Exercises 2 - Triangulation of Polygons \& Linear Programming

Discussion: Wednesday, May 23rd, 2018

Lecture 3 - 02.05.2018

Exercise 1 - Monotone Polygons. In the lecture we have seen the algorithm MakemonoTONE, which partitions a given polygon P into y-monotone polygons.

1. Prove the correctness of the sub-routine HANDLEMERGEVERTEX; see slides of lecture.
2. Assume that the polygon has $O(1)$ turn vertices. Modify MakeMonotone such that it partitions P into y-monotone polygons using $O(n)$ running time - instead of $O(n \log n)$ running time.
3. The sub-routines of MakeMonotone add edges to a doubly-connected edge list. In the lecture it has been claimed that each insertion takes $O(1)$ running time. Prove that this claim holds. Further, argue that the insertion of an edge into a doubly-connected edge list in general may need more than $O(1)$ time.

Exercise 2 - Art-Gallery. Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Exercise 3 - Polygon-Splitting. Let P be a simple polygon with n vertices. Describe an algorithm that splits P into two simple polygons such that each of them has $\lfloor 2 n / 3\rfloor+2$ vertices.

Hint: Triangulate the polygon and consider the dual graph of that triangulation.

Lecture 4 - 09.05.2018

Exercise 4 - Correctness. In the lecture we have seen the algorithm RandomPermuta$\operatorname{TiON}(A)$.

1. Prove the correctness of RandomPermutation by showing that all permutations of A have the same probability.
2. Show, that the permutations of A do not have the same probability, when the expression $r \leftarrow \operatorname{Random}(k)$ is replaced by $r \leftarrow \operatorname{Random}(n)$.

Exercise 5 - Trains. We are given n trains that run on parallel tracks. Each train z_{i} $(i=1, \ldots, n)$ has constant speed v_{i} and starts at position k_{i} on its track at time $t=0$. Describe an algorithm that computes in $O(n \log n)$ time which trains are at least once in leading position until a given time $t_{\text {stop }}>0$.

