## Exercises 3 - Well-Separated Pair Composition

Discussion: Friday, June 1st, 2018

## Well-Separated Pair Decomposition (16.05.2018 \& 25.05.2018)

Exercise 1 - Foundations. Let $s>0$ and let $x:=2 / s+1$. Further, let $S:=\left\{x^{i} \mid 0 \leq i \leq\right.$ $n-1, i \in \mathbb{N}\}$ and let $\left\{A_{j}, B_{j}\right\}(1 \leq j \leq m)$ be an arbitrary $s$-WSPD for $S$. Show that

$$
\sum_{j=1}^{m}\left(\left|A_{j}\right|+\left|B_{j}\right|\right)=\binom{n}{2}+m
$$

Hint: For each $j$ at least one of both sets $A_{j}$ and $B_{j}$ is a singleton.

Exercise 2 - Neighbor I. Let $P$ be a set of $n$ points in $\mathbb{R}^{d}$. Let $p \in P$ and let $q \in P$ be the next neighbor of $p$ in $P$, i.e., $|p q|=\min \{|p r|: r \in P, r \neq p\}$. Consider an arbitrary $s$-WSPD for $P$ with $s>2$.

1. Let $\{A, B\}$ be a pair in this decomposition and assume that $p$ lies in $A$ and $q$ lies in $B$. Show that $A$ only contains $p$.
2. Show that the size of an arbitrary $s$-WSPD with $s>2$ is at least $n / 2$.

Exercise 3 - Neighbor II. Let $P$ be a set of $n$ points in $\mathbb{R}^{d}$. Further, let $p, q \in P$ be a pair of points with minimal distance to each other, i.e., $|p q|=\min \{|a b|: a \in P, b \in P\}$. Consider an arbitrary $s$-WSPD $\mathcal{W}$ for $P$ with $s>2$. Show that $\mathcal{W}$ contains the pair $\{\{p\},\{q\}\}$.

Exercise 4 - Closest Pair of Points. Consider a point set $P$, let $x$ and $y$ be the closest pair of points and let $p_{u}$ and $p_{v}$ be the representatives from their associated well-separated pair. Show that it is $\|x y\|=\left\|p_{u} p_{v}\right\|$.

