

Computation Geometry – Exercise Range Searching II

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Guido Brückner 20.07.2018

Object types in range queries

Setting so far:

- Input: set of points P (here $P \subset \mathbb{R}^2$)
- Output: all points in $P \cap [x, x'] \times [y, y']$
- ullet Data structures: kd-trees or range trees

Object types in range queries

Setting so far:

- Input: set of points P (here $P \subset \mathbb{R}^2$)
- Output: all points in $P \cap [x, x'] \times [y, y']$
- Data structures: kd-trees or range trees

Further variant

- Input: set of line segments S (here in \mathbb{R}^2)
- Output: all segments in $S \cap [x, x'] \times [y, y']$
- Data structures: ?

special case (e.g., in VLSI design): all line segments are axis-parallel

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to approach this case?

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

Case 1: ≥ 1 endpoint in R

ightarrow use range tree

Case 2: both endpoints $\notin R$

 \rightarrow intersect left or top edge of R

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s := (x = q_x)$

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \dots, [x_n, x_n']\}$ and a point q_x , find all intervals that contain q_x .

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s := (x = q_x)$

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \dots, [x_n, x_n']\}$ and a point q_x , find all intervals that contain q_x .

What do we need for an appropriate data structure?

Interval Trees

Construction of an interval tree \mathcal{T}

- ullet if $I=\emptyset$ then $\mathcal T$ is a leaf
- else let x_{mid} be the median of the endpoints of I and define

$$\begin{array}{lcl} I_{\mathsf{left}} & = & \{[x_j, x'_j] \mid x'_j < x_{\mathsf{mid}}\} \\ I_{\mathsf{mid}} & = & \{[x_j, x'_j] \mid x_j \leq x_{\mathsf{mid}} \leq x'_j\} \\ I_{\mathsf{right}} & = & \{[x_j, x'_j] \mid x_{\mathsf{mid}} < x_j\} \end{array}$$

 ${\mathcal T}$ consists of a node v for $x_{\sf mid}$ and

- ullet lists $\mathcal{L}(v)$ and $\mathcal{R}(v)$ for I_{mid} sorted by left and right interval endpoints, respectively
- ullet left child of v is an interval tree for I_{left}
- right child of v is an interval tree for I_{right}

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q_y']$ instead of a query line $x = q_x$?

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q_y']$ instead of a query line $x = q_x$?

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q'_u]$ instead of a query line $x = q_x$?

The correct line segments in $I_{\rm mid}$ can easily be found using a range tree instead of simple lists.

How can we adapt the idea of an interval tree for query segments $q_x \times [q_y, q_y']$ instead of a query line $x = q_x$?

The correct line segments in $I_{\rm mid}$ can easily be found using a range tree instead of simple lists.

Theorem 1: Let S be a set of horizontal (axis-parallel) line segments in the plane. All k line segments that intersect a vertical query segment (an axis-parallel rectangle R) can be found in $O(\log^2(n) + k)$ time. The data structure requires $O(n \log n)$ space and construction time.

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

Exercise 5: How to use interval trees?

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.

2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.

2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.

2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

If a segment intersects the query range R, then the corresponding bounding box intersects R.

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.

2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

If a segment intersects the query range R, then the corresponding bounding box intersects R.

Problem:

Use Bounding Box of Segments

- 1. Interval trees on segments of bounding-boxes.
- 2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

If a segment intersects the query range R, then the corresponding bounding box intersects R.

Problem: More segments may be considered than necessary.

because it is not true that

If the bounding-box intersects the query range, then the contained segment intersects the query range.

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to proceed?

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R = [x, x'] \times [y, y']$, find all line segments that intersect R.

How to proceed?

Case 1: ≥ 1 endpoint in $R \rightarrow$ use range tree

Case 2: both endpoints $\not\in R \to \text{intersect}$ at least one edge of R

Decomposition into elementary intervals

Interval trees don't really help here

Decomposition into elementary intervals

Interval trees don't really help here

Identical 1d base problem:

Given n intervals $I = \{[x_1, x_1'], [x_2, x_2'], \dots, [x_n, x_n']\}$ and a point q_x , find all intervals that contain q_x .

- sort all x_i and x_i' in list p_1, \ldots, p_{2n}
- create sorted elementary intervals $(-\infty, p_1), [p_1, p_1], (p_1, p_2), [p_2, p_2], \ldots, [p_{2n}, p_{2n}], (p_{2n}, \infty)$

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- ullet for all points q_x in the same elementary interval the answer is the same
- ullet leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- \bullet for all points q_x in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time

Store intervals as high up in the tree as possible

- node v represents interval $e(v) = e(lc(v)) \cup e(rc(v))$
- input interval $s_i \in I(v) \Leftrightarrow e(v) \subseteq s_i$ and $e(\mathsf{parent}(v)) \not\subseteq s_i$

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- \bullet for all points q_x in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n + k)$ time

Store intervals as high up in the tree as possible

- node v represents interval $e(v) = e(lc(v)) \cup e(rc(v))$
- input interval $s_i \in I(v) \Leftrightarrow e(v) \subseteq s_i$ and $e(\mathsf{parent}(v)) \not\subseteq s_i$

Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- ullet each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- ullet line segment s is in I(v) iff s crosses the strip of v but not the strip of parent(v)
- at each node v on the search path for the vertical segment $s' = q_x \times [q_y, q'_y]$ all segments in I(v) cover the x-coordinate q_x

Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- ullet each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- line segment s is in I(v) iff s crosses the strip of v but not the strip of parent(v)
- ullet at each node v on the search path for the vertical segment $s' = q_x \times [q_y, q'_y]$ all segments in I(v) cover the x-coordinate q_x
- find segments in the strip that cross s' using a vertically sorted auxiliary binary search tree

Summary

Theorem 2:

Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.

Summary

Theorem 2:

Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.

Remark:

The construction time for the data structure can be improved to $O(n \log n)$.

Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O(k + \log^2 n)$. The corresponding data structure uses $O(n \log n)$ space and $O(n \log^2 n)$ construction time.

Remark:

The construction time for the data structure can be improved to $O(n \log n)$.

Problem: Construction of auxiliary tree.

Let s_1, s_2 be two segments.

 s_1 lies below s_2 $(s_1 \prec s_2)$, if there is a point $p_1 \in s_1$ and $p_2 \in s_2$ with $x(p_1) = x(p_2)$ and $y(p_1) < y(p_2)$.

- 1. Show that relation \prec on S is acyclic.
 - There exists a topological orderding.
- 2. Compute topological ordering S
- 3. Use topological ordering to construct help trees.

Let s_1, s_2 be two segments.

 s_1 lies below s_2 $(s_1 \prec s_2)$, if there is a point $p_1 \in s_1$ and $p_2 \in s_2$ with $x(p_1) = x(p_2)$ and $y(p_1) < y(p_2)$.

- 1. Show that relation \prec on S is acyclic.
 - There exists a topological orderding.
- 2. Compute topological ordering S
- 3. Use topological ordering to construct help trees.

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree Srepresentation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

p is right end point of segment s_i : s_i is removed from S

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

Verical sweep-line from left to right to obtain ordering T:

Events: Endpoints of segments.

Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p:

p ist left end point of segment s_i : insert s_i into S.

Insert s_i into T correspondingly to its neighbors in S.

Construction of Trees

Apply topological ordering.

Construction of Trees

Apply topological ordering.

In each strip the topological ordering corresponds with the vertical ordering.

- Insert segments into I(v) w.r.t. topological ordering.
- Construct binary tree based on I(v) in |I(v)| time.
 - \longrightarrow O(n) time in total.

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Datastrucrue is based on interval trees:

Interval Trees

Construction of an interval tree \mathcal{T}

- ullet if $I=\emptyset$ then ${\mathcal T}$ is a leaf
- ullet else let x_{mid} be the median of the endpoints of I and define

$$\begin{array}{lcl} I_{\mathsf{left}} & = & \{[x_j, x_j'] \mid x_j' < x_{\mathsf{mid}}\} \\ I_{\mathsf{mid}} & = & \{[x_j, x_j'] \mid x_j \leq x_{\mathsf{mid}} \leq x_j'\} \\ I_{\mathsf{right}} & = & \{[x_j, x_j'] \mid x_{\mathsf{mid}} < x_j\} \end{array}$$

 \mathcal{T} consists of a node v for x_{mid} and

- ullet lists $\mathcal{L}(v)$ and $\mathcal{R}(v)$ for I_{mid} sorted by left and right interval endpoints, respectively
- ullet left child of v is an interval tree for I_{left}
- ullet right child of v is an interval tree for I_{right}

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure is based on interval trees:

```
\mathsf{QIT}(v,q_x)
if v is not Blatt then
     if q_x < x_{\mathsf{mid}}(v) then
          return QIT(lc(v), q_x)+Number of intervals in \mathcal{L} that contain
     else
          return \mathsf{QIT}(rc(v),q_x)+\mathsf{Number} of intervals in \mathcal R that contain
```

return 1

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure is based on interval trees:

```
\begin{aligned} \textbf{if } v \text{ is not Blatt then} \\ & | & \textbf{if } q_x < x_{\mathsf{mid}}(v) \textbf{ then} \\ & | & \textbf{return QIT}(lc(v), q_x) + \textbf{Number of intervals in } \mathcal{L} \textbf{ that contain} \\ & | & q_x \end{aligned} \\ & \textbf{else} \\ & | & \textbf{return QIT}(rc(v), q_x) + \textbf{Number of intervals in } \mathcal{R} \textbf{ that contain} \\ & | & q_x \end{aligned} \\ & | & \textbf{binary search tree with } O(\log n) \textbf{ query time.} \end{aligned}
```

return 1

Running Time: $O(\log^2 n)$

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on segment trees:

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on segment trees:

Store |I(v)| instead of I(v)

 $O(\log n)$ time and O(n) storage.

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on binary tree.

given: Set I of n intervals

find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on binary tree.

- 1. Split intervals into elementary intervals.
- 2. Store for each elem. interval, in how many intervals it is contained.
- 3. Construct binary tree based on borders of elem. intervals.

$$\longrightarrow$$
 Time $O(\log n)$, Storarge $O(n)$

Given: Set \mathcal{R} of axis-aligned rectangles.

Find: Algorithm that computes $\max_{p \in \mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n \log n)$ time.

For $p \in \mathbb{R}$, $w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Given: Set \mathcal{R} of axis-aligned rectangles.

Algorithm that computes $\max_{p\in\mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n\log n)$ time.

For $p \in \mathbb{R}$, $w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Sweep-Line: from left to right

SL-State: segment tree T that stores vertical edges as intervals.

Events: vertical edges of rectangles.

left vert. edge \overline{pq} : 1. determine the number or intervals in T intersecting [y(p), y(q)].

 \longrightarrow update $\max w_{\mathcal{R}}(p)$

2. Insert [y(p), y(q)] into T.

Given: Set \mathcal{R} of axis-aligned rectangles.

Find: Algorithm that computes $\max_{p \in \mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n \log n)$ time.

For $p \in \mathbb{R}$, $w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Sweep-Line: from left to right

SL-State: segment tree T that stores vertical edges as intervals.

Events: vertical edges of rectangles.

right vert. edge \overline{pq} : delete interval [y(p), y(q)].