Sascha Gritzbach, Torsten Ueckerdt

Übungsblatt 6

Besprechung in der Übung am 16. Juli 2019

Aufgabe 1: Berechnung der Höhenfunktion

Sei G = (V, F) ein gerichteter, azyklischer Graph. Die Höhenfunktion h ist definiert als h(v) = 0, falls v eine Senke ist, und $h(v) = 1 + \max\{h(w) \mid vw \in F\}$ andernfalls. Geben Sie einen Algorithmus an, der h(v) für alle Knoten v in linearer Zeit berechnet.

Aufgabe 2: Farbklassen in Kompositionsgraphen

Seien G_0, G_1, \ldots, G_n Graphen, sodass G_0 gerade n Knoten v_1, \ldots, v_n hat. Der Kompositionsgraph $G = G_0[G_1, \ldots, G_n]$ ist definiert als die Vereinigung der Graphen G_1, \ldots, G_n , wobei ein Knoten aus G_i genau dann zu einem Knoten aus G_j adjazent ist, wenn v_i und v_j in G_0 adjazent sind. Der Graph G_0 heißt $\ddot{a}u\beta$ erer Faktor; die Graphen G_1, \ldots, G_n sind innere Faktoren.

Sei $G = G_0[G_1, \ldots, G_n]$ ein Kompositionsgraph und sei \hat{A} eine Farbklasse von G. Zeigen Sie, dass \hat{A} entweder vollständig innerhalb eines inneren Faktors G_1, \ldots, G_n liegt oder ausschließlich äußere Kanten enthält (also Kanten, die Knoten aus unterschiedlichen inneren Faktoren verbinden).

Aufgabe 3: Module

**

Sei G = (V, E) ein Graph. Eine Knotenmenge $V' \subseteq V$ heißt *Modul*, wenn jeder Knoten $x \in V - V'$ entweder zu allen oder zu keinem Knoten aus V' benachbart ist. Ein Modul V' ist *trivial*, wenn V' = V oder $V' = \emptyset$.

Für eine Farbklasse \hat{A} von G sei $V(\hat{A})$ die Menge der Knoten, die zu einer Kante aus \hat{A} inzident sind. Zeigen Sie folgende Aussagen.

- (a) Innere Faktoren eines Kompositionsgraphen sind Module.
- (b) Für eine Farbklasse \hat{A} ist $V(\hat{A})$ ein Modul.
- (c) G hat maximal eine Farbklasse \hat{A} , für die $V(\hat{A}) = V$ gilt.
- (d) Ist G ein Vergleichbarkeitsgraph, so hat G genau dann eine eindeutige transitive Orientierung (bis auf Invertierung), wenn jeder nicht-triviale Modul eine unabhängige Menge induziert.

1 bitte wenden

Aufgabe 4: Viele Graphklassen

**

Ein Graph kann chordal, co-chordal sowie ein Vergleichbarkeitsgraph oder ein co-Vergleichbarkeitsgraph sein. Zeigen Sie, dass diese Eigenschaften unabhängig voneinander sind, indem Sie für jede der 16 möglichen Kombinationen einen Beispielgraphen angeben.

Aufgabe 5: Maximalität in Split-Graphen

*

Geben Sie einen Split-Graph G=(V,E) mit einer Zerlegung V=S+K in eine unabhängige Menge S und eine vollständige Menge K an, sodass S keine maximale unabhängige Menge ist. Geben Sie ein weiteres Beispiel an, bei dem K kein maximale Clique induziert.

Aufgabe 6: Graphische Gradsequenzen

*

Geben Sie effiziente Algorithmen zur Erkennung von graphischen Gradsequenzen, basierend auf den beiden Charakterisierungen aus der Vorlesung, an. Geben Sie darauf aufbauend einen Algorithmus zur Erkennung von Split-Graphen an.

Aufgabe 7: Gradsequenzen und Bäume

**

Geben Sie einen Algorithmus an, der für eine gegebene Gradsequenz entscheidet, ob es einen Baum mit dieser Gradsequenz gibt. Falls ja, geben Sie einen Baum mit der gegebenen Gradsequenz an.