

Algorithmen für Planare Graphen

18. Juni 2019, Übung 5 Guido Brückner

INSTITUT FÜR THEORETISCHE INFORMATIK

Prüfungstermine

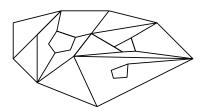
- 19. Juli keine freien Termine mehr
- 12. August
- 13. August
- 29. August keine freien Termine mehr
- 4. September keine freien Termine mehr
- 5. September
- 2. Oktober
- 9. Oktober

Sei F die Menge der Facetten und f_0 die äußere Facette von G. Bezeichne weiter $\operatorname{dist}(f)$ die Länge eines kürzesten Weges vom der Facette f entsprechenden Dualknoten zum f_0 entsprechenden Dualknoten, und $I:=\max_{f\in F}\operatorname{dist}(f)$. Für $1\leq i\leq I$ sei C_i die Vereinigung der einfachen Kreise in G so, dass $\operatorname{dist}(f)\geq i$ für alle Facetten f im Inneren und $\operatorname{dist}(f)< i$ für alle Facetten f im Äußeren eines Kreises aus C_i gilt.

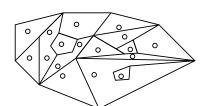
Aufgabe: Geben Sie einen Algorithmus mit linearer Laufzeit an, der zu einem gegebenen Graphen G mit fester Einbettung die Kantenmengen C_1, \ldots, C_l bestimmt.

Entfernung von Kreisen

s-t-Wege

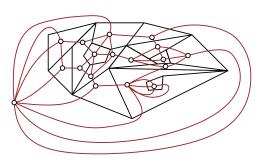


- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.

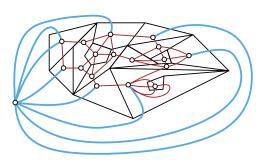


- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.

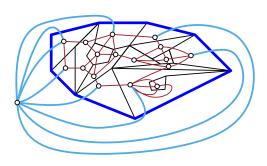
0



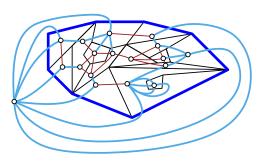
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.



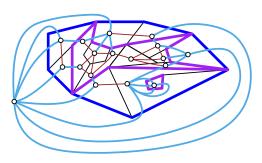
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.



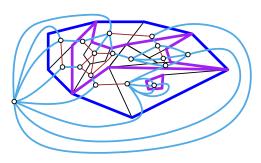
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.



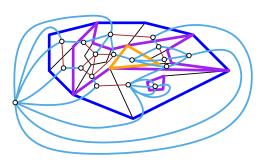
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden Ci.



- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.



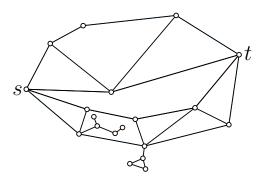
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden Ci.



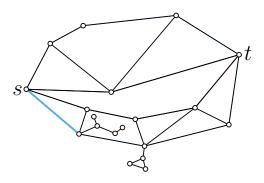
- Breitensuche ausgehend von f₀-Dualknoten.
- Level i entspricht Facetten f mit dist(f) = i.
- Dualkanten der Baumkanten + Nicht-Baumkanten die von Level i – 1 in Level i führen, bilden C_i.

Geben Sie einen einfachen Algorithmus an, der folgendes Problem in Linearzeit löst:

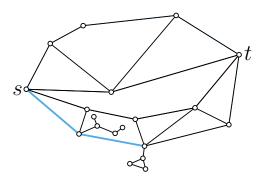
Gegeben ein planarer Graph G mit fester Einbettung und ausgezeichneten Knoten s und t, die an der äußeren Facette liegen, bestimme eine maximale Anzahl von paarweise kantendisjunkten s-t-Wegen in G.



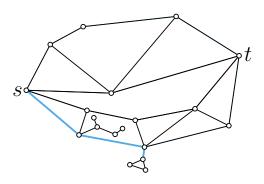
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



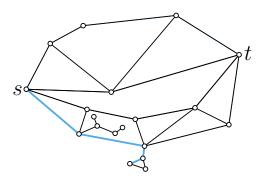
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



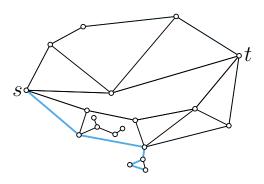
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



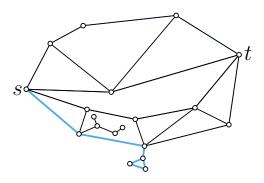
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



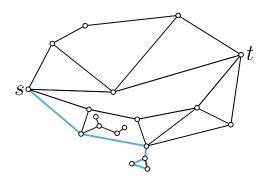
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



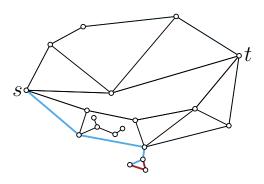
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



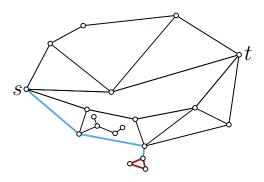
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



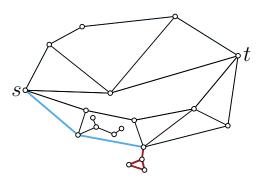
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



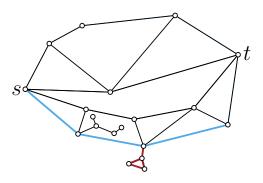
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



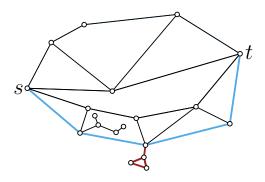
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



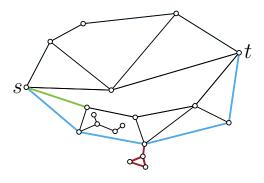
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



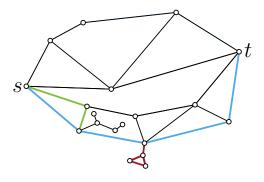
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



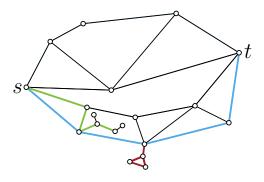
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



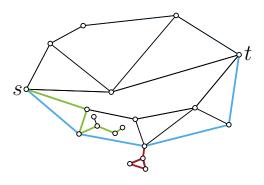
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



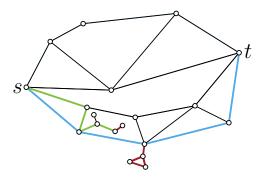
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



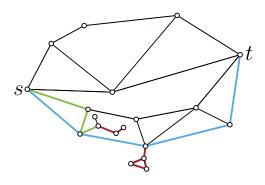
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



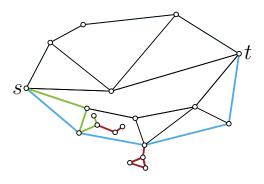
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



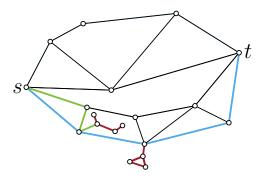
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



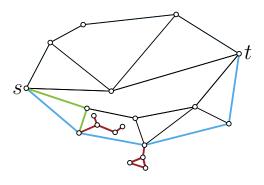
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



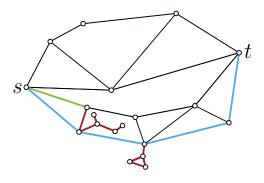
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



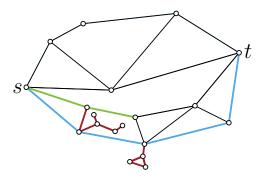
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



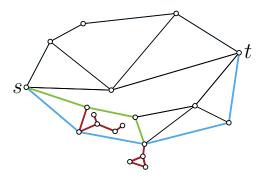
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



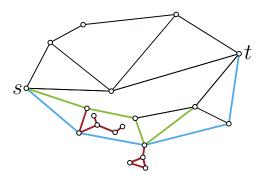
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



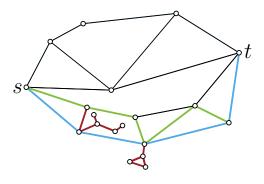
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



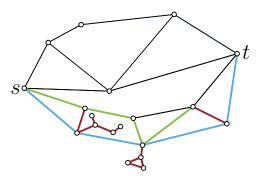
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



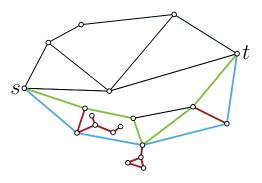
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



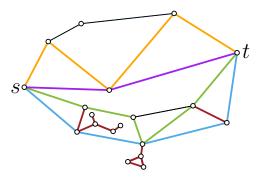
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.

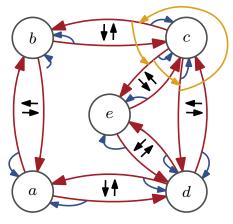


- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.



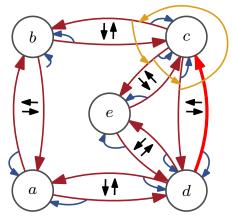
- Right-First-DFS ausgehend von s.
- Besuchte Kanten aus G löschen.
- Bei Erreichen von t ist ein neuer Pfad gefunden.
- Wiederhole.

Kanten löschen

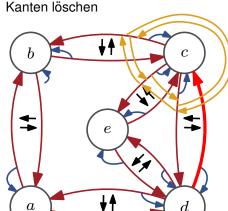


- Liste gerichteter Kanten entgegen dem Uhrzeigersinn
- Liste gerichteter Kanten im Uhrzeigersinn
 - Beide Richtungen der Kante aus der doppelt verketteten Liste löschen.
 - **■** $\mathcal{O}(1)$

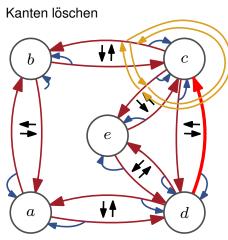
Kanten löschen



- Liste gerichteter Kanten entgegen dem Uhrzeigersinn
- Liste gerichteter Kanten im Uhrzeigersinn
 - Beide Richtungen der Kante aus der doppelt verketteten Liste löschen.
 - **■** $\mathcal{O}(1)$



- Liste gerichteter Kanten entgegen dem Uhrzeigersinn
- - Beide Richtungen der Kante aus der doppelt verketteten Liste löschen.
 - **■** $\mathcal{O}(1)$



- Liste gerichteter Kanten entgegen dem Uhrzeigersinn
- Liste gerichteter Kanten im Uhrzeigersinn
 - Beide Richtungen der Kante aus der doppelt verketteten Liste löschen.
 - **■** $\mathcal{O}(1)$

- Sei *G* ein Graph mit *n* Knoten und *m* Kanten.
- Der k-Core von G ist der maximale Subgraph in dem jeder Knoten mindestens Grad k hat.
- Die Core-Zerlegung weist jedem Knoten das maximale k zu für welches er im k-Core liegt.
- Die Entartetheit D(G) ist das größte k für welches G einen nicht-leeren k-Core hat.
- $\mathcal{N}(v)$: Nachbarschaft von v in G.

3.1 - k-Core

■ Geben Sie einen Algorithmus an, der die Core-Zerlegung in $\mathcal{O}(n+m)$ berechnet.

3.2 - k-Core

Algorithm CORE DECOMPOSITION

$$\delta(v) \leftarrow \text{Grad von Knoten } v$$

 $\Delta \leftarrow \max\{\delta(v) \mid v \in V\}$

Sortiere die Knoten nach $\delta(v)$ in *Buckets* b_0, \ldots, b_{Δ}

$$D(G) \leftarrow max\{CORE[v] \mid v \in V\}$$

Aufgabe

Geben Sie einen Algorithmus an der die Anzahl Dreicke in G in $\mathcal{O}((n+m)\cdot D(G))$ berechnet.

Hinweis: Modifizieren Sie den Algorithmus von Übungsblatt 4.

- Dreiecke im gesamten Graphen, nicht pro Knoten
- $\mathcal{N}(v)$ Nachbarschaft von v
- $lackbox{} \mathcal{N}^+(v)$ Nachbarn von v über orientierte Kanten (v,u)
- $\widetilde{\mathcal{N}}(v)$ Nachbarschaft von v über noch nicht orientierte Kanten

Aufgabe

Geben Sie einen Algorithmus an der die Anzahl Dreicke in G in $\mathcal{O}((n+m)\cdot D(G))$ berechnet.

Hinweis: Modifizieren Sie den Algorithmus von Übungsblatt 4.

- Dreiecke im gesamten Graphen, nicht pro Knoten
- N(v) Nachbarschaft von v
- $lackbox{ }\mathcal{N}^+(v)$ Nachbarn von v über orientierte Kanten (v,u)
- ullet $\widetilde{\mathcal{N}}(v)$ Nachbarschaft von v über noch nicht orientierte Kanten

Algorithm KANTEN-ORIENTIERUNG

Sei v_1, \ldots, v_n die Knotenreihenfolge in der sie bei der Core-Zerlegung gelöscht wurden

 $\begin{aligned} &\text{for } \{v_i,v_j\} \in E \text{ do} \\ &\text{if } j>i \text{ then} \\ &\text{Orientiere } \{v_i,v_j\} \to (v_i,v_j) \\ &\text{else} \end{aligned}$

Orientiere $\{v_i, v_j\} \rightarrow (v_j, v_i)$

$$\Rightarrow \forall v \in V : |\mathcal{N}^+(v)| \leq D(G)$$

Algorithm KANTEN-ORIENTIERUNG

Sei v_1, \ldots, v_n die Knotenreihenfolge in der sie bei der Core-Zerlegung gelöscht wurden

for $\{v_i, v_j\} \in E$ do

if j > i then

Orientiere $\{v_i, v_j\} \rightarrow (v_i, v_j)$

else

Orientiere $\{v_i, v_j\} \rightarrow (v_j, v_i)$

$$\Rightarrow \forall v \in V : |\mathcal{N}^+(v)| \leq D(G)$$

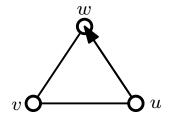
Algorithm DREIECKE

KANTEN-ORIENTIERUNG()

$$D = 0$$

for $w \in \mathcal{N}^+(u)$ do if ADJAZENT(v,w) then D=D+1

return D/2



INIT_ADJAZENZ()

Initialisiere Array

SET_ADJAZENZ(v)

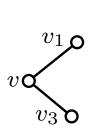
• Setze Bits in $\mathcal{N}(v)$

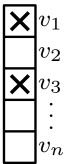
UNSET_ADJAZENZ(v)

• Entferne Bits in $\mathcal{N}(v)$

$\mathsf{ADJAZENT}(v, w)$

Ist Bit an Stelle w gesetzt?





Algorithm DREIECKE

KANTEN-ORIENTIERUNG()

INIT_ADJAZENZ()

$$D = 0$$

for $v \in V$ do

 $SET_ADJAZENZ(v)$

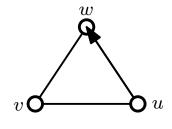
for $u \in \mathcal{N}(v)$ do

for $w \in \mathcal{N}^+(u)$ do if ADJAZENT(v, w) then

D = D + 1

UNSET_ADJAZENZ(v)

return $\frac{D}{3}$



3.3 - Entartetheit von planaren Graphen

Zeigen Sie, dass für planare Graphen $GD(G) \leq 5$ gilt.

- In planaren Graphen gibt es mindestens einen Knoten v mit $\delta(v) \leq 5$.
- G v ist wieder planar.

3.3 – Entartetheit von planaren Graphen

Zeigen Sie, dass für planare Graphen $GD(G) \leq 5$ gilt.

- In planaren Graphen gibt es mindestens einen Knoten v mit $\delta(v) < 5$.
- \bullet G v ist wieder planar.