Computational Geometry – Exercise Voronoi-Diagrams

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Guido Brückner 15.06.2018

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

 $\mathsf{Vor}(P)$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

$$\mathcal{V}(\{p\}) =$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) =$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

 $\mathsf{Vor}(P)$

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

 $\mathsf{Vor}(P)$

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p, p'\}) =$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p, p'\}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p, p'\})$$
 = $\{x : |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p')$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$
= $\text{rel-int} (\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

$$\mathcal{V}(\{p, p', p''\})$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \ \forall q \neq p,p'\}$
= $\text{rel-int} (\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

$$\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P)

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

$$\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P) subdivision

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

$$\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$$

Let P be a set of points in the plane and let $p, p', p'' \in P$.

Voronoi Diagram

Vor(P) subdivision geometric graph

Voronoi cell

$$\mathcal{V}(\{p\}) = \mathcal{V}(p) = \left\{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}p| < |\mathbf{x}q| \, \forall q \in P \setminus \{p\} \right\}$$
$$= \bigcap_{q \neq p} h(p, q)$$

Voronoi edges

$$\mathcal{V}(\{p,p'\})$$
 = $\{x: |xp| = |xp'| \text{ and } |xp| < |xq| \forall q \neq p, p'\}$
= $\text{rel-int}(\partial \mathcal{V}(p) \cap \partial \mathcal{V}(p'))$, d.h. without endpoints

$$\mathcal{V}(\{p, p', p''\}) = \partial \mathcal{V}(p) \cap \partial \mathcal{V}(p') \cap \partial \mathcal{V}(p'')$$

Properties

Theorem 1: Let $P \subset \mathbb{R}^2$ be a set of n points. If all points are collinear, then $\mathrm{Vor}(P)$ consists of n-1 parallel lines. Otherwise $\mathrm{Vor}(P)$ is connected and its edges are either segments or half lines.

Find a set P so that a cell in Vor(P) has linear complexity.

Can this happen with (almost) all cells?

Theorem 2: Let $P \subset \mathbb{R}^2$ be a set on n points. $\mathrm{Vor}(P)$ has at most 2n-5 nodes and 3n-6 edges.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Obviously it's the intersection of Vor(P) and sweep line ℓ at the current time point is not known yet.

Instead, we view the part above ℓ as already fixed!

Enforcing the equality $|pq| = |q\ell|$ gives

$$f_p^{\ell}(x) = \frac{1}{2(p_y - \ell_y)}(x - p_x)^2 + \frac{p_y + \ell_y}{2}$$

What does it have to do with Vor(P)?

What does it have to do with Vor(P)?

Obs.:

- The beach line is *x*-monotone
- Intersection points in the beach line lie on Voronoi edges

What does it have to do with Vor(P)?

Obs.:

- The beach line is *x*-monotone
- Intersection points in the beach line lie on Voronoi edges

Even: Intersection points run along Vor(P)

What does it have to do with Vor(P)?

Obs.:

- The beach line is *x*-monotone
- Intersection points in the beach line lie on Voronoi edges

Even: Intersection points run along Vor(P)

Goal: Store (implicit) contour β_{ℓ} instead of $\operatorname{Vor}(P) \cap \ell$

Give an example where a parabola contributes more than one arc to the beach line.

Give an example where a parabola contributes more than one arc to the beach line.

A parabola, that contributes linear many arcs to the beach line.

A parabola, that contributes linear many arcs to the beach line.

Characterization

Definition: Let q be a point. Define $C_P(q)$ to be the points in P that lie on the empty circle with center q.

Characterization

Definition: Let q be a point. Define $C_P(q)$ to be the points in P that lie on the empty circle with center q.

Characterization

Definition: Let q be a point. Define $C_P(q)$ to be the points in P that lie on the empty circle with center q.

- **Theorem 3:** A point q is a Voronoi vertex $\Leftrightarrow |C_P(q) \cap P| \geq 3$,
 - the bisector $b(p_i, p_j)$ defines a Voronoi edge $\Leftrightarrow \exists q \in b(p_i, p_j)$ with $C_P(q) \cap P = \{p_i, p_j\}$.

Given: Set P of n points.

Describe algorithm that computes for each point $p \in P$ its next neighbor a(p) in P in $O(n \log n)$ time.

Given: Set P of n points.

Describe algorithm that computes for each point $p \in P$ its next neighbor a(p) in P in $O(n \log n)$ time.

ldea:

- 1. Construct Voronoi-Diagramm Vor(P) in $O(n \log n)$ time.
- 2. Using Vor(P) to find for each point p its next neighbor in $\mathcal{O}(n)$ time.

Proof:

Given: Set P of n points.

Describe algorithm that computes for each point $p \in P$ its next neighbor a(p) in P in $O(n \log n)$ time.

ldea:

- 1. Construct Voronoi-Diagramm Vor(P) in $O(n \log n)$ time.
- 2. Using Vor(P) to find for each point p its next neighbor in $\mathcal{O}(n)$ time.

Proof:

Given: Set P of n points.

Describe algorithm that computes for each point $p \in P$ its next neighbor a(p) in P in $O(n \log n)$ time.

ldea:

- 1. Construct Voronoi-Diagramm Vor(P) in $O(n \log n)$ time.
- 2. Using Vor(P) to find for each point p its next neighbor in $\mathcal{O}(n)$ time.

Proof:

Given: Set P of n points.

Describe algorithm that computes for each point $p \in P$ its next neighbor a(p) in P in $O(n \log n)$ time.

ldea:

- 1. Construct Voronoi-Diagramm Vor(P) in $O(n \log n)$ time.
- 2. Using Vor(P) to find for each point p its next neighbor in $\mathcal{O}(n)$ time.

Proof:

Given:

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

- Voronoi vertices
 - ullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Candidates:

- Voronoi vertices
 - \bullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Assume: optimal Point r that does not satisfy criteria.

Construct better solution:

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Candidates:

- Voronoi vertices
 - ullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Assume: optimal Point r that does not satisfy criteria.

Construct better solution:

r is contained in interior of cell.

 \longrightarrow Move r towards boundary.

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Candidates:

- Voronoi vertices
 - ullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Assume: optimal Point r that does not satisfy criteria.

Construct better solution:

r is contained in interior of cell.

 \longrightarrow Move r towards boundary.

r lies on voronoi edge. \longrightarrow Push towards to one of both end points.

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Candidates:

- Voronoi vertices
 - \bullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Assume: optimal Point r that does not satisfy criteria.

Construct better solution:

r is contained in interior of cell.

 \longrightarrow Move r towards boundary.

r lies on voronoi edge. \longrightarrow Push towards to one of both end points.

r lies on edge of R — Push towards intersection of R & Vor.- edges, or

ightharpoonup Push towards corner of R

Guido Brückner · Übung Algorithmische Geometrie

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

- Voronoi vertices
 - ullet Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Given: nuclear plants (set P of points) and preferred region (rectangle R).

Find: Point $p \in R$ with maximum distance to nuclear power plants.

Candidates:

- Voronoi vertices
 - Corners of R
 - Intersections of R & Voronoi-Kanten
- a) Candidates are sufficient
- b) Computation in $\mathcal{O}(n)$ time

Idea: Check all candidates.

There are O(n) many:

- O(n) many Vor.—edges & —vertices
- ${\cal R}$ intersects each edge in at most two intersection points.
- \longrightarrow Computation in O(n) linear time.

Now: Convex polygon P with m nodes instead of rectangle R.

Now: Convex polygon P with m nodes instead of rectangle R.

Now: Convex polygon P with m nodes instead of rectangle R.

- Voronoi vertices
- ullet Corners of R
- Intersections of R & Voronoi-Kanten
- 1) Candidates are sufficient
- 2) Computation in $\mathcal{O}(n+m)$ time

Now: Convex polygon P with m nodes instead of rectangle R.

- Voronoi vertices
- ullet Corners of R
- Intersections of R & Voronoi-Kanten
- 1) Candidates are sufficient
- 2) Computation in $\mathcal{O}(n+m)$ time
- 1.) Same arguments as in a).

Now: Convex polygon P with m nodes instead of rectangle R.

- Voronoi vertices
- ullet Corners of R
- Intersections of R & Voronoi-Kanten
- 1) Candidates are sufficient
- 2) Computation in $\mathcal{O}(n+m)$ time
- 1.) Same arguments as in a).

Now: Convex polygon P with m nodes instead of rectangle R.

- Voronoi vertices
- ullet Corners of R
- Intersections of R & Voronoi-Kanten
- 1) Candidates are sufficient
- 2) Computation in $\mathcal{O}(n+m)$ time
- 1.) Same arguments as in a).

Now: Convex polygon P with m nodes instead of rectangle R.

- Voronoi vertices
- \bullet Corners of R
- Intersections of R & Voronoi-Kanten
- 1) Candidates are sufficient
- 2) Computation in $\mathcal{O}(n+m)$ time
- 1.) Same arguments as in a).

- 2.) Determine set $\mathcal C$ of all cells that are intersected by P or contained in P in O(m+n) time.
 - \rightarrow set $\mathcal C$ induces candidates.

Find cells intersected by P:

Init.: $C \leftarrow \text{cell containing } p_0, i \leftarrow 0.$

- 1) Mark C as visited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Find cells intersected by P:

Init.: $C \leftarrow \text{cell containing } p_0, i \leftarrow 0.$

- 1) Mark C as visited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies not in C.

 $C \leftarrow C'$, where C' is neighbor cell induced by intersection s.

Find cells intersected by P:

Init.: $C \leftarrow \text{cell containing } p_0, i \leftarrow 0.$

- 1) Mark C as visited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies not in C.

 $C \leftarrow C'$, where C' is neighbor cell induced by intersection s.

Case 2: s lies not on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies in C.

$$i \leftarrow i + 1$$

Find cells intersected by P:

Init.: $C \leftarrow \text{cell containing } p_0, i \leftarrow 0.$

- 1) Mark C as visited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies not in C.

 $C \leftarrow C'$, where C' is neighbor cell induced by intersection s.

Case 2: s lies not on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies in C.

$$i \leftarrow i + 1$$

3) Repeat 1)–3) until P is traversed.

Find cells intersected by P:

Init.: $C \leftarrow \text{cell containing } p_0, i \leftarrow 0.$

- 1) Mark C as visited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

 $\longrightarrow p_{i+1}$ lies not in C.

 $C \leftarrow C'$, where C' is neighbor cell induced by intersection s.

Case 2: s lies not on segment $\overline{p_i p_{i+1}}$.

$$\longrightarrow p_{i+1}$$
 lies in C .

$$i \leftarrow i + 1$$

3) Repeat 1)–3) until P is traversed.

Find cells contained in polygon.

depth-first search, bounded by the cells found in the first step.

- Average running time O(1), because each cell has O(1) complexity in average.
- 1) Mark C as sited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

$$\longrightarrow p_{i+1}$$
 lies not in C .

 $C \leftarrow C'$, where C' is neighbor cell induced by intersection s.

Case 2: s lies not on segment $\overline{p_i p_{i+1}}$.

$$\longrightarrow p_{i+1}$$
 lies in C .

$$i \leftarrow i + 1$$

3) Repeat 1)–3) until P is traversed.

Find cells contained in polygon.

depth-first search, bounded by the cells found in the first step.

- Average running time O(1), because each cell has O(1) complexity in average.
- 1) Mark C as sited
- 2) Determine intersection s of half-line through p_i, p_{i+1} with cell C

Case 1: s lies on segment $\overline{p_i p_{i+1}}$.

$$\longrightarrow p_{i+1}$$
 lies not in C .

$$C \leftarrow C'$$
, where C' is neighbor cell

Since P is convex, each Voronoi edge is intersected at most twice.

 \longrightarrow O(m+n) running time.

$$p_{i+1}$$
 lies in C . $i \leftarrow i+1$

3) Repeat 1)–3) until P is traversed.

Find cells contained in polygon.

depth-first search, bounded by the cells found in the first step.