
Karlsruher Institut für Technologie Computational Geometry

Fakultät für Informatik Summer term 2018

ITI Sanders/Wagner

Exercises 2 - Triangulation of Polygons & Linear Programming

Discussion: Wednesday, May 23rd, 2018

Lecture 3 – 02.05.2018

Exercise 1 – Monotone Polygons. In the lecture we have seen the algorithm MakeMono-
tone, which partitions a given polygon P into y-monotone polygons.

1. Prove the correctness of the sub-routine handleMergeVertex; see slides of lecture.
2. Assume that the polygon has O(1) turn vertices. Modify MakeMonotone such that it

partitions P into y-monotone polygons using O(n) running time – instead of O(n log n)
running time.

3. The sub-routines of MakeMonotone add edges to a doubly-connected edge list. In the
lecture it has been claimed that each insertion takes O(1) running time. Prove that this
claim holds. Further, argue that the insertion of an edge into a doubly-connected edge list
in general may need more than O(1) time.

Exercise 2 – Art-Gallery. Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that together observe the complete
border of P , then they also observe the complete interior of P .

Exercise 3 – Polygon-Splitting. Let P be a simple polygon with n vertices. Describe an
algorithm that splits P into two simple polygons such that each of them has b2n/3c+2 vertices.

Hint: Triangulate the polygon and consider the dual graph of that triangulation.

Lecture 4 – 09.05.2018

Exercise 4 – Correctness. In the lecture we have seen the algorithm RandomPermuta-
tion(A).

1. Prove the correctness of RandomPermutation by showing that all permutations of A
have the same probability.

2. Show, that the permutations of A do not have the same probability, when the expression
r ← Random(k) is replaced by r ← Random(n).



Exercise 5 – Trains. We are given n trains that run on parallel tracks. Each train zi
(i = 1, . . . , n) has constant speed vi and starts at position ki on its track at time t = 0. Describe
an algorithm that computes in O(n log n) time which trains are at least once in leading position
until a given time tstop > 0.


