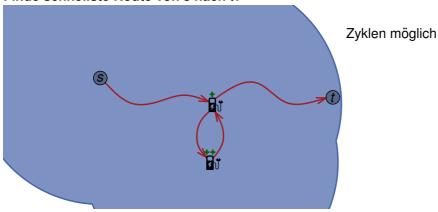


Ladestation

ទីរ៉ូ Supercharger/Swapping Station

Ladestationen

Finde schnellste Route von s nach t:



Erreichbares Gebiet

Ladestation

☐ Supercharger/Swapping Station

Ladestationen

Schwierigkeiten:

- Laden dauert lange (⇒ lieber Energie sparen, laden vermeiden)
- Ladestationen sind selten (lohnt sich ein Umweg?)
- Laden jederzeit unterbrechbar

Ansatz:

- Ladezeiten müssen während Routenplanung berücksichtigt werden
- Optimiere Reisezeit = Fahrzeit + Ladezeit
- Teilmenge $S \subseteq V$ der Knoten sind Ladestationen
- Für jede Station eine Funktion, die das Ladeverhalten beschreibt

Formal:

- Eine Funktion cf: $[0, M] \times \mathbb{R}_{>0} \to [0, M]$, bildet
 - initialen SoC b_s und
 - gewünschte Ladezeit τ_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

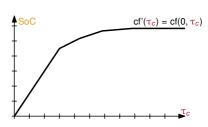
Formal:

- Eine Funktion cf: $[0, M] \times \mathbb{R}_{>0} \to [0, M]$, bildet
 - initialen SoC b_c und
 - lacktriangle gewünschte Ladezeit au_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

Anmerkung: Realistische Ladefunktionen darstellbar durch:

■ Univariate Funktion cf': $\mathbb{R}_{>0} \to [0, M]$

$$cf(b, \tau_c) := cf'(\tau_c + cf'^{-1}(b))$$



Formal:

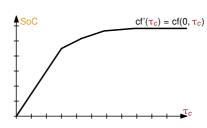
- Eine Funktion cf: $[0, M] \times \mathbb{R}_{>0} \to [0, M]$, bildet
 - initialen SoC b_c und
 - lacktriangle gewünschte Ladezeit au_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

Anmerkung: Realistische Ladefunktionen darstellbar durch:

• Univariate Funktion cf': $\mathbb{R}_{>0} \to [0, M]$

$$cf(b, \tau_c) := cf'(\tau_c + cf'^{-1}(b))$$

cf(3, 2)



Formal:

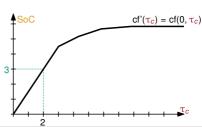
- Eine Funktion cf: $[0, M] \times \mathbb{R}_{>0} \to [0, M]$, bildet
 - initialen SoC b_c und
 - lacktriangle gewünschte Ladezeit au_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

Anmerkung: Realistische Ladefunktionen darstellbar durch:

• Univariate Funktion cf': $\mathbb{R}_{>0} \to [0, M]$

$$cf(b, \tau_c) := cf'(\overline{\tau_c} + cf'^{-1}(b))$$

$$cf(3, 2) = cf'(2 + cf'^{-1}(3))$$



Formal:

- Eine Funktion cf: $[0, M] \times \mathbb{R}_{\geq 0} \rightarrow [0, M]$, bildet
 - initialen SoC b_s und
 - lacktriangle gewünschte Ladezeit au_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

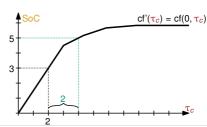
Anmerkung: Realistische Ladefunktionen darstellbar durch:

■ Univariate Funktion cf': $\mathbb{R}_{\geq 0} \rightarrow [0, M]$

$$cf(b, \tau_c) := cf'(\tau_c + cf'^{-1}(b))$$

$$cf(3, 2) = cf'(2 + cf'^{-1}(3))$$

= $cf'(2 + 2)$



Formal:

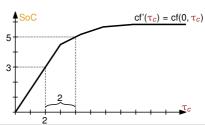
- Eine Funktion cf: $[0, M] \times \mathbb{R}_{>0} \to [0, M]$, bildet
 - initialen SoC b_c und
 - lacktriangle gewünschte Ladezeit au_c auf
 - durch Laden erreichten SoC ab
- Monoton steigend (Länger laden ⇒ mehr Energie)
- Konkav (Akku voller ⇒ langsameres Laden)

Anmerkung: Realistische Ladefunktionen darstellbar durch:

• Univariate Funktion cf': $\mathbb{R}_{>0} \to [0, M]$

$$cf(b, \tau_c) := cf'(\tau_c + cf'^{-1}(b))$$

 $cf(3, 2) = cf'(2 + cf'^{-1}(3))$
 $= cf'(2 + 2)$
 $= 5$



Algorithmus:

- Basiert auf Dijkstras Algorithmus bzw. MCD
- Solange keine Ladestation besucht: Label = Tupel (Reisezeit, SoC)
- Battery Constraints, Pareto-Optimierung wie bisher

Algorithmus:

- Basiert auf Dijkstras Algorithmus bzw. MCD
- Solange keine Ladestation besucht: Label = Tupel (Reisezeit, SoC)
- Battery Constraints, Pareto-Optimierung wie bisher

Problem: Wenn Ladestation erreicht: Wie lange laden?

- Hängt vom gewähltem Pfad zu t ab
- Optimaler SoC zum Weiterfahren unbekannt

Algorithmus:

- Basiert auf Dijkstras Algorithmus bzw. MCD
- Solange keine Ladestation besucht: Label = Tupel (Reisezeit, SoC)
- Battery Constraints, Pareto-Optimierung wie bisher

Problem: Wenn Ladestation erreicht: Wie lange laden?

- Hängt vom gewähltem Pfad zu t ab
- Optimaler SoC zum Weiterfahren unbekannt

Lösung:

- Verschiebe die Entscheidung auf später!
- Merke zuletzt gesehene Ladestation

Label: Ein Label ℓ am Knoten ν ist ein Tupel $(\tau_t, b_u, u, c_{(u,...,\nu)})$ mit:

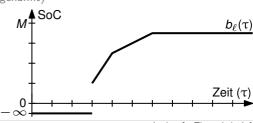
- Reisezeit τ_t von s nach v (Inklusive Ladezeiten außer an u)
- SoC b_u , mit dem die letzte Ladestation (u) erreicht wurde
- **Zuletzt** passierte Ladestation u (Initial \perp)
- Verbrauchsfunktion $c_{(u,...,v)}$ für den Pfad von u nach v (Initial \bot)

Label: Ein Label ℓ am Knoten ν ist ein Tupel $(\tau_t, b_u, u, c_{(u, \dots, \nu)})$ mit:

- lacktriangle Reisezeit au_t von s nach v (Inklusive Ladezeiten außer an u)
- SoC b_u , mit dem die letzte Ladestation (u) erreicht wurde
- Zuletzt passierte Ladestation u (Initial ⊥)
- Verbrauchsfunktion $c_{(u,...,v)}$ für den Pfad von u nach v (Initial \bot)

Interpretation:

- Label beschreibt eine verschobene Ladefunktion
- Bildet Reisezeit auf SoC ab (daher auch SoC-Funktion genannt)
- Funktion repräsentiert Menge von Pareto-optimalen Punkten
- Definition der SoC-Funktion $b_{\ell}(\tau)$: $b_{\ell}(\tau) := b' - c_{(u,...,v)}(b')$ mit $b' := \operatorname{cf}_{\mathbf{u}}(b_{\mathbf{u}}, \tau - \tau_{t})$

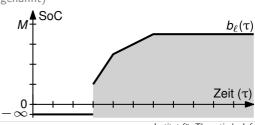


Label: Ein Label ℓ am Knoten v ist ein Tupel $(\tau_t, b_u, u, c_{(u,...,v)})$ mit:

- lacktriangle Reisezeit au_t von s nach v (Inklusive Ladezeiten außer an u)
- SoC b_u , mit dem die letzte Ladestation (u) erreicht wurde
- Zuletzt passierte Ladestation u (Initial \bot)
- Verbrauchsfunktion $c_{(u,...,v)}$ für den Pfad von u nach v (Initial \bot)

Interpretation:

- Label beschreibt eine verschobene Ladefunktion
- Bildet Reisezeit auf SoC ab (daher auch SoC-Funktion genannt)
- Funktion repräsentiert Menge von Pareto-optimalen Punkten
- Definition der SoC-Funktion $b_{\ell}(\tau)$: $b_{\ell}(\tau) := b' - c_{(u,...,v)}(b')$ mit $b' := \operatorname{cf}_{\mathbf{u}}(b_{\mathbf{u}}, \tau - \tau_{t})$



Kantenrelaxierung: (Label $\ell = (\tau_t, b_u, u, c_{(u,...,v)})$)

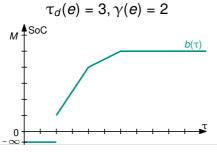
- Relaxieren der Kante e = (v, w) verschiebt die SoC-Funktion $b_{\ell}(\tau)$
 - $b_{\ell}(\tau)$ wird um Fahrzeit $\tau_d(e)$ nach rechts verschoben
 - $b_{\ell}(\tau)$ wird um Verbrauch $\gamma(e)$ nach unten verschoben
- Anschließend werden Battery Constraints überprüft

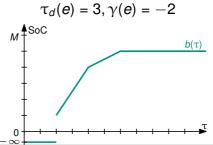
Formal:

$$\tau_t \leftarrow \tau_t + \tau_d(e)$$

und

$$c_{(u,\ldots,w)} \leftarrow c_{(u,\ldots,v)} \circ c_{\mathsf{e}}$$





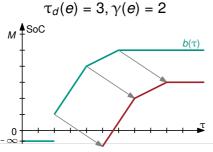
Kantenrelaxierung: (Label $\ell = (\tau_t, b_u, u, c_{(u,\dots,v)})$)

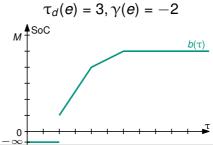
- Relaxieren der Kante e = (v, w) verschiebt die SoC-Funktion $b_{\ell}(\tau)$
 - $b_{\ell}(\tau)$ wird um Fahrzeit $\tau_d(e)$ nach rechts verschoben
 - $b_{\ell}(\tau)$ wird um Verbrauch $\gamma(e)$ nach unten verschoben
- Anschließend werden Battery Constraints überprüft

Formal:

$$\tau_t \leftarrow \tau_t + \tau_d(e)$$

und
$$c_{(u,\ldots,w)} \leftarrow c_{(u,\ldots,v)} \circ c_e$$





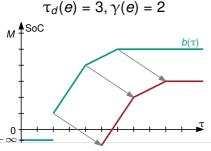
Kantenrelaxierung: (Label $\ell = (\tau_t, b_u, u, c_{(u,\dots,v)})$)

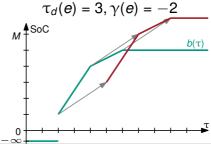
- Relaxieren der Kante e = (v, w) verschiebt die SoC-Funktion $b_{\ell}(\tau)$
 - $b_{\ell}(\tau)$ wird um Fahrzeit $\tau_d(e)$ nach rechts verschoben
 - $b_{\ell}(\tau)$ wird um Verbrauch $\gamma(e)$ nach unten verschoben
- Anschließend werden Battery Constraints überprüft

Formal:

$$\tau_t \leftarrow \tau_t + \tau_d(e)$$

und
$$c_{(u,\ldots,w)} \leftarrow c_{(u,\ldots,v)} \circ c_e$$





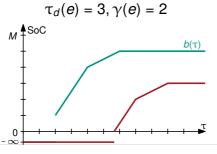
Kantenrelaxierung: (Label $\ell = (\tau_t, b_u, u, c_{(u,\dots,v)})$)

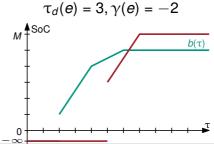
- Relaxieren der Kante e = (v, w) verschiebt die SoC-Funktion $b_{\ell}(\tau)$
 - $b_{\ell}(\tau)$ wird um Fahrzeit $\tau_d(e)$ nach rechts verschoben
 - $b_{\ell}(\tau)$ wird um Verbrauch $\gamma(e)$ nach unten verschoben
- Anschließend werden Battery Constraints überprüft

Formal:

$$\tau_t \leftarrow \tau_t + \tau_d(e)$$

und
$$c_{(u,...,w)} \leftarrow c_{(u,...,v)} \circ c_{e}$$

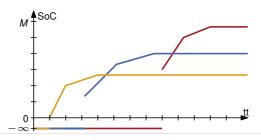




Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \Leftrightarrow \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

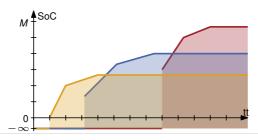
- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \quad \Leftrightarrow \quad \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

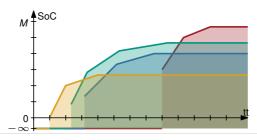
- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \quad \Leftrightarrow \quad \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

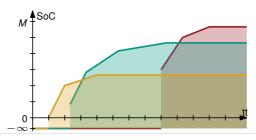
- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \quad \Leftrightarrow \quad \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

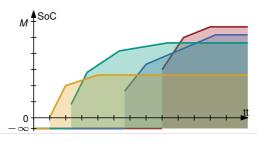
- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \quad \Leftrightarrow \quad \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

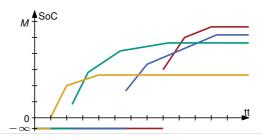
- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Dominanz von SoC-Funktionen:

$$b_{\ell}(\tau) \propto b_{\ell'}(\tau) \Leftrightarrow \forall \tau \geq 0 \colon b_{\ell}(\tau) \geq b_{\ell'}(\tau)$$

- Pro Knoten eine Menge von SoC-Funktionen
- Kantenrelaxierung erzeugt neues Label
 - ⇒ Überprüfe Dominanz (nur paarweise) Lösche dominierte Label



Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation \Rightarrow Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

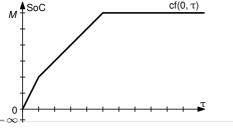
Jonas Sauer: Algorithmen für Routenplanung

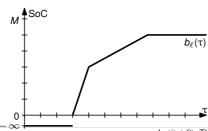
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar



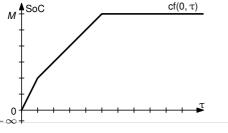


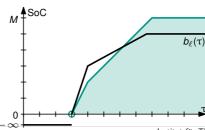
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar



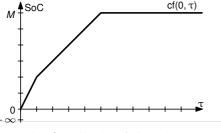


Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar



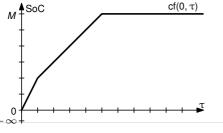


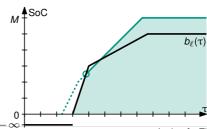
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar





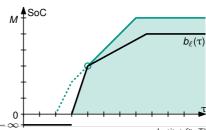
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation \Rightarrow Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar



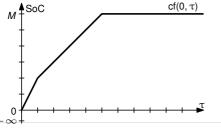


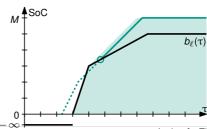
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar





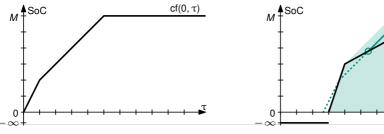
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser



 $b_{\ell}(\tau)$

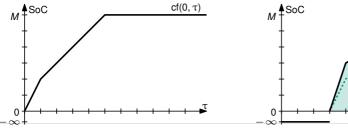
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation \Rightarrow Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser



 $b_{\ell}(\tau)$

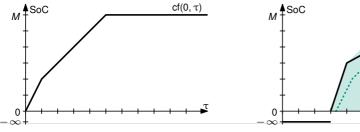
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser



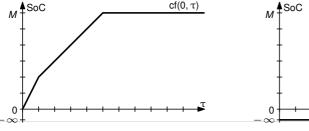
 $b_{\ell}(\tau)$

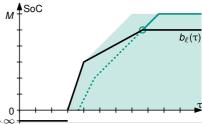
Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar





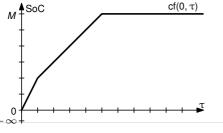
Settling von Ladestationen:

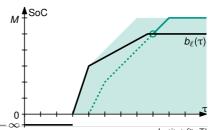
- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser





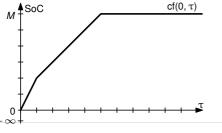
Settling von Ladestationen:

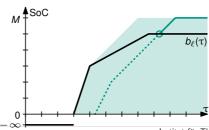
- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation \Rightarrow Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser





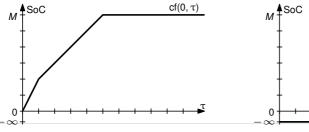
Settling von Ladestationen:

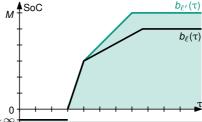
- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation ⇒ Bestimme τ_c für die letzte Station

Problem:

- Am ursprünglichen Problem hat sich nichts geändert
- Auch für vorletzte Ladestation ist die Ladezeit unklar

Aber: Wechsel der Station nur sinnvoll, wenn neue Station besser





Settling von Ladestationen:

- Nur die letzte Ladestation wird im Label gespeichert
- Erreichen einer Ladestation \Rightarrow Bestimme τ_c für die letzte Station

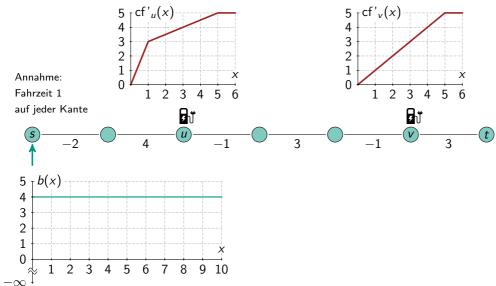
Problem:

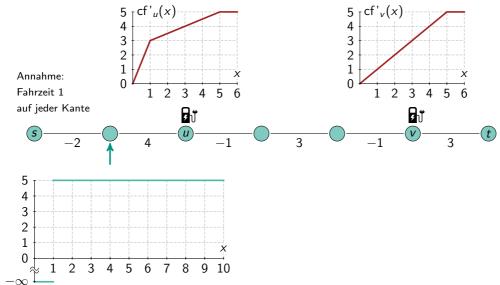
- Am ursprünglichen Problem hat sich nichts geändert
- Auch f
 ür vorletzte Ladestation ist die Ladezeit unklar

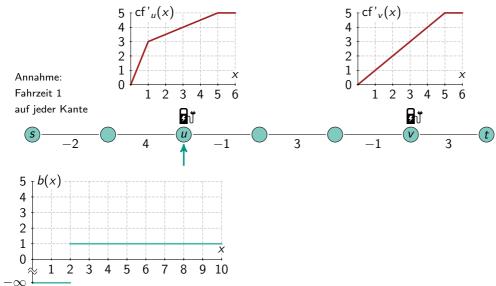
Wechsel der Ladestation lohnt sich nur an Stützpunkten von $b_{\ell}(\tau)$

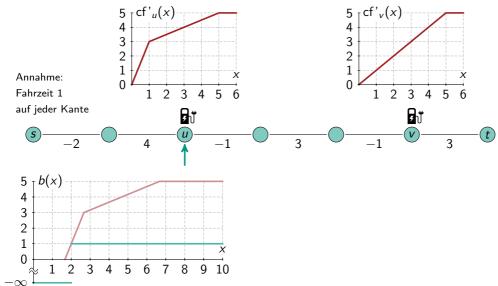
Gegeben:

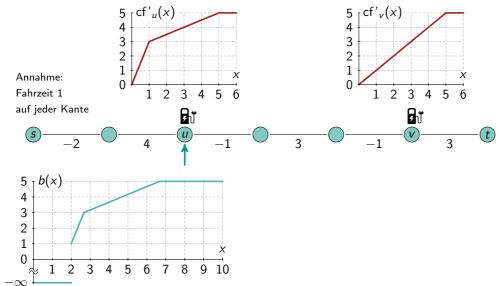
- Label $\ell = (\tau_t, b_u, u, c_{(u, \dots, v)})$ an Knoten v
- v ist Ladestation
- \bullet τ ist Stützstelle von b_{ℓ}
- \Rightarrow Erzeuge neues Label $\ell' = (\tau, b_{\ell}(\tau), \nu, 0)$

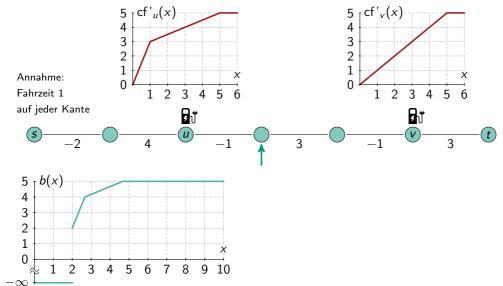


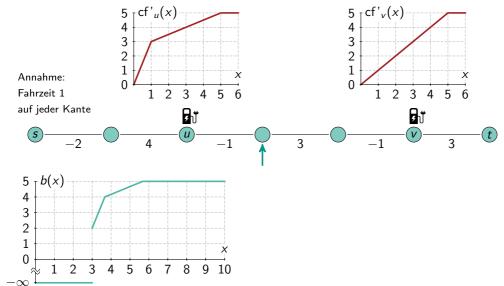


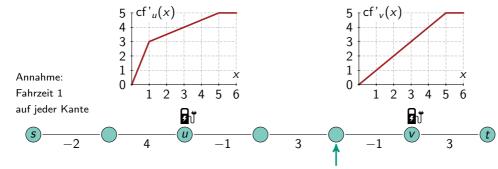


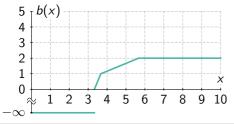


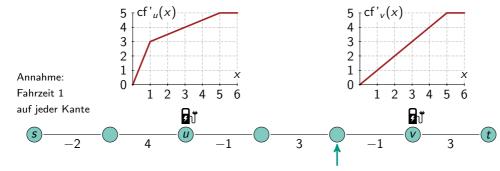


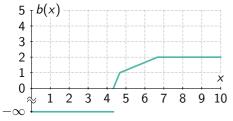


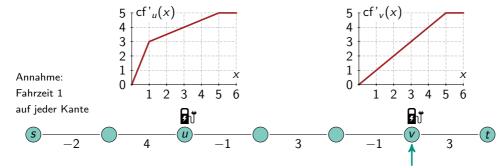


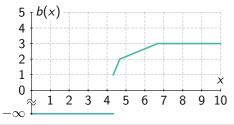


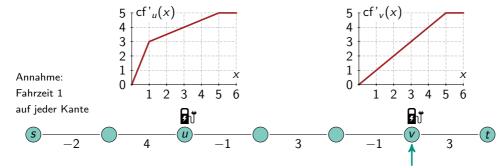


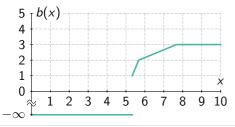


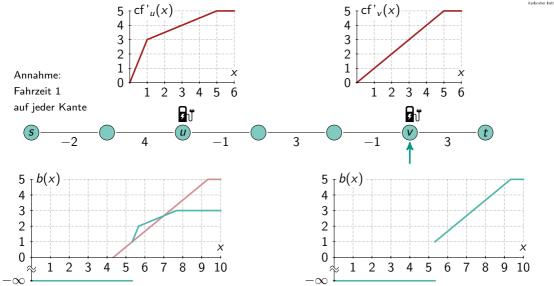


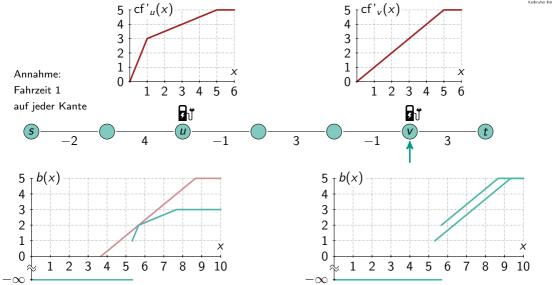




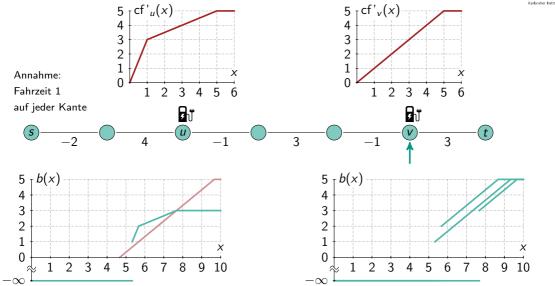


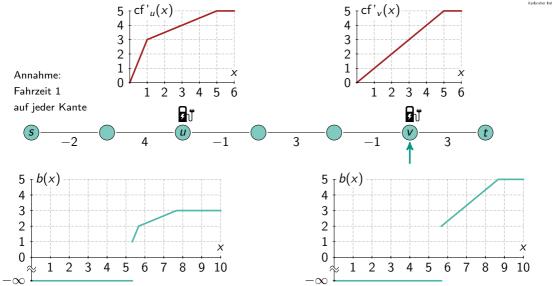


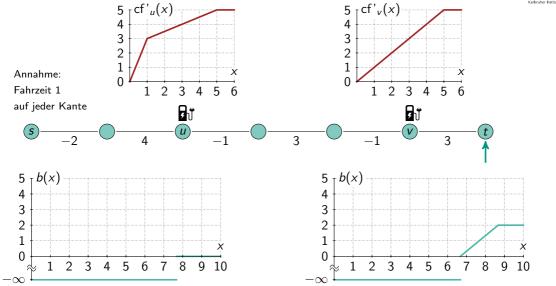


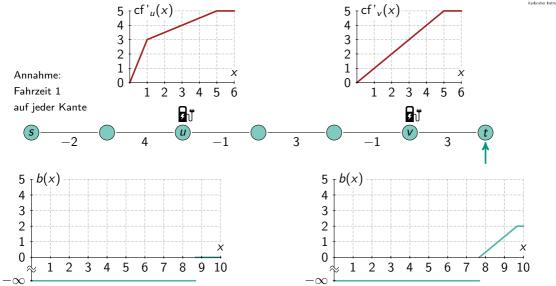


Institut für Theoretische Informatik Lehrstuhl Algorithmik

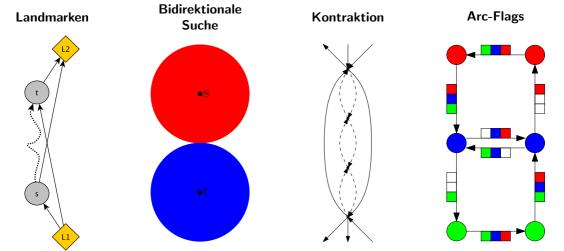








CFP - Beschleunigungstechniken



CFP & CH

Probleme:

- Kontraktion muss Kürzeste-Wege-Distanzen erhalten
 - SoC während Vorberechnung unbekannt
 - Battery Constraints müssen beachtet werden
 - Ladefunktionen müssen berücksichtigt werden

Jonas Sauer: Algorithmen für Routenplanung

CFP & CH

Probleme:

- Kontraktion muss Kürzeste-Wege-Distanzen erhalten
 - SoC während Vorberechnung unbekannt
 - Battery Constraints müssen beachtet werden
 - Ladefunktionen müssen berücksichtigt werden

Lösung:

- Benutze Verbrauchsfunktionen (Battery Constraints in Kantengewichten enthalten)
- Ladestation per Definition wichtig (Nicht kontrahieren ⇒ Core-Graph)

CFP & CH

Probleme:

- Kontraktion muss Kürzeste-Wege-Distanzen erhalten
 - SoC während Vorberechnung unbekannt
 - Battery Constraints müssen beachtet werden
 - Ladefunktionen müssen berücksichtigt werden

Lösung:

- Benutze Verbrauchsfunktionen (Battery Constraints in Kantengewichten enthalten)
- Ladestation per Definition wichtig (Nicht kontrahieren ⇒ Core-Graph)

Aber:

- Shortcuts repräsentieren jeweils Pareto-Mengen (Fahrzeit, Verbrauch)
- Pareto-Mengen werden exponentiell groß
- Breche Vorberechnung ab \Rightarrow unkontrahierter Core-Graph (\sim 0.5%)

Erinnerung:

- A* benutzt Knotenpotential, um Suche zum Ziel zu leiten
- Potential eines Knotens ist untere Schranke f
 ür Reisezeit zu t
- Gute Technik für schwere/komplizierte Suchprobleme
- Klassischer Ansatz: Bestimme Potential durch Rückwärtssuche von t

Beobachtung:

- Fahrzeit zu t hängt auch vom SoC ab
- Metriken beeinflussen sich gegenseitig

Erinnerung:

- A* benutzt Knotenpotential, um Suche zum Ziel zu leiten
- Potential eines Knotens ist untere Schranke f
 ür Reisezeit zu t
- Gute Technik für schwere/komplizierte Suchprobleme
- Klassischer Ansatz: Bestimme Potential durch Rückwärtssuche von t

Beobachtung:

- Fahrzeit zu t hängt auch vom SoC ab
- Metriken beeinflussen sich gegenseitig

Idee:

- Reisezeit zu t abhängig von aktueller Position und SoC
- Nutze Potential $\pi: V \times [0, M] \to \mathbb{R}_{>0}$, welches beides berücksichtigt

Gesucht:

■ Potential $\pi: V \times [0, M] \to \mathbb{R}_{\geq 0}$, bildet (Knoten, SoC) auf Zeit zu t ab

Beobachtung:

Ladestationen erlauben "Umwandlung" von Zeit in SoC

Gesucht:

• Potential $\pi: V \times [0, M] \to \mathbb{R}_{>0}$, bildet (Knoten, SoC) auf Zeit zu t ab

Beobachtung:

- Ladestationen erlauben "Umwandlung" von Zeit in SoC
- Benutze dafür neue Metrik
- Sei dazu c_{max} die maximale Ladegeschwindigkeit (Maximum über die Steigung aller Ladefunktionen)
- Neue Metrik ω:

$$\omega(e) := au_d(e) + rac{\gamma(e)}{c_{\sf max}}$$

Beschreibt min. Reisezeit, falls alle Energie geladen werden muss

Algorithmus: Läuft in 2 Phasen:

1: Rückwärtssuche von t berechnet Potential π

2: Vorwärtssuche von s nach t, beschleunigt durch π

Potential-Berechnung:

- Drei unikriterielle Dijkstra-Suchen von t aus:
 - Auf Metrik τ_d : Berechnet min. Fahrzeit π_{τ} zu t (ohne Energieverbrauch)
 - Auf Metrik γ : Berechnet min Energieverbrauch π_{γ}
 - Auf Metrik ω : Berechnet min. Reisezeit π_{ω} , falls $b_s = 0$

Algorithmus: Läuft in 2 Phasen:

1: Rückwärtssuche von t berechnet Potential π

2: Vorwärtssuche von s nach t, beschleunigt durch π

Potential-Berechnung:

Drei unikriterielle Dijkstra-Suchen von t aus:

• Auf Metrik τ_d : Berechnet min. Fahrzeit π_{τ} zu t (ohne Energieverbrauch)

• Auf Metrik γ : Berechnet min Energieverbrauch π_{γ}

• Auf Metrik ω : Berechnet min. Reisezeit π_{ω} , falls $b_s = 0$

Setze dann:

$$\pi(v,b) := egin{cases} \pi_{ au}(v) & ext{, falls } b \geq \pi_{\gamma}(v) \ rac{b}{c_{ ext{max}}} & ext{, sonst} \end{cases}$$

CHArge - CH & A* & CFP

Algorithmus:

- Vorberechnung CH:
 - Hält Ladestationen in der Ordnung oben
 - Lässt kleinen Core unkontrahiert
- Query:
 - CH-Aufwärtssuchen von s und t, bis Core erreicht (Normaler Energie-CSP-Algorithmus, da keine Ladestationen)
 - Anschließend A* eingeschränkt auf den Core-Graphen

CHArge - CH & A* & CFP

Algorithmus:

- Vorberechnung CH:
 - Hält Ladestationen in der Ordnung oben
 - Lässt kleinen Core unkontrahiert
- Query:
 - CH-Aufwärtssuchen von s und t. bis Core erreicht (Normaler Energie-CSP-Algorithmus, da keine Ladestationen)
 - Anschließend A* eingeschränkt auf den Core-Graphen

Heuristiken:

- Weitere Beschleunigung durch Heuristiken möglich
- Pfade, die bezüglich ω -Metrik minimal sind, sind oft optimal
- \blacksquare Relaxiere pro Shortcut nur ω -minimale Pareto-Punkte

Experimente

Straßennetzwerk:

Europa (Eur) & Deutschland (Ger)

Energieverbrauch:

Emissionsmodel: PHEM (TU Graz)

[Hausberger et al. '09]

- SRTM-Höhendaten (Shuttle Radar Topography Mission)
- Ladestationspositionen von ChargeMap

Instanzen	#Knoten	# Kanten	# Kanten	$\mathrm{mit}\ \gamma<0$	# S
Ger	4 692 091	10 805 429	1 119 710	(10.36%)	1 966
Eur	22 198 628	51 088 095	6 060 648	(11.86%)	13810
Osg	5 588 146	11711088	1 142 391	(9.75%)	643

Experimente

CH-Vorberechnung:

Auswirkung der Core-Größe auf die Vorberechnung

Jonas Sauer: Algorithmen für Routenplanung

Core-Größe		Vorberechnung	Query [ms]	
Avg. deg.	# Knoten	[h:m:s]	CS: only BSS	CS: realistic
8	344 066 (7.33%)	2:58	1 474.1	47 979.9
16	116 917 (2.49%)	4:01	536.5	1 669.0
32	65 375 (1.39%)	5:03	436.1	1 356.8
64	43 036 (0.91%)	7:07	449.8	1 408.8
128	30 526 (0.65%)	11:16	509.6	1 585.4
256	22 592 (0.48%)	20:22	647.5	2098.5
512	17 431 (0.37%)	37:11	880.7	2739.9
1024	13 942 (0.29%)	1:05:51	1 264.6	3 934.2
2048	11 542 (0.24%)	2:00:27	1822.6	5 670.1
4096	9842 (0.20%)	4:17:36	2706.6	8 420.1

Experimente

				Exact Query		Heuristic Query	
Inst	tanz	М	Preproc.	Feas.	CHArge	H_{ω}	H^A_ω
S	Ger-c1966	16 kWh	5:03	100	1 398	436	21
BS	Ger-c1966	85 kWh	4:59	100	1013	48	28
Only	Eur-c13810	16 kWh	30:32	63	10786	9943	207
ŏ	Eur-c13810	85 kWh	30:16	100	47 921	1022	41
Ŋ	Ger-c1966	16 kWh	5:03	100	8 629	1 357	155
S	Ger-c1966	85 kWh	4:59	100	2614	342	34
ixed	Eur-c13810	16 kWh	30:32	63	24 148	17 630	2 694
Ξ	Eur-c13810	85 kWh	30:16	100	86 193	26 867	600

Vorberechnungszeiten in Minuten:Sekunden, Query-Zeiten in Millisekunden

Literatur I

Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.

Shortest feasible paths with charging stops for battery electric vehicles.

In Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 44:1–44:10. ACM Press, 2015.

Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea Wagner.

Speed-consumption tradeoff for electric vehicle route planning.

In Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'14), volume 42 of OpenAccess Series in Informatics (OASIcs), pages 138–151. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf.

Modeling and engineering constrained shortest path algorithms for battery electric vehicles.

In Proceedings of the 25th Annual European Symposium on Algorithms (ESA'17), volume 87 of Leibniz International Proceedings in Informatics, pages 11:1–11:16, 2017.