Eingabe: chordaler Graph G = (V, E).

Ausgabe : Clique C und Knotenfärbung ϕ .

- 1 Bestimme mit LexBFS ein PES σ von G;
- 2 $C \leftarrow \emptyset, \ \phi \leftarrow 0;$
- 3 für $i \leftarrow n$ bis 1 tue
- 4 $v \leftarrow \sigma(i)$;
- 5 $X_v \leftarrow \mathrm{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\};$
- 6 $| \phi(v) \leftarrow \min(\mathbb{N} \{\phi(w) \mid w \in X_v\});$
- 7 | Wenn $|C| < |X_v + \{v\}|$, dann
- **8** | $C \leftarrow X_v + \{v\};$
- 9 | Ende
- 10 Ende
- 11 **Gebe** aus ϕ und C;

Algorithmus 5: Bestimmung von $\omega(G)$ und $\chi(G)$

Eingabe: chordaler Graph G = (V, E).

Ausgabe : Unabhg. Menge U und Cliquenüberd. ψ .

- 1 Bestimme mit LexBFS ein PES σ von G;
- 2 $U \leftarrow \emptyset$, $\psi \leftarrow 0$;
- 3 für $i \leftarrow 1$ bis n tue

4 |
$$v \leftarrow \sigma(i)$$
, $X_v \leftarrow \mathrm{Adj}(v) \cap \{\sigma(i+1), \ldots, \sigma(n)\}$;

5 | Wenn $\psi(v)=0$, dann

6
$$U \leftarrow U + \{v\};$$

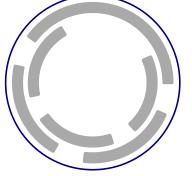
7 | für $w \in X_v + \{v\}$ tue

$$| \psi(w) \leftarrow |U|;$$

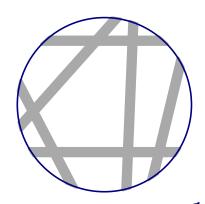
Ende

- 11 Ende
- 12 **Gebe** aus ψ und U;

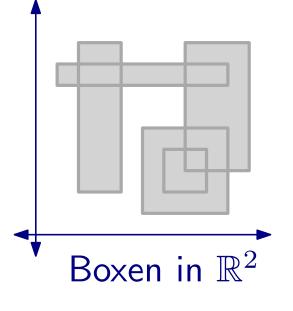
Algorithmus 6: Bestimmung von $\alpha(G)$ und k(G)

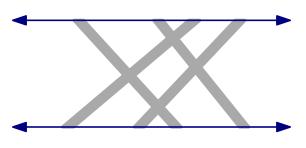


Kreisbögen in S^1 (Kreisbogengraphen)

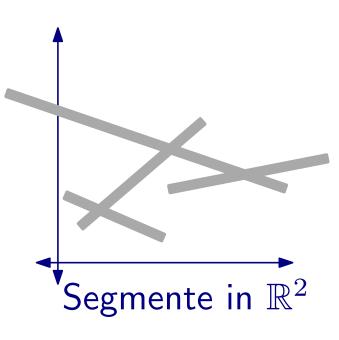


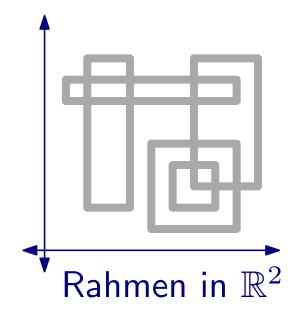
Sehnen in S^1 (Kreissehnengraphen)





Sehnen in $\mathbb{R} \times \{0,1\}$ (Permutationsgraphen)





Proposition 3.13.

 $T \text{ Baum} \Rightarrow \{T_i \subseteq T \mid T_i \text{ Baum}\}_{i \in I} \text{ erfüllt Helly Eigenschaft.}$

Satz 3.14.

Für jeden Graphen G = (V, E) sind äquivalent:

- (i) G ist chordal
- (ii) \exists Baum $T=(V_T,E_T)$, $\{T_v\subseteq T\mid v\in V,T_v \text{ Baum}\}$ so dass $vw\in E \Leftrightarrow T_v\cap T_w\neq \emptyset$
- (iii) \exists Baum $T=(V_T,E_T)$ so dass $V_T=\{X\subseteq V\mid X \text{ maximale Clique in }G\} \text{ und}$ $\forall v\in V \quad K_v=\{X\in V_T\mid v\in X\} \text{ induziert Baum}$