

Computational Geometry – WSPD

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Guido Brückner 06.07.2018

Guido Brückner · Übung Algorithmische Geometrie

Task:

A set of cities shall be connected by a new road network.

Task:

A set of cities shall be connected by a new road network.

Idea 1: Euclidean minimum spanning tree

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Idea 1: Euclidean minimum spanning tree

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Idea 1: Euclidean minimum spanning tree Idea 2: complete graph

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Construction costs must remain reasonable, e.g., only O(n) edges.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance ||xy||.

Construction costs must remain reasonable, e.g., only O(n) edges.

Idea 1: Euclidean minimum spanning treeIdea 2: complete graphIdea 3: sparse *t*-spanner

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called *s*-well separated for some s > 0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called *s*-well separated for some s > 0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^d is called *s*-well separated for some s > 0, if A and B can each be covered by a ball of radius r whose distance is at least sr.

- **Obs:**
- s-well separated ⇒ s'-well separated for all s' ≤ s
 singletons {a} and {b} are s-well separated for all s > 0

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B = \{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o(n^2)$ -sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P = \{p_1, \dots, p_n\}$.

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B = \{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

- **Goal:** $o(n^2)$ -sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P = \{p_1, \dots, p_n\}$.
- **Def:** For a point set P and some s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ with • $A_i, B_i \subset P$ for all i
 - $A_i \cap B_i = \emptyset$ for all i
 - $\bigcup_{i=1}^{m} A_i \otimes B_i = P \otimes P$
 - $\{A_i, B_i\}$ s-well separated for all i

Example

28 point pairs

5 Guido Brückner \cdot Übung Algorithmische Geometrie

Example

28 point pairs

12 s-well separated pairs

Example

Thm 3: Given a point set P in \mathbb{R}^d and $s \ge 1$ we can construct an s-WSPD with $O(s^d n)$ pairs in time $O(n \log n + s^d n)$.

Exercise 5

•
$$x := 2/s + 1$$

• $S := \{x^i \mid 0 \le i \le n - 1\}$

$\mathcal{W} = \{A_j, B_j\} \text{ arbitrary } s\text{-WSPD for } S \ (s > 0)$ $1 \le j \le m$

Show:

$$\sum_{j=1}^{m} (|A_j| + |B_j|) = \binom{n}{2} + m$$

Hint: Show that for each j at least one of both sets A_j and B_j is a singleton.

Alternative Definition

Def.: For a point set P and some s > 0 an s-well separated pair decomposition (s-WSPD) is a set of pairs $\{\{A_1, B_1\}, \dots, \{A_m, B_m\}\}$ with • $A_i, B_i \subset P$ for all i• $\{A_i, B_i\}$ s-well separated for all i• for two distinct points $p, q \in P$ there is exactly one index i with $1 \le i \le m$ such that • $p \in A_i$ and $q \in B_i$, or • $a \in A$ and $n \in P$

• $q \in A_i$ and $p \in B_i$.

Exercise 6/7

• P: n Punkte aus dem \mathbb{R}^d

Exercise 6/7

- P: n Punkte aus dem \mathbb{R}^d
- ${}^{\bullet}\ p,q\in P$ and q is the next neighbor of p

Exercise 6/7

- P: n Punkte aus dem \mathbb{R}^d
- ${}^{\bullet}\ p,q\in P$ and q is the next neighbor of p

Given: s-WSPD \mathcal{W} for P with s > 2Let $\{A, B\} \in \mathcal{W}$ with $p \in A$ and $q \in B$

Show that:

- A is a singleton.
- size of $\mathcal W$ is at least n/2.
- if p, q have minimal distance among all pairs, then $\{\{p\}, \{q\}\}\}$ lies in WSPD.