3 Färbung planarer Graphen

In der Einführung haben wir bereits das Färbungsproblem angesprochen. In diesem Kapitel werden wir beweisen, dass jeder planare Graph mit fünf Farben gefärbt werden kann. Tatsächlich ist jeder planare Graph sogar vierfärbbar. Der Beweis des Vierfarbensatzes ist allerdings zu aufwendig, um ihn in der Vorlesung zu behandeln.

Knotenfärbungsproblem

Gegeben sei ein Graph G = (V, E). Färbe die Knoten aus V mit möglichst wenigen Farben so ein, dass benachbarte Knoten verschiedene Farben haben.

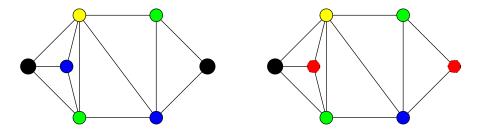


Abbildung 3.1: Beispiele von Knotenfärbungen

Bezeichne $\chi(G)$ die minimale Anzahl an Farben, die benötigt wird um G zulässig zu färben ($\chi(G)$ heißt auch "chromatische Zahl" von G) und $\mathfrak{cl}(G)$ die Cliquenzahl von G, d.h das maximale $\mathfrak{t} \leq |V|$, so dass G einen $K_\mathfrak{t}$ als knoteninduzierten Subgraphen enthält. Offensichtlich ist $\chi(G) \geq \mathfrak{cl}(G)$.

Satz 3.1. Jeder planare Graph kann mit fünf Farben zulässig gefärbt werden.

Beweis. Wir führen eine Induktion über die Anzahl der Knoten n. Für $n \leq 5$ gilt die Behauptung trivialerweise. Sei also jeder planare Graph mit höchstens n-1 Knoten fünffärbbar, und G habe n Knoten. G enthält mindestens einen Knoten ν mit $d(\nu) \leq 5$.

Fall 1: Es existiert ein Knoten ν mit $d(\nu) \leq 4$. Betrachte Einbettung von G, mit ν, w_1, \ldots, w_4 wie folgt:

Entferne ν und die entsprechenden Kanten $\{\nu, w_i\}$ aus G. Dann entsteht der Graph $G - \nu$ mit n-1 Knoten, der per Induktionsannahme fünffärbbar ist. Eine Fünffärbung von $G - \nu$ induziert dann eine Fünffärbung von G, wobei ν gerade mit der Farbe gefärbt wird, die für keinen der w_i benutzt wurde.

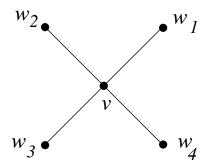


Abbildung 3.2: Illustration von Fall 1.

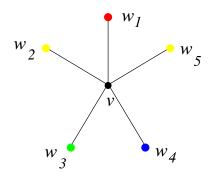


Abbildung 3.3: Illustration zu Fall 2.

Fall 2: Der minimale Grad in G ist fünf und ν sei ein Knoten mit $d(\nu) = 5$. Betrachte wieder eine Einbettung von G wie in Abbildung 3.3.

Entferne ν und die entsprechenden Kanten $\{\nu, w_i\}$ und färbe wieder G induktiv basierend auf einer Fünffärbung von $G - \nu$.

Fall 2.1: Falls für w_1, \ldots, w_5 nicht alle fünf Farben bei einer Fünffärbung von $G-\nu$ verwendet werden, kann G wie in Fall 1 gefärbt werden.

Fall 2.2: Jedes w_i hat eine eigene Farbe i, $1 \le i \le 5$. Betrachte den Subgraph H von G - v, der durch die Knoten mit Farben 1 und 4 induziert wird.

Falls w_1 und w_4 in H in verschiedenen Zusammenhangskomponenten H_1 bzw. H_4 liegen, so vertausche in H_1 die Farben 1 und 4 und färbe ν in G mit Farbe 1.

Falls w_1 und w_4 in H verbunden sind, betrachte analog w_2 und w_5 und den durch Farben 2 und 5 induzierten Subgraph H'. Wegen der Planarität von G sind w_2 und w_5 in H' nicht verbunden. Durch Vertauschen der Farben 2 und 5 in der Zusammenhangskomponente von w_2 in H' und Färben von v mit Farbe 2 erhält man dann wieder eine Fünffärbung von G.

Dieser Beweis induziert einen einfachen Algorithmus um planare Graphen mit fünf Farben zu färben.

Fünffärbungsalgorithmus

Schritt 1: Sortiere die Knoten in der Reihenfolge ν_1, \ldots, ν_n , so dass $d_{G_i}(\nu_i) \leq 5$, wobei $G_1 := G$ und $G_i := G - \{\nu_1, \ldots, \nu_{i-1}\}$ für $i \geq 2$.

Schritt 2: Färbe dann zunächst G_n , dann G_{n-1} usw. wie im Beweis von Satz 3.1.

Versuch einer Vierfärbung mittels der gleichen Technik wie in Satz 3.1.

Ist diese Vorgehensweise anwendbar um zu einer Vierfärbung eines planaren Graphen zu kommen? Betrachte einen maximal planaren Graphen G = (V, E). Existiert ein $v \in V$, mit $d(v) \leq 3$, so kann wie in Fall 1 vorgegangen werden. Falls ein $v \in V$, mit d(v) = 4 existiert, so kann aus einer Vierfärbung von G - v eine Vierfärbung von G analog zum Beweis von Satz 3.1, Fall 2 konstruiert werden. Sei also der minimale Grad eines Knoten 5 und $v \in V$ mit d(v) = 5. Angenommen alle vier Farben rot, blau, gelb, $gr\ddot{u}n$ würden für die Vierfärbung von w_1, \ldots, w_5 verwendet. Seien o.b.d.A. die Knoten w_2 und w_5 mit der Farbe gelb gefärbt, w_1 rot, w_3 $gr\ddot{u}n$ und w_4 blau und sei H der Subgraph, der durch v_3 rot und v_4 v_5 mit der Farbe v_6 gelb gefärbt, v_7 v_7 v_8 v_8 v_8 v_9 v_9 v

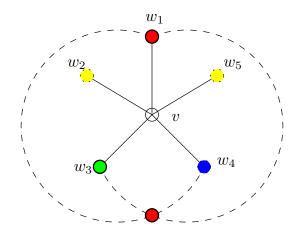


Abbildung 3.4: Illustration zur Vierfärbung.

Seien also w_1 und w_4 und w_1 und w_3 jeweils in dem rot-blauen bzw. rot-grünen Subgraphen verbunden. Dann sind w_2 und w_5 aber weder in dem gelb-blauen noch in dem gelb-grunen Subgraphen verbunden. Die gelb-grüne Komponente H_5 , die w_5 enthält, enthält nicht w_2 und w_3 , und die gelb-blaue Komponente H_2 , die w_2 enthält, enthält nicht w_4 und w_5 .

3 Färbung planarer Graphen

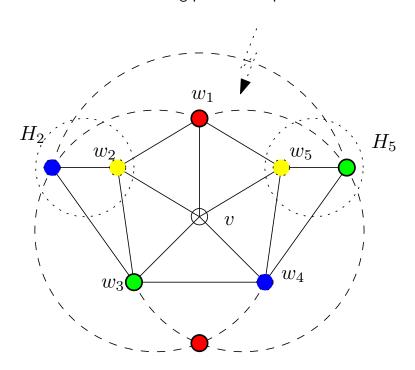


Abbildung 3.5: Gegenbeispiel zur Vierfärbung

Vertausche also in H_5 gelb mit grün und in H_2 gelb mit blau. Dann kann gelb für ν verwendet werden. Dies kann jedoch zu einer unzulässigen Knotenfärbung führen, siehe Abbildung 3.5.