Computation Geometry - Exercise

Range Searching II

Guido Brückner 20.07.2018

Object types in range queries

Setting so far:

- Input: set of points P
(here $P \subset \mathbb{R}^{2}$)
- Output: all points in
$P \cap\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
- Data structures: $k d$-trees or range trees

Object types in range queries

Setting so far:

- Input: set of points P (here $P \subset \mathbb{R}^{2}$)
- Output: all points in $P \cap\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
- Data structures: $k d$-trees

Further variant

- Input: set of line segments S (here in \mathbb{R}^{2})
- Output: all segments in $S \cap\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$
- Data structures: ?

Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

How to approach this case?

Axis-parallel line segments

special case (e.g., in VLSI design): all line segments are axis-parallel

Problem:

Given n vertical and horizontal line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

Case 1: ≥ 1 endpoint in R
\rightarrow use range tree
Case 2: both endpoints $\notin R$
\rightarrow intersect left or top edge of R

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segment s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segne line s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s:=\left(x=q_{x}\right)$
Given n intervals $I=\left\{\left[x_{1}, x_{1}^{\prime}\right],\left[x_{2}, x_{2}^{\prime}\right], \ldots,\left[x_{n}, x_{n}^{\prime}\right]\right\}$ and a point q_{x}, find all intervals that contain q_{x}.

Case 2 in detail

Problem:

Given a set H of n horizontal line segments and a vertical query segne line s, find all line segments in H that intersect s. (Vertical segments and a horizontal query are analogous.)

One level simpler: vertical line $s:=\left(x=q_{x}\right)$
Given n intervals $I=\left\{\left[x_{1}, x_{1}^{\prime}\right],\left[x_{2}, x_{2}^{\prime}\right], \ldots,\left[x_{n}, x_{n}^{\prime}\right]\right\}$ and a point q_{x}, find all intervals that contain q_{x}.

> What do we need for an appropriate data structure?

Interval Trees

Construction of an interval tree \mathcal{T}

- if $I=\emptyset$ then \mathcal{T} is a leaf
- else let $x_{\text {mid }}$ be the median of the endpoints of I and define

$$
\begin{aligned}
I_{\text {left }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{j}^{\prime}<x_{\text {mid }}\right\} \\
I_{\text {mid }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{j} \leq x_{\text {mid }} \leq x_{j}^{\prime}\right\} \\
I_{\text {right }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{\text {mid }}<x_{j}\right\}
\end{aligned}
$$

\mathcal{T} consists of a node v for $x_{\text {mid }}$ and

- lists $\mathcal{L}(v)$ and $\mathcal{R}(v)$ for $I_{\text {mid }}$ sorted by left and right interval endpoints, respectively
- left child of v is an interval tree for $I_{\text {left }}$
- right child of v is an interval tree for $I_{\text {right }}$

From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ instead of a query line $x=q_{x}$?

From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ instead of a query line $x=q_{x}$?

From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ instead of a query line $x=q_{x}$?

The correct line segments in $I_{\text {mid }}$ can easily be found using a range tree instead of simple lists.

From lines to line segments

How can we adapt the idea of an interval tree for query segments $q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ instead of a query line $x=q_{x}$?

The correct line segments in $I_{\text {mid }}$ can easily be found using a range tree instead of simple lists.
Theorem 1: Let S be a set of horizontal (axis-parallel) line segments in the plane. All k line segments that intersect a vertical query segment (an axis-parallel rectangle R) can be found in $O\left(\log ^{2}(n)+k\right)$ time. The data structure requires $O(n \log n)$ space and construction time.

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

Exercise 5: How to use interval trees?

Solution

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.
2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Solution

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.
2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

Solution

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.
2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

If a segment intersects the query range R, then the corresponinding bounding box intersects R.

Solution

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.
2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:

If a segment intersects the query range R, then the corresponinding bounding box intersects R.

Problem:

Solution

Use Bounding Box of Segments

1. Interval trees on segments of bounding-boxes.
2. If segments of bounding-box intersect query range:

Check whether contained segment intersects query range.

Correct, because:
If a segment intersects the query range R, then the corresponinding bounding box intersects R.

Problem: More segments may be considered than necessary. because it is not true that

If the bounding-box intersects the query range, then the contained segment intersects the query range.

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

How to proceed?

Arbitrary line segments

Map data often contain arbitrarily oriented line segments.

Problem:

Given n disjoint line segments and an axis-parallel rectangle $R=\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$, find all line segments that intersect R.

How to proceed?

Case 1: ≥ 1 endpoint in $R \rightarrow$ use range tree
Case 2: both endpoints $\notin R \rightarrow$ intersect at least one edge of R

Decomposition into elementary intervals

 Interval trees don't really help here

Decomposition into elementary intervals

 Interval trees don't really help here

Identical 1d base problem:

Given n intervals $I=\left\{\left[x_{1}, x_{1}^{\prime}\right],\left[x_{2}, x_{2}^{\prime}\right], \ldots,\left[x_{n}, x_{n}^{\prime}\right]\right\}$ and a point q_{x}, find all intervals that contain q_{x}.

- sort all x_{i} and x_{i}^{\prime} in list $p_{1}, \ldots, p_{2 n}$
- create sorted elementary intervals

$$
\left(-\infty, p_{1}\right),\left[p_{1}, p_{1}\right],\left(p_{1}, p_{2}\right),\left[p_{2}, p_{2}\right], \ldots,\left[p_{2 n}, p_{2 n}\right],\left(p_{2 n}, \infty\right)
$$

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- for all points q_{x} in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n+k)$ time

11 Guido Brückner • Übung Algorithmische Geometrie

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- for all points q_{x} in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n+k)$ time

Store intervals as high up in the tree as possible

- node v represents interval $e(v)=e(l c(v)) \cup e(r c(v))$
- input interval $s_{i} \in I(v) \Leftrightarrow e(v) \subseteq s_{i}$ and $e(\operatorname{parent}(v)) \nsubseteq s_{i}$

Segment trees

Idea for data structure:

- create binary search tree with elementary intervals in leaves
- for all points q_{x} in the same elementary interval the answer is the same
- leaf μ for elementary interval $e(\mu)$ stores interval set $I(\mu)$
- query requires $O(\log n+k)$ time

Store intervals as high up in the tree as possible

- node v represents interval $e(v)=e(l c(v)) \cup e(r c(v))$
- input interval $s_{i} \in I(v) \Leftrightarrow e(v) \subseteq s_{i}$ and $e(\operatorname{parent}(v)) \nsubseteq s_{i}$

Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- line segment s is in $I(v)$ iff s crosses the strip of v but not the strip of parent (v)
- at each node v on the search path for the vertical segment $s^{\prime}=q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ all segments in $I(v)$ cover the x-coordinate q_{x}

Back to arbitrary line segments

- create segment tree for the x intervals of the line segments
- each node v corresponds to a vertical strip $e(v) \times \mathbb{R}$
- line segment s is in $I(v)$ iff s crosses the strip of v but not the strip of parent (v)
- at each node v on the search path for the vertical segment $s^{\prime}=q_{x} \times\left[q_{y}, q_{y}^{\prime}\right]$ all segments in $I(v)$ cover the x-coordinate q_{x}
- find segments in the strip that cross s^{\prime} using a vertically sorted auxiliary binary search tree

Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O\left(k+\log ^{2} n\right)$. The corresponding data structure uses $O(n \log n)$ space and $O\left(n \log ^{2} n\right)$ construction time.

Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O\left(k+\log ^{2} n\right)$. The corresponding data structure uses $O(n \log n)$ space and $O\left(n \log ^{2} n\right)$ construction time.
Remark:
The construction time for the data structure can be improved to $O(n \log n)$.

Summary

Theorem 2: Let S be a set of interior-disjoint line segments in the plane. All k segments that intersect a vertical query segment (an axis-parallel query rectangle R) can be found in time $O\left(k+\log ^{2} n\right)$. The corresponding data structure uses $O(n \log n)$ space and $O\left(n \log ^{2} n\right)$ construction time.
Remark:
The construction time for the data structure can be improved to $O(n \log n)$.
Problem: Construction of auxiliary tree.

Solution

Let s_{1}, s_{2} be two segments.
s_{1} lies below $s_{2}\left(s_{1} \prec s_{2}\right)$, if there is a point $p_{1} \in s_{1}$ and $p_{2} \in s_{2}$ with $x\left(p_{1}\right)=x\left(p_{2}\right)$ and $y\left(p_{1}\right)<y\left(p_{2}\right)$.

$s_{1} \prec s_{2}$

$s_{1} \nprec s_{2}$

1. Show that relation \prec on S is acyclic.
\longrightarrow There exists a topological orderding.
2. Compute topological ordering S
3. Use topological ordering to construct help trees.

Solution

Let s_{1}, s_{2} be two segments.
s_{1} lies below $s_{2}\left(s_{1} \prec s_{2}\right)$, if there is a point $p_{1} \in s_{1}$ and $p_{2} \in s_{2}$ with $x\left(p_{1}\right)=x\left(p_{2}\right)$ and $y\left(p_{1}\right)<y\left(p_{2}\right)$.

$s_{1} \prec s_{2}$

$s_{1} \nprec s_{2}$

1. Show that relation \prec on S is acyclic.
\longrightarrow There exists a topological orderding.
2. Compute topological ordering S
3. Use topological ordering to construct help trees.

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Computation of Topological Ordering

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Computation of Topological Ordering

T
s_{1}
s_{5}
s_{3}
s_{4}
s_{2}

Verical sweep-line from left to right to obtain ordering T :
Events: Endpoints of segments.
Sweep-Line-State: Segments that intersect sweep-line (binary tree S representation)

Handling event p :

p ist left end point of segment s_{i} : insert s_{i} into S.
Insert s_{i} into T correspondingly to its neighbors in S.
p is right end point of segment $s_{i}: s_{i}$ is removed from S

Construction of Trees

Apply topological ordering.

Construction of Trees

Apply topological ordering.

In each strip the topological ordering corresponds with the vertical ordering.
\longrightarrow Insert segments into $I(v)$ w.r.t. topological ordering.
\longrightarrow Construct binary tree based on $I(v)$ in $|I(v)|$ time.
$\longrightarrow O(n)$ time in total.

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Datastrucrue is based on interval trees:

Interval Trees

Construction of an interval tree \mathcal{T}

- if $I=\emptyset$ then \mathcal{T} is a leaf
- else let $x_{\text {mid }}$ be the median of the endpoints of I and define

$$
\begin{aligned}
I_{\text {left }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{j}^{\prime}<x_{\text {mid }}\right\} \\
I_{\text {mid }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{j} \leq x_{\text {mid }} \leq x_{j}^{\prime}\right\} \\
I_{\text {right }} & =\left\{\left[x_{j}, x_{j}^{\prime}\right] \mid x_{\text {mid }}<x_{j}\right\}
\end{aligned}
$$

\mathcal{T} consists of a node v for $x_{\text {mid }}$ and

- lists $\mathcal{L}(v)$ and $\mathcal{R}(v)$ for $I_{\text {mid }}$ sorted by left and right interval endpoints, respectively
- left child of v is an interval tree for $I_{\text {left }}$
- right child of v is an interval tree for $I_{\text {right }}$

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure is based on interval trees:
$\operatorname{QIT}\left(v, q_{x}\right)$
if v is not Blatt then if $q_{x}<x_{\text {mid }}(v)$ then return $\operatorname{QIT}\left(l c(v), q_{x}\right)+$ Number of intervals in \mathcal{L} that contain q_{x} else return $\operatorname{QIT}\left(r c(v), q_{x}\right)+$ Number of intervals in \mathcal{R} that contain q_{x}
return 1

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure is based on interval trees:
$\operatorname{QIT}\left(v, q_{x}\right)$
if v is not Blatt then if $q_{x}<x_{\text {mid }}(v)$ then return QIT $\left(l c(v), q_{x}\right)+$ Number of intervals in \mathcal{L} that contain q_{x} else return $\operatorname{QIT}\left(r c(v), q_{x}\right)+$ Number of intervals in \mathcal{R} that contain $q_{x} \quad$ binary search tree with $O(\log n)$ query time. return 1

Running Time: $O\left(\log ^{2} n\right)$

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on segment trees:

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on segment trees:
QuerySegmentTree $\left(v, q_{x}\right)$
if v is not leaf then if $q_{x} \in e(l c(v))$ then

QuerySegmentTree($\left.l c(v), q_{x}\right)+|I(v)|$ else

QuerySegmentTree $\left(r c(v), q_{x}\right)+|I(v)|$
return 1
Store $|I(v)|$ instead of $I(v)$
$O(\log n)$ time and $O(n)$ storage.

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on binary tree.

Exercise 3

given: Set I of n intervals
find: In how many intervals is a point $p \in \mathbb{R}$ contained? Datastructure!

Data structure based on binary tree.

1. Split intervals into elementary intervals.
2. Store for each elem. interval, in how many intervals it is contained.
3. Construct binary tree based on borders of elem. intervals.
\rightarrow Time $O(\log n)$, Storarge $O(n)$

Exercise 4

Given: Set \mathcal{R} of axis-aligned rectangles.
Find: Algorithm that computes $\max _{p \in \mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n \log n)$ time.
For $p \in \mathbb{R}, w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Exercise 4

Given: Set \mathcal{R} of axis-aligned rectangles.
Find: Algorithm that computes $\max _{p \in \mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n \log n)$ time.
For $p \in \mathbb{R}, w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Sweep-Line: from left to right
SL-State: segment tree T that stores vertical edges as intervals.
Events: vertical edges of rectangles.
left vert. edge $\overline{p q}$: 1 . determine the number or intervals in T intersecting $[y(p), y(q)]$.
\longrightarrow update $\max w_{\mathcal{R}}(p)$
2. Insert $[y(p), y(q)]$ into T.

Exercise 4

Given: Set \mathcal{R} of axis-aligned rectangles.
Find: Algorithm that computes $\max _{p \in \mathbb{R}} w_{\mathcal{R}}(p)$ in $O(n \log n)$ time.
For $p \in \mathbb{R}, w_{\mathcal{R}}(p)$ is the number of rectangles in \mathcal{R} that contain p.

Sweep-Line: from left to right
SL-State: segment tree T that stores vertical edges as intervals.
Events: vertical edges of rectangles.
right vert. edge $\overline{p q}$: delete interval $[y(p), y(q)]$.

