Computational Geometry - WSPD WSPD

Guido Brückner 06.07.2018

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

Idea 1: Euclidean minimum spanning tree

Motivation: Spanners

Task:
 A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.

Idea 1: Euclidean minimum spanning tree

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.
Construction costs must remain reasonable, e.g., only $O(n)$ edges.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph

Motivation: Spanners

Task:

A set of cities shall be connected by a new road network.

But for no pair (x, y) the path length in the road network should be much larger than the distance $\|x y\|$.
Construction costs must remain reasonable, e.g., only $O(n)$ edges.

Idea 1: Euclidean minimum spanning tree
Idea 2: complete graph
Idea 3: sparse t-spanner

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Well-Separated Pairs

Def: A pair of disjoint point sets A and B in \mathbb{R}^{d} is called s-well separated for some $s>0$, if A and B can each be covered by a ball of radius r whose distance is at least $s r$.

Obs: • s-well separated $\Rightarrow s^{\prime}$-well separated for all $s^{\prime} \leq s$

- singletons $\{a\}$ and $\{b\}$ are s-well separated for all $s>0$

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Well-Separated Pair Decomposition (WSPD)

For well-separated pair $\{A, B\}$ we know that the distance for all point pairs in $A \otimes B=\{\{a, b\} \mid a \in A, b \in B, a \neq b\}$ is similar.

Goal: $o\left(n^{2}\right)$-sized data structure that approximates the distances of all $\binom{n}{2}$ pairs of points in a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$.

Def: For a point set P and some $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $A_{i} \cap B_{i}=\emptyset$ for all i
- $\bigcup_{i=1}^{m} A_{i} \otimes B_{i}=P \otimes P$
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i

Example

28 point pairs

Example

28 point pairs

$12 s$-well separated pairs

Example

28 point pairs

$12 s$-well separated pairs

Thm 3: Given a point set P in \mathbb{R}^{d} and $s \geq 1$ we can construct an s-WSPD with $O\left(s^{d} n\right)$ pairs in time $O\left(n \log n+s^{d} n\right)$.

Exercise 5

- $\mathrm{x}:=2 / \mathrm{s}+1$
- $S:=\left\{x^{i} \mid 0 \leq i \leq n-1\right\}$
$\mathcal{W}=\left\{A_{j}, B_{j}\right\}$ arbitrary s-WSPD for $S(s>0)$ $1 \leq j \leq m$

Show:

$$
\sum_{j=1}^{m}\left(\left|A_{j}\right|+\left|B_{j}\right|\right)=\binom{n}{2}+m
$$

Hint: Show that for each j at least one of both sets A_{j} and B_{j} is a singleton.

Alternative Definition

Def.: For a point set P and some $s>0$ an s-well separated pair decomposition (s-WSPD) is a set of pairs $\left\{\left\{A_{1}, B_{1}\right\}, \ldots,\left\{A_{m}, B_{m}\right\}\right\}$ with

- $A_{i}, B_{i} \subset P$ for all i
- $\left\{A_{i}, B_{i}\right\} s$-well separated for all i
- for two distinct points $p, q \in P$ there is exactly one index i with $1 \leq i \leq m$ such that
- $p \in A_{i}$ and $q \in B_{i}$, or
- $q \in A_{i}$ and $p \in B_{i}$.

Exercise 6/7

- $P: n$ Punkte aus dem \mathbb{R}^{d}

Exercise 6/7

- $P: n$ Punkte aus dem \mathbb{R}^{d}
- $p, q \in P$ and q is the next neighbor of p

Exercise 6/7

- $P: n$ Punkte aus dem \mathbb{R}^{d}
- $p, q \in P$ and q is the next neighbor of p

Given: s-WSPD \mathcal{W} for P with $s>2$
Let $\{A, B\} \in \mathcal{W}$ with $p \in A$ and $q \in B$

Show that:

- A is a singleton.
- size of \mathcal{W} is at least $n / 2$.
- if p, q have minimal distance among all pairs, then $\{\{p\},\{q\}\}$ lies in WSPD.

