

Algorithmen für Routenplanung

8. Vorlesung, Sommersemester 2023

Adrian Feilhauer | 17. Mai 2023

Kürzeste Wege in Straßennetzwerken

Beschleunigungstechniken (Fortsetzung)

Thema: Graphpartitionierung

- Exkurs: dünn besetzte Gleichungssysteme
- Wiederholung: Inertial Flow
- PUNCH
- FlowCutter

Exkurs: dünn besetzte Gleichungssysteme

- Lösen großer linearer Gleichungssysteme hat viele Anwendungen
- Schnelles Lösen ist wichtig
- Algorithmus von Gauß in $O(n^3)$, wobei n die Anzahl der Variablen ist
 - Oft zu langsam

- Oft sind Gleichungssysteme dünn besetzt
 - D. h. viele Koeffizienten sind 0
- Idee: Speichere 0-Koeffizienten nicht ab
- Aber: Wie 0-Koeffizienten während des Lösens erhalten?

Ziel: obere Dreiecksmatrix per Gaußelimination

$$\left[\begin{array}{cccccc} 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & -2 \\ 1 & 0 & -1 & -1 & 0 \\ -1 & 0 & -1 & -2 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{array}\right]$$

4 Nullen im oberen Dreieck

Ziel: obere Dreiecksmatrix per Gaußelimination

$$\left[\begin{array}{cccccc} 1 & -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & -3 \\ 0 & 1 & -2 & -2 & -1 \\ 0 & -1 & 0 & -1 & 1 \\ 0 & 0 & -1 & -1 & 0 \end{array}\right]$$

Ziel: obere Dreiecksmatrix per Gaußelimination

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

Ziel: obere Dreiecksmatrix per Gaußelimination

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 0 & -1 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

Keine Nullen übrig \rightarrow :(

$$\left[\begin{array}{ccccc} 1 & -1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & -2 \\ 1 & 0 & -1 & -1 & 0 \\ -1 & 0 & -1 & -2 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{array}\right]$$

$$\left[\begin{array}{cccccc} 1 & -1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & -2 & -1 \\ 1 & -1 & 1 & 1 & 1 \end{array}\right]$$

$$\left[\begin{array}{cccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & -2 & -1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right]$$

$$\left[\begin{array}{ccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

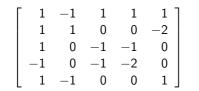
Idee: Spalten und Zeilen umsortieren

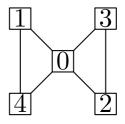
$$\left[\begin{array}{cccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

Alle 4 Nullen erhalten \rightarrow :)

Warum funktioniert das?

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

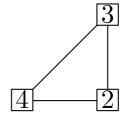




Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

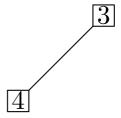


Jeder Eintrag, der nicht Null ist, entspricht einer Kante.



 $Variable nelimination \leftrightarrow Knotenkontraktion$ Jeder Shortcut zerstört eine Null

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

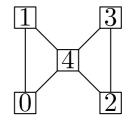


$$\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 0 & -1 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

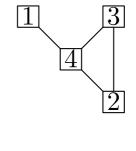
$$\begin{bmatrix} 1 & -1 & 1 & 1 & 1 \\ 0 & 2 & -1 & -1 & -3 \\ 0 & 0 & -\frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 0 & -1 & -\frac{2}{3} \\ 0 & 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.



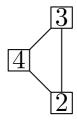
$$\left[\begin{array}{ccccc} 1 & -1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & -2 & -1 \\ 1 & -1 & 1 & 1 & 1 \end{array}\right]$$

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.



$$\left[\begin{array}{cccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & -2 & -1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right]$$

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.



$$\left[\begin{array}{cccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & -1 & -2 & -1 \\ 0 & 0 & 1 & 1 & 0 \end{array}\right]$$

Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

$$\left[\begin{array}{ccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

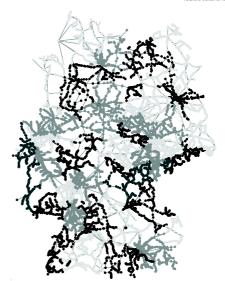
Jeder Eintrag, der nicht Null ist, entspricht einer Kante.

$$\left[\begin{array}{ccccc} 1 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 3 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

Partitionierung

Anforderungen:

- ausbalanciert
- wenige Randknoten
- zusammenhängend



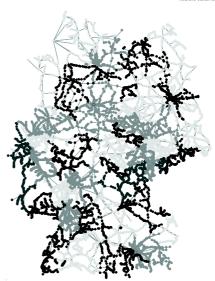
Partitionierung

Anforderungen:

- ausbalanciert
- wenige Randknoten
- zusammenhängend

Black-Box-Partitionierer:

- benutzen keine Einbettung
- oft: teilen rekursiv Graphen in k Teile mit kleinem Schnitt
- lassen sich auf eine Vielzahl Graphklassen anwenden
- heute: spezielle Straßengraph-Partitionierer



• Informell: teile Graphen in lose verbundene Regionen (Zellen).

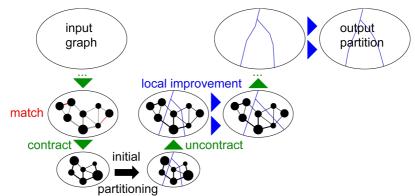
- Formale Definition:
 - Eingabe: ungerichteter Graph G = (V, E)
 - Ausgabe: Partition von V in Zellen V_1, V_2, \ldots, V_k
 - Ziel: minimale Anzahl Kanten zwischen Zellen
- Standardvariante: $|V_i| \le U$ für festes U:
 - Anzahl Zellen kann variieren ($\geq \lceil n/U \rceil$).
- **B**alancierte Variante: k Zellen und Unausgeglichenheit ϵ :
 - genau k Zellen (können nicht-zusammenhängend sein), Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

- Formale Definition:
 - Eingabe: ungerichteter Graph G = (V, E)
 - Ausgabe: Partition von V in Zellen V_1, V_2, \ldots, V_k
 - Ziel: minimale Anzahl Kanten zwischen Zellen
- Standardvariante: $|V_i| \le U$ für festes U:
 - Anzahl Zellen kann variieren ($\geq \lceil n/U \rceil$).
- **B**alancierte Variante: k Zellen und Unausgeglichenheit ϵ :
 - genau k Zellen (können nicht-zusammenhängend sein), Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

beides NP-schwer ⇒ benutze Heuristiken

Black-Box-Partitionierer

- METIS [KK99]
- SCOTCH [PR96]
- DiBaP [MMS09]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]



Schnitte: Definitionen

Schnitt

- Partition des Graphen in 2 Teile (V_1, V_2)
- Größe: Anzahl Schnittkanten (|S|)

Minimaler s-t Schnitt

- entferne minimale Anzahl Kanten, sodass s und t im Graphen nicht mehr verbunden sind
- kann in maximalen Fluss überführt werden
- in Polynomialzeit zu berechnen

Dünnster Schnitt

- Schnitt mit $|S|/\min\{|V_1|,|V_2|\}$ minimal
- NP-schwer

Exact Graph Bisection

- Schnitt mit |S| minimal und $|V_1|, |V_2| < \lceil |V|/2 \rceil$
- NP-schwer

Wiederholung: Inertial Flow

Inertial Flow

Idee:

- Nutze geographische Einbettung
- Basiert auf Max-Flow / Min-Cut
- Berechnet eine Bipartitionierung

Inertial Flow

Idee:

- Nutze geographische Einbettung
- Basiert auf Max-Flow / Min-Cut
- Berechnet eine Bipartitionierung

Algo:

- Für beide Diagonalen, die Horizontale und die Vertikale:
 - Projiziere Knoten auf Gerade
 - Orderne Knoten nach Position
 - Mache die bn ersten/letzten Knoten zur Quelle/Senke (ein typischer Wert für b ist 0.25 - 0.45)
 - Berechne einen Min-Cut
- Nimm den besten der 4 berechneten Schnitte

Inertial Flow

k-Partitionierung

- Inertial Flow teilt den Graph in zwei Teile
- Um *k* Teile zu erhalten gibt es folgenden einfachen Algorithmus:
 - Solange man weniger als *k* Teile hat:
 - ightarrow Zerteile das größte Teil in zwei Teile

PUNCH

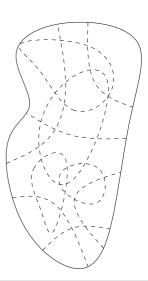
Natural Cuts

Straßengraphen: dichte Regionen (Gitter) abwechselnd mit natürlichen Schnitten Flüsse, Berge, Wüsten, Wälder, Parks, Grenzen, Autobahnen, . . .

PUNCH: Partitioner Using Natural-Cut Heuristics

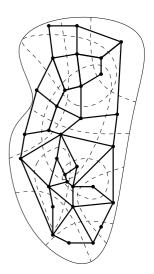
Übersicht

- Ausdünnung:
 - entspricht "match + contract" auf Folie 13
 - finde natürliche Schnitte (auf richtiger Skala)
 - behalte Schnittkanten, kontrahiere alle anderen
- Zusammensetzen:
 - partitioniere (kleineren) kontrahierten Graphen "initial partitioning"
 - greedy + lokale Suche [+ Kombinationen] "uncontract + local improvements"

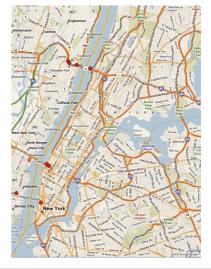


Übersicht

- Ausdünnung:
 - entspricht "match + contract" auf Folie 13
 - finde natürliche Schnitte (auf richtiger Skala)
 - behalte Schnittkanten, kontrahiere alle anderen
- Zusammensetzen:
 - partitioniere (kleineren) kontrahierten Graphen "initial partitioning"
 - greedy + lokale Suche [+ Kombinationen] "uncontract + local improvements"

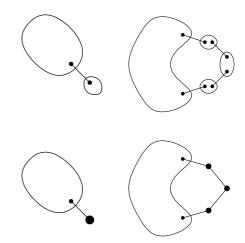


- Wir brauchen dünne Schnitte zwischen dichten Regionen kleiner gleich U:
- Dünnster Schnitt?
 - Zu aufwendig.
- Berechne minimalen s-t Schnitt (für zufällige s, t)?
 - Meist trivial: Knotengrade sind klein.
- Wir brauchen was anderes:
 - s-t Schnitte zwischen Regionen



Berechne kleine Schnitte zuerst:

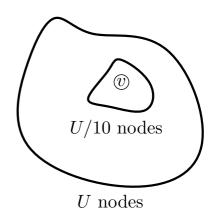
- identifiziere 1- and 2-Schnitte
- reduziert Straßengraph um Faktor 2
- beschleunigt Schnittfindung



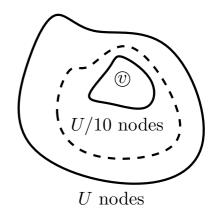
Wähle ein Zentrum v.

- Wähle ein Zentrum v.
- Breitensuche der Größe *U* um *v*:
 - Erste *U*/10 Knoten: Kern
 - Verbliebene Knoten in der Queue: Ring

- Wähle ein Zentrum v.
- Breitensuche der Größe U um v:
 - Erste *U*/10 Knoten: Kern
 - Verbliebene Knoten in der Queue: Ring



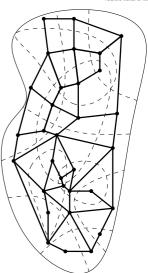
- Wähle ein Zentrum v.
- Breitensuche der Größe U um v:
 - Erste *U*/10 Knoten: Kern
 - Verbliebene Knoten in der Queue: Ring
- Finde minimum Kern/Ring Schnitt:
 - standard s-t minimaler Schnitt.
- Wiederhole für verschiedene "zufällige" v:
 - bis jeder Knoten in ≥ 2 Kernen war



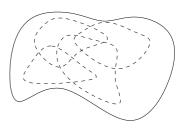
Eigenschaften der Ausdünung

- viele Kanten werden nie geschnitten
- Schnittkanten partitionieren den Graphen in Fragmente
- **③** Fragmentgröße $\leq U$ (meist viel kleiner)
- Generiere Fragmentgraph:
 - lacktriangle Fragment ightarrow gewichteter Knoten
 - lacktriangle benachbarte Fragmente ightarrow gewichtete Kante

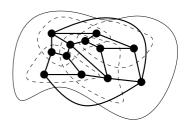
U	fragments	frag size
4 096	605 864	30
65 536	104 410	173
1 048 576	10 045	1793
(Europe: 18M nodes)		



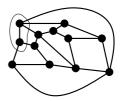
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:



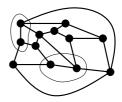
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment



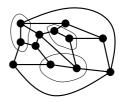
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen



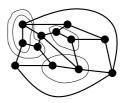
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen



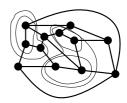
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen



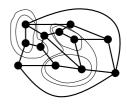
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen



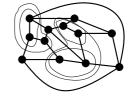
- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen
 - stoppe wenn maximal



- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen
 - stoppe wenn maximal
- Zufällig greedy:
 - füge Fragmente zusammen, die stärker verbunden...
 - lacktriangle ...im Verhältnis zu ihrer Größe (= # Knoten, die sie repräsentieren).

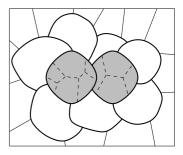


- Fragmentgröße deutlich unterhalb von U, Schnitt unnötig groß
- Finde bessere Partition durch Zusammenfassen von Fragmenten
- Algorithmus:
 - starte mit einer Zelle pro Fragment
 - kombiniere adjazente Zellen
 - stoppe wenn maximal
- Zufällig greedy:
 - füge Fragmente zusammen, die stärker verbunden...
 - ...im Verhältnis zu ihrer Größe (= # Knoten, die sie repräsentieren).

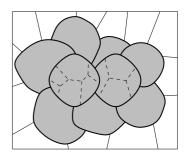


Ergebnis okay, aber es geht besser.

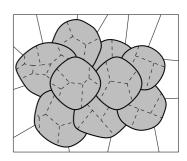
- Für paarweise benachbarte Zellen:
 - Zerteilung in Fragmente;
 - lass konstruktiven, randomisierten Algorithmus auf Subproblem laufen;
 - behalte Lösung wenn besser.



- Für paarweise benachbarte Zellen:
 - Zerteilung in Fragmente;
 - lass konstruktiven, randomisierten Algorithmus auf Subproblem laufen;
 - behalte Lösung wenn besser.
- Variante benutzt auch Nachbarzellen:
 - mehr Flexibilität;
 - beste Ergebnisse (Standard).

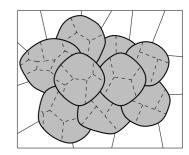


- Für paarweise benachbarte Zellen:
 - Zerteilung in Fragmente;
 - lass konstruktiven, randomisierten Algorithmus auf Subproblem laufen;
 - behalte Lösung wenn besser.
- Variante benutzt auch Nachbarzellen:
 - mehr Flexibilität;
 - beste Ergebnisse (Standard).
- Nachbarzellen können auch in Fragmente zerteilt werden:
 - Subprobleme zu groß;
 - schlechtere Ergebnisse.



(Lokale Reoptimierung auf teilweise entpacktem Graphen)

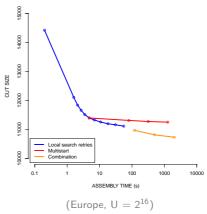
- Für paarweise benachbarte Zellen:
 - Zerteilung in Fragmente;
 - lass konstruktiven, randomisierten Algorithmus auf Subproblem laufen;
 - behalte Lösung wenn besser.
- Variante benutzt auch Nachbarzellen:
 - mehr Flexibilität;
 - beste Ergebnisse (Standard).
- Nachbarzellen können auch in Fragmente zerteilt werden:
 - Subprobleme zu groß;
 - schlechtere Ergebnisse.



Evaluiere jedes Subproblem mehrmals (mit Zufall).

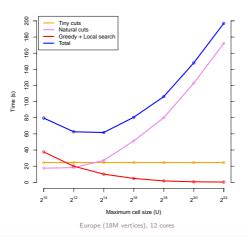
Weitere Verbesserungen

- Mehrfacher Test für jedes Paar
 - lokale Suche hat Zufallskomponenten
- Multistart:
 - konstruktiv + lokale Suche;
 - behalte beste Lösung.
- Kombination:
 - kombiniere manche Lösungen;
 - merge + lokale Suche.



längere Laufzeit \rightarrow bessere Lösungen

Laufzeit



Flaschenhälse: Aufbau für kleine U, Ausdünnung für große U

Qualität

U	Α	В	B/\sqrt{U}	$B/\sqrt[3]{U}$
1 024	895	16.8	0.52	1.66
4 096	3 602	27.6	0.43	1.73
16 384	14 437	45.6	0.36	1.80
65 536	57 376	72.7	0.28	1.80
262 144	222 626	103.7	0.20	1.62
1 048 576	826 166	134.3	0.13	1.32
4 194 304	3 105 245	127.9	0.06	0.79

(Europe, 16 retries, no multistart/combination)

U: maximal erlaubte Zellengröße

A: durchschn. Zellengröße der Lösungen

B: durchschn. Randknoten pro Zelle

Straßengraphen haben sehr kleine Separatoren

Andere Verfahren lösen balancierte Variante:

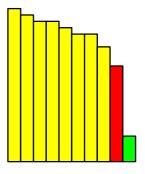
• finde k Zellen mit Größe $\leq (1 + \epsilon) \lceil n/k \rceil$.

- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)

Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

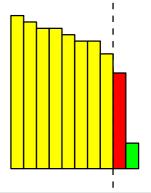
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

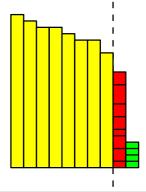
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1 + \epsilon) \lceil n/k \rceil$.

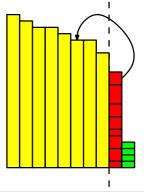
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1 + \epsilon) \lceil n/k \rceil$.

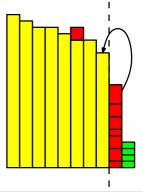
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

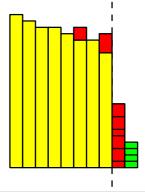
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1 + \epsilon) \lceil n/k \rceil$.

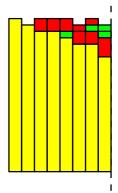
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



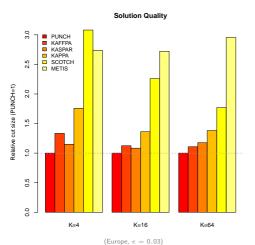
Andere Verfahren lösen balancierte Variante:

• finde k Zellen mit Größe $\leq (1+\epsilon)\lceil n/k \rceil$.

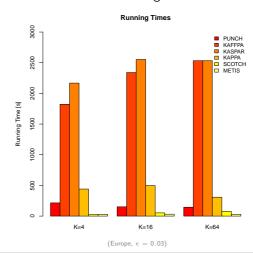
- benutze Standard-PUNCH mit $U = (1 + \epsilon) \lceil n/k \rceil$;
- wähle k Basis Zellen, verteile den Rest (Multistart)



Balancierte Partitionen



...in vernünftiger Zeit.



Institut für Theoretische Informatik Lehrstuhl Algorithmik

Vancouver mit METIS

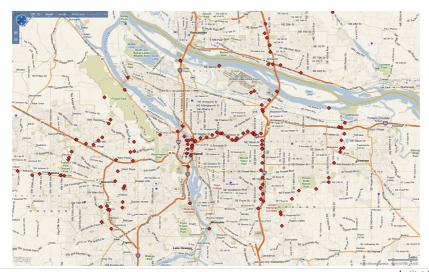
Vancouver mit PUNCH



Portland mit METIS



Portland mit PUNCH

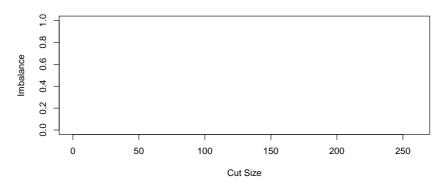


Bemerkungen

- reduziert Randknoten gegenüber METIS um mehr als Faktor 2
- Beschleunigung von Arc-Flags Vorberechnung um Faktor 2
- auch Multilevel-Partitionen berechnenbar top-down liefert beste Ergebnisse
- dabei Vorteile gegenüber METIS sogar größer
- Wie weit vom Optimum entfernt?
- Wird für die Bing Routing Engine benutzt.

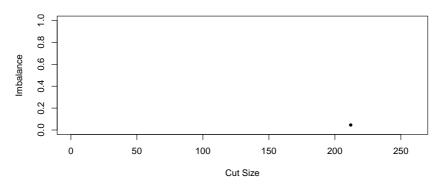
FlowCutter

"Gute" Schnitte



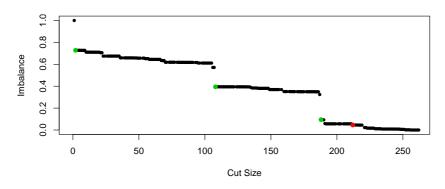
- Imbalance = $0 \rightarrow Schnitt$ perfekt balanciert
- lacktriangle Imbalance =1
 ightarrow alle Knoten auf einer Seite

"Gute" Schnitte



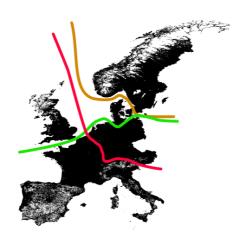
- Europa Graph mit 18 · 10⁶
- Ergebnis für maximale imbalance von 5%

"Gute" Schnitte



- Grün markierte Schnitte bieten besseren Trade-Off
- ightarrow Pareto-Front benötigt um gute Schnitte zu wählen

"Gute" Schnitte Visualisiert



FlowCutter

FlowCutter

- Heuristischer Algorithmus zum Finden balancierter st-Schnitte
- Liefert zusammenhängende Partitionen
- Findet Pareto-optimale Lösungen für Imbalance und Schnittgröße

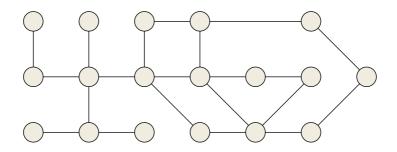
FlowCutter

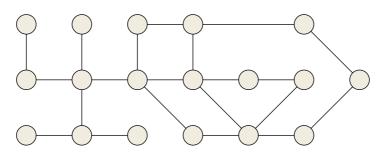
FlowCutter

- Heuristischer Algorithmus zum Finden balancierter st-Schnitte
- Liefert zusammenhängende Partitionen
- Findet Pareto-optimale Lösungen für Imbalance und Schnittgröße

Idee

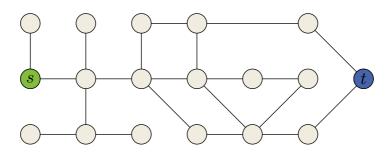
- Füge schrittweise Start- und Zielknoten hinzu um Schnitt zu ändern
 - Erweitere Start-/Zielregion bis zum Schnitt (kleinere Seite)
 - Füge einen Knoten jenseits des Schnitts hinzu
- Berechne neuen Schnitt





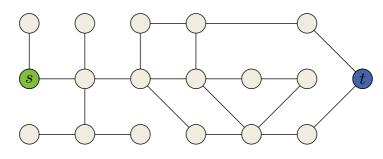
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



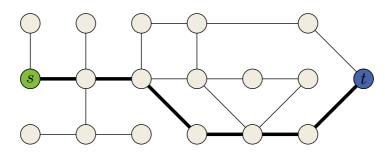
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



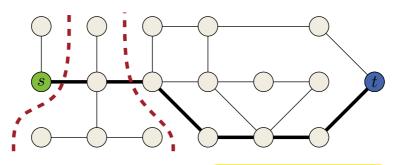
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



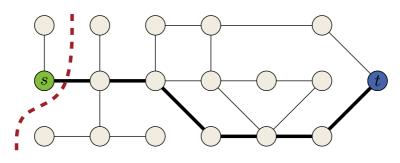
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



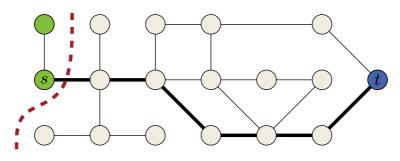
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



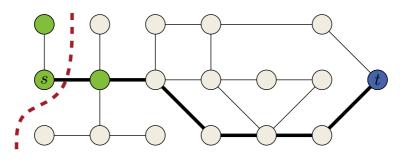
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



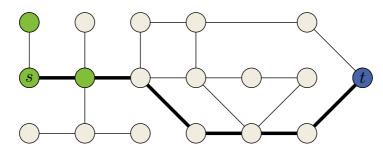
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



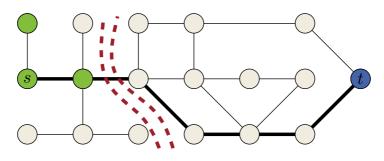
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



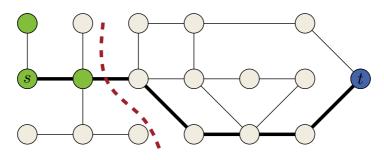
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



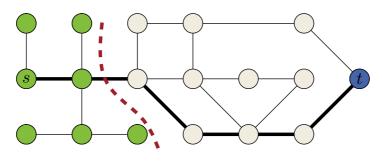
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



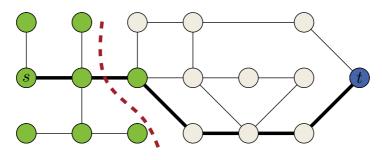
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



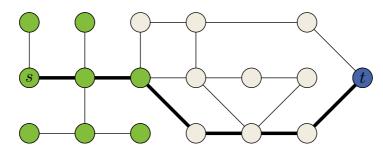
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



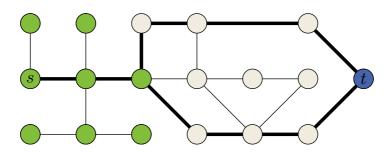
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



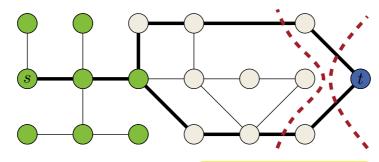
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



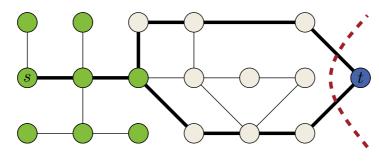
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



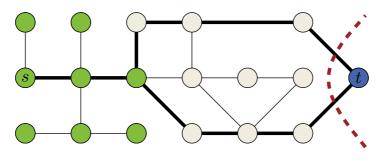
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



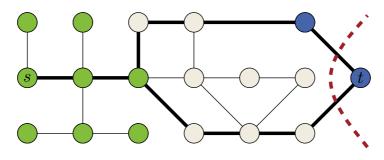
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



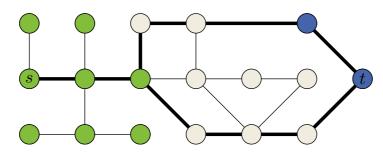
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



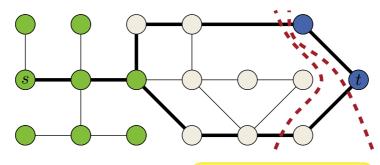
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



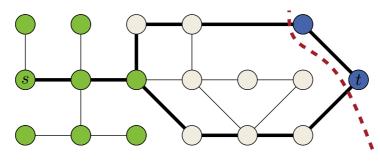
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



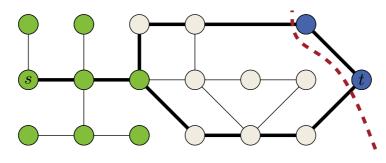
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



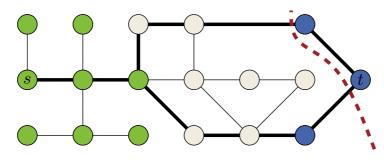
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



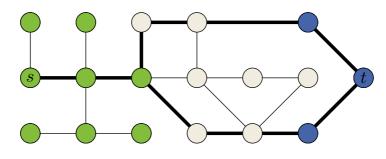
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



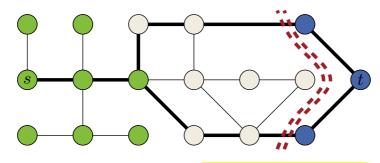
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



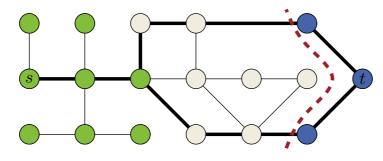
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



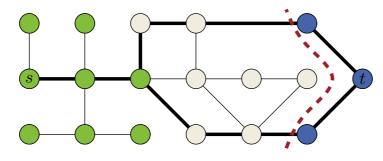
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



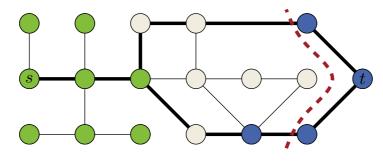
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



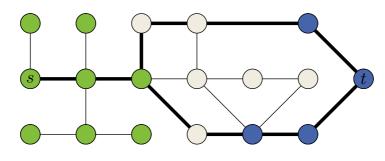
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



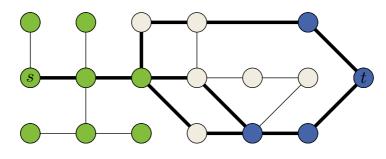
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



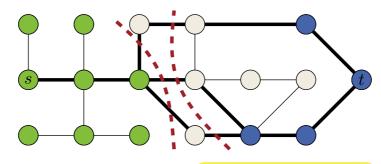
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



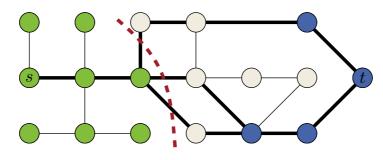
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



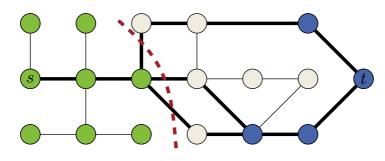
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



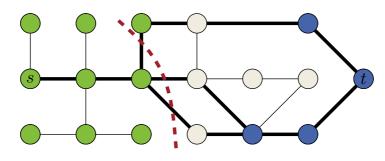
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



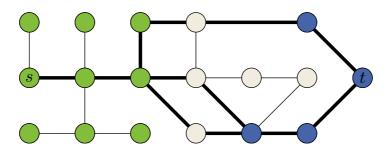
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



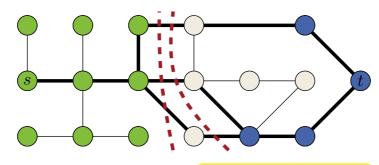
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



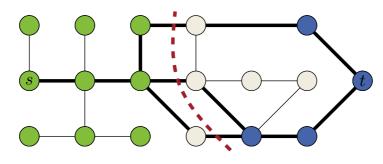
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



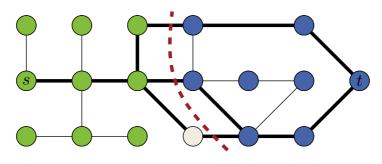
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



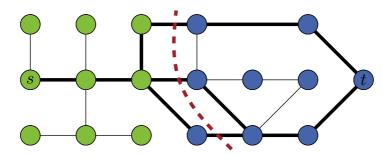
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



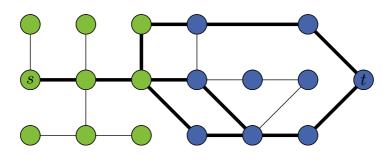
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



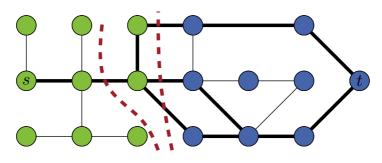
1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite



1. Erhöhe Fluss

- 2. Finde s- und t-Schnitt
- 3. Wähle kleinere Seite
- 4. Assimiliere Seite

FlowCutter - Eigenschaften

- Jeder gefundene Schnitt ist eine gültige Partitionierung
- Schnitt wird nie kleiner
- Balanciertheit wird (für gleiche Schnittgröße) nie schlechter

FlowCutter - Eigenschaften

- Jeder gefundene Schnitt ist eine gültige Partitionierung
- Schnitt wird nie kleiner
- Balanciertheit wird (für gleiche Schnittgröße) nie schlechter
- → Schritte liefern (Pareto) Verbesserungen
- → Überschreibe letztes Ergebnis, wenn Schnitt gleich groß ist

FlowCutter - Eigenschaften

- Jeder gefundene Schnitt ist eine gültige Partitionierung
- Schnitt wird nie kleiner
- Balanciertheit wird (für gleiche Schnittgröße) nie schlechter
- \rightarrow Schritte liefern (Pareto) Verbesserungen
- → Überschreibe letztes Ergebnis, wenn Schnitt gleich groß ist

Findet Pareto Optimale Menge an Schnitten (heuristisch)

Piercing Knoten Auswahl

Auswahl des Piercing Knotens:

- Optimale Wahl vermutlich NP-hart
- → Heuristisch

Orakel zur Piercing Knoten Wahl:

- Wichtigste Regel:
 - Wenn möglich, wähle Knoten, der Schnitt nicht vergrößert
- Nachgelagerte Regel:
 - Für Start-Seite: Maximiere dist(x, t) dist(s, x)
 - Für Ziel-Seite: Minimiere dist(x, t) dist(s, x)

Laufzeit Analyse

Konstanten:

- c: Größe des letzten berechneten Schnitts
- m: Anzahl an Kanten

Laufzeit Optimierung:

- Fluss wird c Mal augmentiert
- mit der richtigen Implementierung: O(m) pro Augmentierung
- \rightarrow O(cm) Laufzeit

Andere Schnitt-Szenarien

Knoten Separatoren

■ Wähle inzidente Knoten zu Schnittkanten (größere Seite)

Andere Schnitt-Szenarien

Knoten Separatoren

Wähle inzidente Knoten zu Schnittkanten (größere Seite)

Schnitt (ohne spezifische s, t)

- Wähle s und t zufällig (gleichverteilt)
- Lasse FlowCutter mehrfach laufen
- Findet (probabilistisch) Schnitte mit guter Balanciertheit

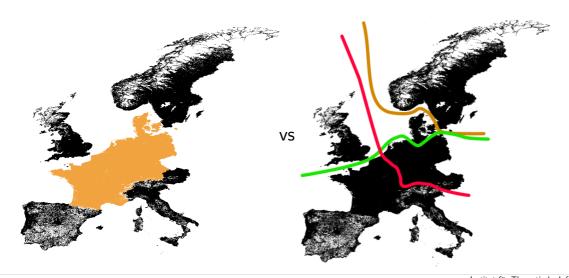
CCH Experimente

	Search Space		#Arcs		Running times		
	# N Avg.	lodes Max.	in CCH [·10 ⁶]	#Tri. [⋅10 ⁶]	Order [min]	Cust. [ms]	Query $[\mu s]$
М	1 223	1 983	69.9	1 390	2	2 242	1 162
K	639	1 224	73.9	578	\leq 3552	975	304
- 1	733	1 569	67.4	590	17	932	385
F3	734	1 159	60.3	519	42	853	366
F20	616	1 102	58.8	460	281	780	271

Europe Graph

M = Metis, K = KaHip, I = InertialFlow Fx = FlowCutter with x st-pairs

Top Level Schnitt Europa



Experimente - Pareto Balanciertheit

$\max \epsilon$	Achieved ϵ [%]							
FO/1								
[%]	F20	K	М	l				
0	0.000	0.000	0.000	0.000				
1	0.132	0.998	0.000	0.089				
3	0.132	0.457	0.000	0.008				
5	4.894	0.464	0.000	0.857				
10	9.330	0.043	0.000	0.375				
20	10.542	3.139	0.000	0.132				
30	10.542	3.139	0.017	7.384				
50	44.386	3.139	33.336	10.542				
70	66.655	3.139	41.178	44.386				
90	84.199	3.139	83.087	84.257				

- Graph von Zentraleuropa (keine Insel Spezialfälle)
- FlowCutter kommt gewünschter Balanciertheit am nähsten

Experimente - Pareto Schnitt Größe

$\max \epsilon$	Cut Size					
[%]	F20	K	М	I		
0	240	716	369	1 180		
1	220	245	360	391		
3	220	227	372	319		
5	213	227	369	276		
10	180	228	375	241		
20	162	250	375	220		
30	162	250	369	203		
50	155	250	9881	162		
70	86	250	14 375	155		
90	13	250	28	17		

- Graph von Zentraleuropa (keine Insel Spezialfälle)
- FlowCutter liefert kleinste Schnitte

Andere Graphen (keine Straße)

- Beliebter Walshaw Datensatz:
- FlowCutter liefert beste bekannte Lösungen für Imbalance = 5%
- FlowCutter liefert zusammenhängende Partitionen
- $\rightarrow \ \mathsf{Nur} \ \mathsf{solche} \ \mathsf{Graphen} \ \mathsf{wurden} \ \mathsf{betrachtet}$
- 24 Graphen

Andere Graphen (keine Straße)

- Beliebter Walshaw Datensatz:
- FlowCutter liefert beste bekannte Lösungen für Imbalance = 5%
- FlowCutter liefert zusammenhängende Partitionen
- $\rightarrow \ \mathsf{Nur} \ \mathsf{solche} \ \mathsf{Graphen} \ \mathsf{wurden} \ \mathsf{betrachtet}$
- 24 Graphen
- Bei 18 Graphen perfekte Übereinstimmung mit Referenzlösung
- Bei 3 Graphen Fehler kleiner als 5 Kanten
- Laufzeit:
 - Schnell f
 ür kleine c
 - Wenn c in Größenordnung von m liegt wird Performance schlechter

Literatur I

Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck.

Graph Partitioning with Natural Cuts.

In 25th International Parallel and Distributed Processing Symposium (IPDPS'11), pages 1135–1146. IEEE Computer Society, 2011.

Michael Hamann and Ben Strasser.

Graph Bisection with Pareto-Optimization.

In Proceedings of the 18th Meeting on Algorithm Engineering and Experiments (ALENEX'16). SIAM, 2016.

George Karypis and Gautam Kumar.

A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs.

SIAM Journal on Scientific Computing, 20(1):359–392, 1999.

Peter Sanders and Christian Schulz.

Distributed Evolutionary Graph Partitioning.

In Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALENEX'12), pages 16-29. SIAM, 2012.

Literatur II

Aaron Schild and Christian Sommer.

On Balanced Separators in Road Networks.

In Proceedings of the 14th International Symposium on Experimental Algorithms (SEA'15), Lecture Notes in Computer Science. Springer, 2015.