Planar Separator Theorem

A Geometric Approach

based on

A Framework for ETH-Tight Algorithms and Lower Bounds in Geometric Intersection Graphs
by

Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx and Tom C. van der Zanden

Unit Disk Graphs

- represent vertices as unit disks, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent

Unit Disk Graphs

- represent vertices as unit disks, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent
- some unit disk graphs are planar

Unit Disk Graphs

- represent vertices as unit disks, i.e., disks with diameter 1
- disks intersect iff corresponding vertices are adjacent
- some unit disk graphs are planar
- some planar graphs are not unit disk graphs

Geometric Separators

Geometric Separators

Geometric Separators

Geometric Separators

Observation: Disks intersecting the boundary of H separate disks strictly inside H from disks strictly outside H.

Small Balanced Separators

Let $G=(V, E)$ be a graph. $H \subseteq V$ is

- a separator if there is a partition H, V_{1}, V_{2} of V so that no edge in E has one endpoint in V_{1} and one endpoint in V_{2},
- small if $|H| \in O(\sqrt{n})$,
- balanced if $\left|V_{1}\right|,\left|V_{2}\right| \leq \beta n$ for some constant β

Small Balanced Geometric Separators

Claim: There exists an H intersecting $O(\sqrt{n})$ disks with
$\leq 36 / 37 n$ disks strictly inside H and $\leq 36 / 37 n$ disks strictly outside H, i.e., H is a small balanced separator.

Separator Candidates

- choose H_{0} as smallest square that contains $\geq n / 37$ disks
- resize disk representation so that H_{0} has diameter 1
- all disks now have diameter $\alpha \quad H_{0}$

Separator Candidates

- choose H_{0} as smallest square that contains $\geq n / 37$ disks

- resize disk representation so that H_{0} has diameter 1
- all disks now have diameter $\alpha \quad H_{0}$

H_{i} Is Balanced

Bound number of disks strictly outside H_{i} :

$$
\left|H_{i}^{\text {out }}\right|=n-\left|H_{i}^{\cap}\right|-\left|H_{i}^{\text {in }}\right| \leq n-\left|H_{i}^{\text {in }}\right| \leq n-\frac{1}{37} n=\frac{36}{37} n
$$

H_{i} contains H_{0} and H_{0} contains $\geq n / 37$ disks

H_{i} Is Balanced

Bound number of disks strictly outside H_{i} :

$$
\left|H_{i}^{\text {out }}\right|=n-\left|H_{i}^{\cap}\right|-\left|H_{i}^{\text {in }}\right| \leq n-\left|H_{i}^{\text {in }}\right| \leq n-\frac{1}{37} n=\frac{36}{37} n
$$

Bound number of disks strictly inside $H_{\text {i }}$ for $\alpha<1 / 4$:

- H_{0} is smallest square that contains $\geq \frac{1}{37} n$ disks
- subdivide H_{i} into $6^{2}=36$ subsquares with edge length $\leq 1 / 2$
- every subsquare $H_{\text {sub }}$ of H_{i} touches $<1 / 37 n$ disks
- $\left|H_{i}^{\text {in }}\right| \leq 36 \cdot \frac{1}{37} n$

H_{i} Is Balanced

Bound number of disks strictly outside H_{i} :

$$
\left|H_{i}^{\text {out }}\right|=n-\left|H_{i}^{\cap}\right|-\left|H_{i}^{\text {in }}\right| \leq n-\left|H_{i}^{\text {in }}\right| \leq n-\frac{1}{37} n=\frac{36}{37} n
$$

disks that touch $H_{\text {sub }}$ are contained inside the dashed square with edge length <1

Bound number of disks strictly inside H_{i} for $\alpha<1 / 4$:

- H_{0} is smallest square that contains $\geq \frac{1}{37} n$ disks
- subdivide H_{i} into $6^{2}=36$ subsquares with edge length $\leq 1 / 2$
every subsquare $H_{\text {sub }}$ of H_{i} touches $<1 / 37 n$ disks
- $\left|H_{i}^{\text {in }}\right| \leq 36 \cdot \frac{1}{37} n$

At Least One H_{i} Is Small

At Least One H_{i} Is Small

- if $\alpha<\frac{1}{\sqrt{n}}$ each disk contributes to at most one

At Least One H_{i} Is Small

- if $\alpha<\frac{1}{\sqrt{n}}$ each disk contributes to at most one \qquad separator
- n contributions across \sqrt{n} separators $\Rightarrow \exists H_{i}$ with at most \sqrt{n} contributions

At Least One H_{i} Is Small

Suppose $\alpha \geq \frac{1}{\sqrt{n}} . H_{m}$ (and therefore each H_{i}) contains at most

$$
4 \cdot \frac{3^{2}}{\pi(\alpha / 2)^{2}} \in O\left(\frac{1}{\alpha^{2}}\right) \text { disks. } \quad G \text { is planar, i.e., } K_{5} \text {-free }
$$

Each disk contributes to at most $1+\frac{\alpha}{1 / \sqrt{n}}$ separators, which bounds the sum of all contributions by

$$
O\left(\frac{1}{\alpha^{2}}\right) \cdot\left(1+\frac{\alpha}{1 / \sqrt{n}}\right)=O\left(\frac{1}{\alpha^{2}}+\frac{\sqrt{n}}{\alpha}\right)=O(n+n)=O(n)
$$

Because we have \sqrt{n} separator candidates, at least one of these candidates has size $O(\sqrt{n})$.

Unit Disk Graphs

Theorem: There exists an H intersecting $O(\sqrt{n})$ disks with $\leq 36 / 37 n$ disks strictly inside H and $\leq 36 / 37 n$ disks strictly outside H, i.e., H is a small balanced separator.

(Non-Unit) Disk Graphs

- represent vertices as disks with arbitrary diameter
- disks intersect iff corresponding vertices are adjacent

Circle Packing Theorem: The intersection graphs of non-crossing circles are exactly the planar graphs.

At Least One H_{i} Is Small

For $s=1,2, \ldots$ define size class

$$
D_{s}=\left\{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text { diameter of } d<\frac{2^{s}}{\sqrt{n}}\right\} .
$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.

Disks with diameter $<\frac{1}{\sqrt{n}}$ contribute to at most one separator.

At Least One H_{i} Is Small

For $s=1,2, \ldots$ define size class

$$
D_{s}=\left\{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text { diameter of } d<\frac{2^{s}}{\sqrt{n}}\right\} .
$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- H_{m} contains at most

$$
4 \cdot \frac{3^{2}}{\pi\left(\frac{2^{s-1}}{\sqrt{n}}\right)^{2}} \in O\left(\frac{n}{2^{2 s}}\right) \frac{G \text { is planar, i.e., } K_{5} \text {-free }}{\text { upper bound on area of } H_{i}} \begin{aligned}
& \text { lower bound on area of disk in } D_{s}
\end{aligned}
$$

disks in D_{s}.

At Least One H_{i} Is Small

For $s=1,2, \ldots$ define size class

$$
D_{s}=\left\{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text { diameter of } d<\frac{2^{s}}{\sqrt{n}}\right\} .
$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- H_{m} contains at most $O\left(\frac{n}{2^{2 s}}\right)$ disks in D_{s}.
- One disk in D_{s} contributes to at most

$$
1+\frac{\frac{2^{s}}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} \in O\left(2^{s}\right) \quad \begin{aligned}
& \text { upper bound on diameter of disk in } D_{s} \\
& \text { distance between consecutive separators }
\end{aligned}
$$

separators.

At Least One H_{i} Is Small

For $s=1,2, \ldots$ define size class

$$
D_{s}=\left\{d: \frac{2^{s-1}}{\sqrt{n}} \leq \text { diameter of } d<\frac{2^{s}}{\sqrt{n}}\right\} .
$$

- Disks with diameter $\geq \frac{1}{\sqrt{n}}$ are partitioned into size classes.
- H_{m} contains at most $O\left(\frac{n}{2^{2 s}}\right)$ disks in D_{s}.
- One disk in D_{s} contributes to at most $O\left(2^{s}\right)$ separators.

Bound the number of contributions:

$$
\sum_{s=1,2, \ldots} O\left(\frac{n}{2^{2 s}}\right) \cdot O\left(2^{s}\right)=O\left(n \cdot \sum_{s=1,2, \ldots} \frac{1}{2^{s}}\right)=O(n)
$$

