Planar Separator Theorem A Geometric Approach

based on

A Framework for ETH-Tight Algorithms and Lower Bounds in Geometric Intersection Graphs

by

Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx and Tom C. van der Zanden

- represent vertices as *unit disks*, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent

- represent vertices as *unit disks*, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent
- some unit disk graphs are planar

- represent vertices as *unit disks*, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent
- some unit disk graphs are planar
- some planar graphs are not unit disk graphs

Small Balanced Separators

Let G = (V, E) be a graph. $H \subseteq V$ is

- a separator if there is a partition H, V_1, V_2 of V so that no edge in E has one endpoint in V_1 and one endpoint in V_2 ,
- small if $|H| \in O(\sqrt{n})$,
- balanced if $|V_1|, |V_2| \leq \beta n$ for some constant β

Small Balanced Geometric Separators

Separator Candidates

- choose H_0 as smallest square that contains $\ge n/37$ disks
- resize disk representation so that H_0 has diameter 1
- all disks now have diameter α H_0

Separator Candidates

H_i Is Balanced

Bound number of disks strictly outside H_i : $|H_i^{out}| = n - |H_i^{\cap}| - |H_i^{in}| \le n - |H_i^{in}| \le n - \frac{1}{37}n = \frac{36}{37}n$

 H_i contains H_0 and H_0 contains $\ge n/37$ disks

H_i Is Balanced

Bound number of disks strictly outside H_i : $|H_i^{\text{out}}| = n - |H_i^{\cap}| - |H_i^{\text{in}}| \le n - |H_i^{\text{in}}| \le n - \frac{1}{37}n = \frac{36}{37}n$

Bound number of disks strictly inside H_i for $\alpha < 1/4$:

- H_0 is *smallest* square that contains $\geq \frac{1}{37}n$ disks
- subdivide H_i into $6^2 = 36$ subsquares with edge length $\leq 1/2$
- every subsquare H_{sub} of H_i touches < 1/37n disks

•
$$|H_i^{\text{in}}| \leq 36 \cdot \frac{1}{37}n$$

H_i Is Balanced

Bound number of disks strictly outside H_i : $|H_i^{out}| = n - |H_i^{\cap}| - |H_i^{in}| \le n - |H_i^{in}| \le n - \frac{1}{37}n = \frac{36}{37}n$

Bound number of disks strictly inside H_i for $\alpha < 1/4$:

- H_0 is *smallest* square that contains $\geq \frac{1}{37}n$ disks
- subdivide H_i into $6^2 = 36$ subsquares with edge length $\leq 1/2$
- every subsquare H_{sub} of H_i touches < 1/37n disks
 |H_iⁱⁿ| ≤ 36 ⋅ 1/37n

Suppose $\alpha \ge \frac{1}{\sqrt{n}}$. H_m (and therefore each H_i) contains at most

4
$$\cdot \frac{3^2}{\pi(\alpha/2)^2} \in O(\frac{1}{\alpha^2})$$
 disks. *G* is planar, i.e., *K*₅-free

Each disk contributes to at most $1 + \frac{\alpha}{1/\sqrt{n}}$ separators, which bounds the sum of all contributions by

$$O(\frac{1}{\alpha^2}) \cdot (1 + \frac{\alpha}{1/\sqrt{n}}) = O(\frac{1}{\alpha^2} + \frac{\sqrt{n}}{\alpha}) = O(n+n) = O(n)$$

Because we have \sqrt{n} separator candidates, at least one of these candidates has size $O(\sqrt{n})$.

 \leq 36/37*n* disks strictly inside *H* and \leq 36/37*n* disks strictly

outside H, i.e., H is a small balanced separator.

(Non-Unit) Disk Graphs

- represent vertices as *disks with arbitrary diameter*
- disks intersect iff corresponding vertices are adjacent

Circle Packing Theorem: The intersection graphs of non-crossing circles are exactly the planar graphs. [Koebe 1936]

For $s = 1, 2, \ldots$ define *size class*

$$D_s = \{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text{diameter of } d < \frac{2^s}{\sqrt{n}}\}.$$

• Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.

Disks with diameter $< \frac{1}{\sqrt{n}}$ contribute to at most one separator.

For s = 1, 2, ... define *size class*

$$D_s = \{d: rac{2^{s-1}}{\sqrt{n}} \leq ext{diameter of } d < rac{2^s}{\sqrt{n}} \}.$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- *H_m* contains at most

$$4 \cdot \frac{3^2}{\pi \left(\frac{\frac{2^{s-1}}{\sqrt{n}}}{2}\right)^2} \in O\left(\frac{n}{2^{2s}}\right)$$

G is planar, i.e., K_5 -free upper bound on area of H_i

lower bound on area of disk in D_s

disks in D_s .

For $s = 1, 2, \ldots$ define size class

$$D_s = \{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text{diameter of } d < \frac{2^s}{\sqrt{n}}\}.$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- H_m contains at most $O(\frac{n}{2^{2s}})$ disks in D_s .
- One disk in D_s contributes to at most

$$1 + \frac{\frac{2^s}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} \in O(2^s)$$

upper bound on diameter of disk in D_s

distance between consecutive separators

separators.

For $s = 1, 2, \ldots$ define *size class*

$$D_s = \{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text{diameter of } d < \frac{2^s}{\sqrt{n}}\}.$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- H_m contains at most $O(\frac{n}{2^{2s}})$ disks in D_s .
- One disk in D_s contributes to at most $O(2^s)$ separators.

Bound the number of contributions:

$$\sum_{s=1,2,...} O(\frac{n}{2^{2s}}) \cdot O(2^{s}) = O(n \cdot \sum_{s=1,2,...} \frac{1}{2^{s}}) = O(n)$$