Exercises 3 – Well-Separated Pair Composition

Discussion: Friday, June 1st, 2018

Well-Separated Pair Decomposition (16.05.2018 & 25.05.2018)

Exercise 1 – Foundations. Let s > 0 and let x := 2/s + 1. Further, let $S := \{x^i \mid 0 \le i \le n - 1, i \in \mathbb{N}\}$ and let $\{A_j, B_j\}$ $(1 \le j \le m)$ be an arbitrary s-WSPD for S. Show that

$$\sum_{j=1}^{m} (|A_j| + |B_j|) = \binom{n}{2} + m$$

Hint: For each j at least one of both sets A_j and B_j is a singleton.

Exercise 2 – Neighbor I. Let P be a set of n points in \mathbb{R}^d . Let $p \in P$ and let $q \in P$ be the next neighbor of p in P, i.e., $|pq| = \min\{|pr| : r \in P, r \neq p\}$. Consider an arbitrary s-WSPD for P with s > 2.

- 1. Let $\{A, B\}$ be a pair in this decomposition and assume that p lies in A and q lies in B. Show that A only contains p.
- 2. Show that the size of an arbitrary s-WSPD with s > 2 is at least n/2.

Exercise 3 – Neighbor II. Let P be a set of n points in \mathbb{R}^d . Further, let $p, q \in P$ be a pair of points with minimal distance to each other, i.e., $|pq| = \min\{|ab| : a \in P, b \in P\}$. Consider an arbitrary s-WSPD \mathcal{W} for P with s > 2. Show that \mathcal{W} contains the pair $\{\{p\}, \{q\}\}$.

Exercise 4 – Closest Pair of Points. Consider a point set P, let x and y be the closest pair of points and let p_u and p_v be the representatives from their associated well-separated pair. Show that it is $||xy|| = ||p_u p_v||$.