

Das Problem des minimalen Steiner-Baumes

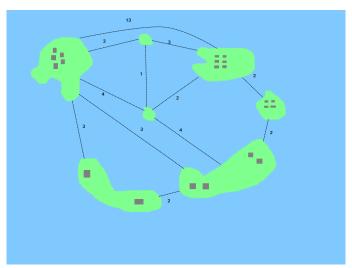
Ein polynomieller Approximationsalgorithmus Benedikt Wagner | 14.05.2018

INSTITUT FÜR THEORETISCHE INFORMATIK, LEHRSTUHL ALGORITHMIK 1

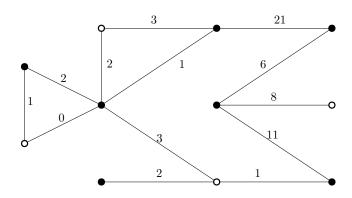
Gliederung

- Problemstellung
 - Motivation
 - Formale Definition
 - Beispiele
- 2 Andere Arbeiten
- 3 Approximationsalgorithmus
 - Definition des Algorithmus von Kou, Markowsky und Berman
- 4 Analyse
 - Laufzeit
 - Relative Gütegarantie
- Zusammenfassung

Motivation



Motivation



Definition Steiner-Baum-Problem

Gegeben:

- Ungerichteter gewichteter zusammenhängender Graph $G = (V, E, d), E \subseteq \{\{u, v\} \in V \times V | u \neq v\}, d : E \to \mathbb{R}_0^+$
 - Steinerpunkte $S \subseteq V$

Gesucht

■ Baum T = (V', E') sodass $v \in S \Rightarrow v \in V'$ (Steinerbaum) wobei $\sum_{e \in E'} d(e)$ minimal

Das Steiner-Baum-Problem ist \mathcal{NP} -schwer

Benedikt Wagner - Steiner-Baum-Approximation

Definition Steiner-Baum-Problem

Gegeben:

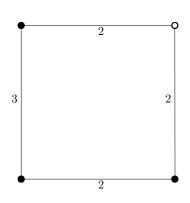
- Ungerichteter gewichteter zusammenhängender Graph $G = (V, E, d), E \subseteq \{\{u, v\} \in V \times V | u \neq v\}, d : E \to \mathbb{R}_0^+$
- Steinerpunkte $S \subseteq V$

Gesucht:

■ Baum T = (V', E') sodass $v \in S \Rightarrow v \in V'$ (Steinerbaum) wobei $\sum_{e \in E'} d(e)$ minimal

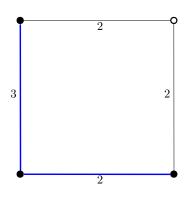
Das Steiner-Baum-Problem ist \mathcal{NP} -schwer

Analyse

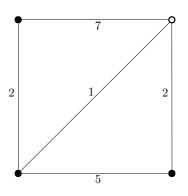


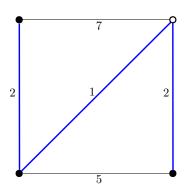
Approximationsalgorithmus

Andere Arbeiten



⇒ Minimaler Spannbaum entspricht nicht dem minimalen Steinerbaum

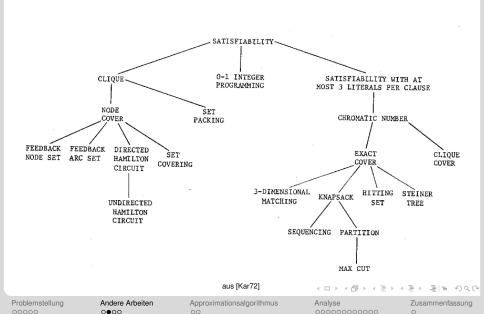




⇒ Knoten, die nicht markiert sind, können nicht einfach entfernt werden

Andere Arbeiten

- eines von Karps 21 NP-vollständigen Problemen [Kar72]
- diverse Approximationsalgorithmen z.B. [Meh88] [RZ00]
- Gröpl, Hougardy, Nierhoff, Prömel zeigen: $\mathcal{P} \neq \mathcal{NP} \Rightarrow$ es gibt kein PTAS für das Steinerbaumproblem [GHNP73]



EXACT-COVER

Gegeben:

Endliche Menge $M = \{u_1, \dots u_n\}$, Teilmengen $X = \{S_1, \dots, S_m\}$

Approximationsalgorithmus

EXACT-COVER

Gegeben:

Endliche Menge $M = \{u_1, \dots u_n\}$, Teilmengen $X = \{S_1, \dots, S_m\}$

Gefragt:

Gibt es eine Auswahl $\{S_i, S_i, \dots, S_k\} \subseteq X$, sodass

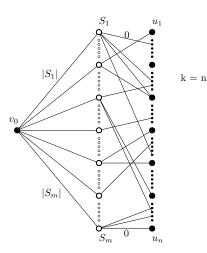
- S_i, S_i, \ldots, S_k disjunkt
- $\bigcup_{S \in X} S = M$

Benedikt Wagner - Steiner-Baum-Approximation

EXACT-COVER \leq_{κ} **STEINER TREE**

Gegeben: $M = \{u_1, \dots u_n\}, m$ Teilmengen $S_i \subseteq M$

EXACT-COVER Instanz ist Ja-Instanz \Leftrightarrow Graph hat Steinerbaum mit Gewicht kleiner gleich k



Benedikt Wagner - Steiner-Baum-Approximation

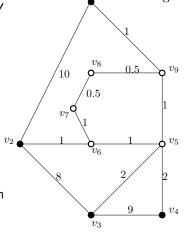
Der Approximationsalgorithmus von Kou, Markowsky und Berman

12/27

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in G berechnet)

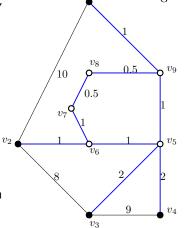


Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H
- (wobei MST(G) einen minimalen Spannbaum in G berechnet)



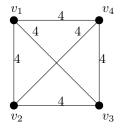
Eingabe:
$$G = (V, E, d), S \subseteq V$$

1 Vollständiger Graph
$$G_1 = (S, E_1, d_1)$$

 $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$

2
$$T_1 \leftarrow MST(G_1)$$

- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte Gs
- 4 $T_S \leftarrow MST(G_S)$
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H (wobei MST(G) einen minimalen Spannbaum in



Eingabe:
$$G = (V, E, d), S \subseteq V$$

1 Vollständiger Graph
$$G_1 = (S, E_1, d_1)$$

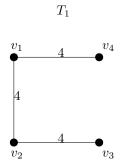
 $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$

2
$$T_1 \leftarrow MST(G_1)$$

- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H (wobei MST(G) einen minimalen Spannbaum in G berechnet)

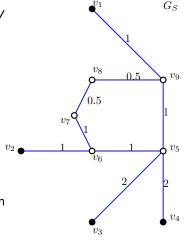


Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u,v\}) = d(ShortestPath(G,u,v))$
- 2 $T_1 \leftarrow MST(G_1)$
- **3** Packe kürzeste Wege in T_1 aus \Rightarrow erhalte Gs
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

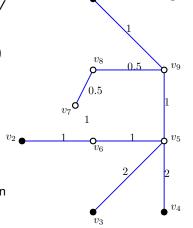
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H
- (wobei MST(G) einen minimalen Spannbaum in G berechnet)



 T_S

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- **4** $T_S \leftarrow MST(G_S)$
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H
- (wobei MST(G) einen minimalen Spannbaum in G berechnet)

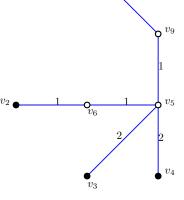


 T_H

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u,v\}) = d(ShortestPath(G,u,v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte Gs
- 4 $T_S \leftarrow MST(G_S)$
- **5** $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H (wobei MST(G) einen minimalen Spannbaum in G berechnet)

Andere Arbeiten

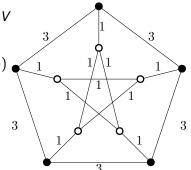


Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H

Ausgabe: T_H

(wobei $\mathit{MST}(G)$ einen minimalen Spannbaum in



Eingabe:
$$G = (V, E, d), S \subseteq V$$

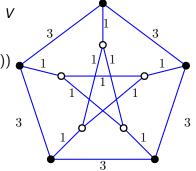
- **1** Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u,v\}) = d(ShortestPath(G,u,v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte Gs
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige

Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in

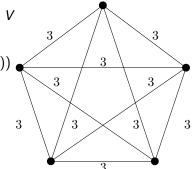


Eingabe:
$$G = (V, E, d), S \subseteq V$$

- **1** Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u,v\}) = d(ShortestPath(G,u,v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte Gs
- 4 $T_S \leftarrow MST(G_S)$
- 5 $T_H \leftarrow T_S$ ohne unnötige Zweige

Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in



Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige

Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige

Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in

G berechnet)

Analyse

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte G_S
- **4** $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige

Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in

Eingabe:
$$G = (V, E, d), S \subseteq V$$

- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T_1 aus \Rightarrow erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$
- **5** $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H

(wobei MST(G) einen minimalen Spannbaum in

G berechnet)

Analyse

Eingabe:
$$G = (V, E, d), S \subseteq V$$

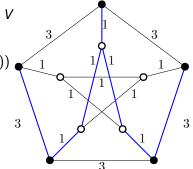
- 1 Vollständiger Graph $G_1 = (S, E_1, d_1)$ $d_1(\{u, v\}) = d(ShortestPath(G, u, v))$
- 2 $T_1 \leftarrow MST(G_1)$
- 3 Packe kürzeste Wege in T₁ aus ⇒ erhalte G_S
- 4 $T_S \leftarrow MST(G_S)$

Benedikt Wagner - Steiner-Baum-Approximation

5 $T_H \leftarrow T_S$ ohne unnötige Zweige Ausgabe: T_H

Ausgabe: T_H

(wobei $\mathit{MST}(G)$ einen minimalen Spannbaum in



Worst-Case Laufzeit im RAM-Modell

- Konstruktion von G_1 aus kürzesten Wegen: $\mathcal{O}(|S||V|^2)$
- 2 Minimaler Spannbaum in G_1 : $\mathcal{O}(|S|^2)$
- 3 Konstruktion von G_S : $\mathcal{O}(|V|^2)$
- Minimaler Spannbaum in G_S : $\mathcal{O}(|V|^2)$
- 5 Unnötige Blätter entfernen: $\mathcal{O}(|V|)$

Gesamt: $\mathcal{O}(|S||V|^2)$

Analyse

Laufzeit von Schritt 3

Schritt 3: Konstruiere aus T_S den Graphen G_S

→ Kanten durch kürzeste Wege ersetzen

Step 3 could be done in $\mathcal{O}(|V|)$ time [KMB81]

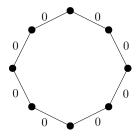
Analyse

Laufzeit von Schritt 3

Schritt 3: Konstruiere aus T_S den Graphen G_S

 \rightarrow Kanten durch kürzeste Wege ersetzen

Step 3 could be done in $\mathcal{O}(|V|)$ time [KMB81]



- Kantengewichte dürfen 0 sein
- Wahl der kürzesten Wege ist beliebig

Notation

- *T_H*: Steinerbaum, erzeugt vom Approximationsalgorithmus [KMB81]
- lacktriangle D_H : Summe der Kantengewichte in T_H
- T_{MIN}: minimaler Steinerbaum
- D_{MIN} : Summe der Kantengewichte in T_{MIN}
- b: Anzahl der Blätter in T_{MIN}
- ullet d(P): Länge eines einfachen Pfades/Zyklus P

Relative Gütegarantie

Theorem

Sei mit G = (V, E, d) und S eine beliebige Eingabe für den Algorithmus [KMB81] gegeben. Dann gilt: $D_H/D_{MIN} \leq 2(1-\frac{1}{h})$

Baumtraversierung

Lemma

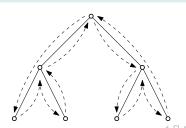
Sei T ein Baum mit m \geq 1 Kanten. Dann gibt es einen Zyklus

 $C = (u_0, ... u_{2m})$ in T wobei gilt:

i jede Kante aus T kommt genau zwei mal in C vor

ii jedes Blatt aus T kommt genau einmal in C vor

iii wenn u_i und u_j Blätter in C sind und kein anderes Blatt dazwischen ist, ist $(u_i, u_{i+1}, ..., u_j)$ ein einfacher Pfad.



Beweis. (Induktion über m)

I.A. m=1 und T ist ein Baum \Rightarrow T besteht aus zwei Knoten $V=\{u,v\}\Rightarrow C=(u,v,u)$ leistet i,ii,iii (u Wurzel)

I.V. Es gelte die Behauptung für $m = k \ge 1$

$$1.S. \text{ Sei } m = k + 1.$$

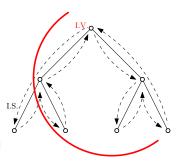
Sei v_p ein Blatt. Wende auf *I.V.* auf

$$G - v_p := (V \setminus \{v_p\}, \{e \in E \mid v_p \notin e\}) \text{ ar}$$

 $\Rightarrow \exists Z \forall k \exists S \in \{v_p\} \}$

 $\, \det i, ii, iii \, \mathrm{in} \, \, G - v_p \, \mathrm{erfüllt.} \, \mathrm{Sei} \, \, v_q \, \mathrm{der} \, \mathrm{Elternk-} \, \, \mathrm{I.S.}$

noten von v_p . Dann ersetze in C das erste v_q



Analyse

0000000000000

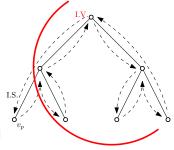
I.V. Es gelte die Behauptung für $m = k \ge 1$ I.S. Sei m = k + 1.

Sei v_p ein Blatt. Wende auf *I.V.* auf

$$G - v_p := (V \setminus \{v_p\}, \{e \in E \mid v_p \notin e\})$$
 an

$$\Rightarrow \exists \text{ Zyklus } C = (u'_0, \ldots, u'_{2k}),$$

der i, ii, iii in $G - v_p$ erfüllt. Sei v_q der Elternk- I.S. noten von v_p . Dann ersetze in C das erste v_q



Analyse

0000000000000

I.V. Es gelte die Behauptung für $m = k \ge 1$ I.S. Sei m = k + 1.

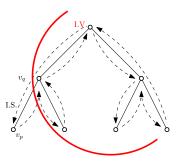
Sei v_p ein Blatt. Wende auf *I.V.* auf

$$G - v_p := (V \setminus \{v_p\}, \{e \in E \mid v_p \notin e\})$$
 an

$$\Rightarrow \exists$$
 Zyklus $C = (u'_0, \ldots, u'_{2k}),$

der i, ii, iii in $G-v_p$ erfüllt. Sei v_q der Elternk-

noten von v_p . Dann ersetze in C das erste v_q durch v_a , v_p , v_a .



Theorem

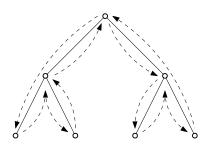
Sei mit G = (V, E, d) und S eine beliebige Eingabe für den Algorithmus [KMB81] gegeben. Dann gilt: $D_H/D_{MIN} \leq 2(1-\frac{1}{b})$

Theorem

Sei mit G=(V,E,d) und S eine beliebige Eingabe für den Algorithmus [KMB81] gegeben. Dann gilt: $D_H/D_{MIN} \leq 2(1-\frac{1}{b})$

Beweis. Wende Lemma auf T_{MIN} an \Rightarrow liefert Zyklus L in T_{MIN} mit

- i jede Kante von T_{MIN} genau zweimal in $L \Rightarrow d(L) = 2 \cdot D_{MIN}$
- ii jedes Blatt aus T_{MIN} genau einmal in L
- iii wenn u_i und u_j Blätter in L sind und kein anderes Blatt dazwischen ist, ist $(u_i, u_{i+1}, ..., u_i)$ ein einfacher Pfad.



Seien P_1, \ldots, P_b die Pfade, die die Blätter verbinden.

Sei
$$P_{MAX} := argmax_{i=1}^b d(P_i) \Rightarrow d(P_{MAX}) \geq \frac{1}{b} d(L)$$

Sei $P := L - P_{MAX}$ der Zyklus L ohne Kanten aus P_{MAX}

$$\Rightarrow d(P) \leq (1 - \frac{1}{b})d(L) = (1 - \frac{1}{b}) \cdot 2 \cdot D_{MIN}$$

$$\left| d(P) \le 2 \cdot \left(1 - \frac{1}{b}\right) \cdot D_{MIN} \right| (1)$$

$$d(P) \leq 2 \cdot (1 - \frac{1}{b}) \cdot D_{MIN}$$
 (1)

 $D_H \le d(MST(G_1))$ (Schritte 3-5 verlängern die Distanz nicht) v_1 v_4 v_4 v_2 v_3

Seien $w_1, w_2, \dots w_k$ die Steinerpunkte, in dieser Reihenfolge in P vorkommend

Sei \mathcal{T} ein Spannbaum

in G_1 , der genau $\{w_1, w_2\}, \dots \{w_{k-1}, w_k\}$ enthält.

$$d(MST(G_1)) \leq d(\mathcal{T})$$

Jede Kante aus T_{MIN} mindestens einmal in $P \Rightarrow d(T) \leq d(P)$

Problemstellung

d(P) (2)

Andere Arbeiten

 $(1),(2) \Rightarrow Beh$

Approximationsalgorithmus

$$\boxed{d(P) \leq 2 \cdot \left(1 - \frac{1}{b}\right) \cdot D_{MIN}} (1)$$

 $D_H < d(MST(G_1))$

(Schritte 3-5 verlängern die Distanz nicht)

Seien $w_1, w_2, \dots w_k$ die Steinerpunkte, in dieser Reihenfolge in P vorkommend

Sei \mathcal{T} ein Spannbaum

in G_1 , der genau $\{w_1, w_2\}, \dots \{w_{k-1}, w_k\}$ enthält.

$$d(MST(G_1)) \leq d(\mathcal{T})$$

Jede Kante aus T_{MIN} mindestens einmal in $P \Rightarrow$ $d(\mathcal{T}) \leq d(P)$

$$u(r) \leq u(r)$$

Es folgt:
$$D_H \leq d(P)$$
 (2) (1),(2) \Rightarrow Beh.

$$(1),(2) \Rightarrow Beh$$

Analyse

00000000000

$$d(P) \leq 2 \cdot \left(1 - \frac{1}{b}\right) \cdot D_{MIN}$$
 (1)

$$D_H \leq \textit{d}(\textit{MST}(\textit{G}_1))$$

(Schritte 3-5 verlängern die Distanz nicht)

Seien $w_1, w_2, \dots w_k$ die Steinerpunkte, in dieser Reihenfolge in P vorkommend

Sei \mathcal{T} ein Spannbaum

in G_1 , der genau $\{w_1, w_2\}, \dots \{w_{k-1}, w_k\}$ enthält.

$$d(MST(G_1)) \leq d(\mathcal{T})$$

Andere Arbeiten

Jede Kante aus T_{MIN} mindestens einmal in $P \Rightarrow$

$$d(\mathcal{T}) \leq d(P)$$

Problemstellung

Es folgt:
$$D_H \leq d(P)$$
 (2) (1),(2) \Rightarrow Beh.

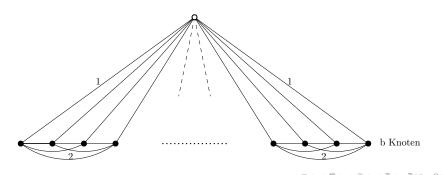
$$(1),(2) \Rightarrow Beh.$$

Die Schranke ist scharf

Theorem

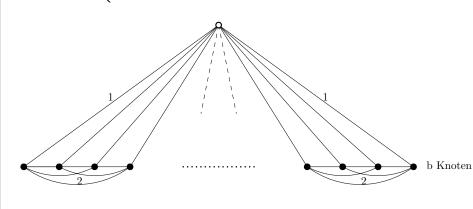
Sei $b \ge 2$. Dann gibt es einen Graphen G = (V, E, d) und Steinerpunkte $S \subseteq V$ sodass T_{MIN} b Blätter hat und im Worst-Case $D_H/D_{MIN} = 2(1-\frac{1}{b})$

Beweis. Für $b \ge 2$ betrachte:



14.05.2018

 $\text{vollständiger Graph } G := (V, E, d) \ V := \{v_1, v_2, ..., v_{b+1}\}$ $d(\{v_i, v_j\}) = \begin{cases} 1, \ v_i = v_{b+1} \ \lor v_j = v_{b+1} \\ 2, \ \text{sonst} \end{cases} , \ S := V \setminus \{v_{b+1}\}$



Approximationsalgorithmus

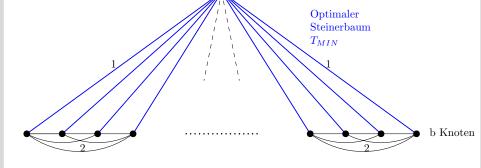
4 D > 4 B > 4 E > 4 E | 9 Q C

Andere Arbeiten

Problemstellung

$$\text{vollständiger Graph } G := (V, E, d) \ V := \{v_1, v_2, ..., v_{b+1}\}$$

$$d(\{v_i, v_j\}) = \begin{cases} 1, \ v_i = v_{b+1} \ \lor v_j = v_{b+1} \\ 2, \ \text{sonst} \end{cases} , \ S := V \setminus \{v_{b+1}\}$$

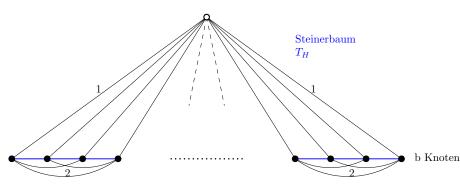


Approximationsalgorithmus

< □ > < 圖 > < 置 > < 置 > を 量 | 重 | で へ ©)

$$\text{vollständiger Graph } G := (V, E, d) \ V := \{v_1, v_2, ..., v_{b+1}\}$$

$$d(\{v_i, v_j\}) = \begin{cases} 1, \ v_i = v_{b+1} \ \lor v_j = v_{b+1} \end{cases} , S := V \setminus \{v_{b+1}\}$$

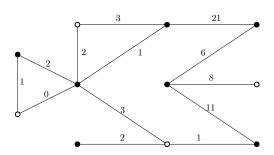


$$D_{MIN} = b \text{ und } D_H = 2(b-1) \Rightarrow D_H/D_{MIN} = 2(b-1)/b = 2(1-\frac{1}{b})$$

Andere Arbeiten

Problemstellung

Zusammenfassung



- Steiner-Baum-Problem ist \mathcal{NP} -schwer
- Algorithmus, der Shortest Path und Mininum Spanning Tree nutzt
- Laufzeit: $\mathcal{O}(|S||V|^2)$
- Garantie: $D_H/D_{MIN} \leq 2(1-\frac{1}{b})$

References I

Clemens Gröpl, Stefan Hougardy, Till Nierhoff, and Hans Jürgen Prömel.

Lower bounds for approximation algorithms for the steiner tree problem.

Lecture Notes in Computer Science, page 217, 1973.

Richard M. Karp.

Reducibility Among Combinatorial Problems.

R. E. Miller und J. W. Thatcher (Hrsg.): Complexity of Computer Computations, pages 85–103, 1972.

🔋 L. Kou, G. Markowsky, and L. Berman.

A Fast Algorithm for Steiner Trees.

Acta Informatica, 15(2):141-145, Jun 1981.

References II

K. Mehlhorn.

A faster approximation algorithm for the steiner problem in graphs. *Information Processing Letters*, pages 125–128, 1988.

G. Robins and A. Zelikovsky.

Improved steiner tree approximation in graphs.

Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms., pages 770–779, 2000.

