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P = {p17p27 JRI 7p’n}
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he Post Office Problem
I \ 1
Problem: 1) Define Voronoi cells, edges, and vertices!
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he Post Office Problem

I \ /

Problem: 1) Define Voronoi cells, edges, and vertices!

2) Are Voronoi cells convex?
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Voronoi Diagram

® Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (gp 1P q)

® Voronoi edges

V({p,p'}) =
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Voronoi Diagram

® Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (gp 1P q)

® Voronoi edges
V({p,p'}) = {x: [ap| = |xp

|

and |zp| < |xq| Vg # p,p'}
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Voronoi Diagram

® Voronoi cell
V({p}) =V(p) = {z € R? : |zp| < |zg| Vg € P\ {p}}

= (Ngzp MP:0)
® Voronoi edges

V(p,p'y)  =Ax:|op| = |zp] and [zp] <|zq| Vg 7 p,p'}
= 0V(p) NOV(p')

|
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Voronoi Diagram

® Voronoi cell
V({p}) =V(p) = {z € R® : |ap| < |zq| Vg € P\ {p}}
= (Ngzp MP:0)
® Voronoi edges

V({p,p'}) = {z: |zp| = [zp'] and |zp| <|zq| Yq # p,p'}
= rel-int(0V(p) N OV(p’)), d.h. without endpoint:
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he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Vor(P) Y subdivision
!/
® \/oronoi cell

V({p}) =V(p) = {z e R?: |zp| < |z¢|VYq € P\ {p}}
= (gp 1P q)
® Voronoi edges

V({p,p'}) = {z: |zp| = [zp'] and |zp| <|zq| Yq # p,p'}
= rel-int(0V(p) N OV(p’)), d.h. without endpoint:

Voronoi Diagram

® \/oronoi vertices

V({p,p,p"}) =0V(p)Nnov(p')nov(p")

Guido Briickner - Ubung Algorithmische Geometrie



he Voronoi Diagram

Let P be a set of points in the plane and let p,p’,p” € P.

Voronoi Diagram subdivision

geometric graph
® Voronoi cell

V({p}) =V(p) = {z e R?: |zp| < |z¢|VYq € P\ {p}}
= (gp 1P q)
® Voronoi edges

V({p,p'}) = {z: |zp| = [zp'] and |zp| <|zq| Yq # p,p'}
= rel-int(0V(p) N OV(p’)), d.h. without endpoint:

® \/oronoi vertices

V({p,p,p"}) =0V(p)Nnov(p')nov(p")
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Properties

Theorem 1: Let P C R? be a set of n points. If all points are
collinear, then Vor(P) consists of n — 1 parallel
lines. Otherwise Vor(P) is connected and its

edges are either segments or half lines.

Find a set P so that a cell in Vor(P) has linear complexity.

Can this happen with (almost) all cells?

Theorem 2: Let P C R? be a set on n points. Vor(P) has at
most 2n — 5 nodes and 3n — 6 edges.
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Exercise 1

® Punkt @
o
° ® \/oronoi-Knoten §
° ® \Voronoi-Kante @
o
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Exercise 1

® Punkt @

° ® \/oronoi-Knoten @
° ® \Voronoi-Kante @

A

Average complexity of voronoi-cell?

X / ° \
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In the Direction of the Sweep Line

Obviously it's the intersection of Vor(P) and sweep line ¢ at
the current time point Is not known yet.
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In the Direction of the Sweep Line

Obviously it's the intersection of Vor(P) and sweep line ¢ at
the current time point Is not known yet.

Instead, we view the part above ¢ as already fixed!

not fixed
RN Y
}
Enforcing the equality |pq| = |gf| gives
1 Dy + £
fﬁ ) — T — Dy 2 | Y Y
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he Beach Line

}

Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.
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Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?

Obs.: ® The beach line is xz-monotone
® Intersection points in the beach line lie on Voronoi
edges
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Definition: The beach line 5, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?

Obs.: ® The beach line is xz-monotone
® Intersection points in the beach line lie on Voronoi
edges

Even: Intersection points run along Vor(P)
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he Beach Line

}

Definition: The beach line &, is the lower envelope of
parabolas f]f for the points already found.

What does it have to do with Vor(P)?

Obs.: ® The beach line is xz-monotone
® Intersection points in the beach line lie on Voronoi
edges

Even: Intersection points run along Vor(P)
Goal: Store (implicit) contour 3, instead of Vor(P) N /¢
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Exercise 2

Give an example where a parabola contributes more than one
arc to the beach line.
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Exercise 2

Give an example where a parabola contributes more than one
arc to the beach line.
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Exercise 2

A parabola, that contributes linear many arcs to the beach line.
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A parabola, that contributes linear many arcs to the beach line.
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Characterization

Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.
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Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.

, ¢r C.I).
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Characterization

Definition: Let ¢ be a point. Define Cp(q) to be the points in
P that lie on the empty circle with center g.

, ¢r C.I).

Theorem 3: ©® A point ¢ is a Voronoi vertex
= ‘Cp(q) ﬂP’ > 3,
® the bisector b(p;, p,;) defines a Voronoi edge

& dg € b(pi,pj) with Cp(q) NP ={p;,p; }.

7 ./.

e
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Exercise 3 — Next Neighbor

Given: Set P of n points.
Describe algorithm that computes for each point p € P its next neighbor
a(p) in P in O(nlogn) time.
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Exercise 3 — Next Neighbor

Given: Set P of n points.

Describe algorithm that computes for each point p € P its next neighbor
a(p) in P in O(nlogn) time.

Idea: 1. Construct Voronoi-Diagramm Vor(P) in O(nlogn) time.

2. Using Vor(P) to find for each point p its next neighbor in
O(n) time.

Proof:
Show that a(p) lies in a adjacent cell of
the cell of p.
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Exercise 4 — Nuclear Power Plants

Given:
Find: Point p € R with maximum distance to nuclear power plants.
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Exercise 4 — Nuclear Power Plants

Given: nuclear plants (set P of points) and preferred region (rectangle R).
Find: Point p € R with maximum distance to nuclear power plants.
Candidates: ® \/oronoi vertices

® Corners of R
® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient
b) Computation in O(n) time

Guido Briickner - Ubung Algorithmische Geometrie



Exercise 4 — Nuclear Power Plants
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Find: Point p € R with maximum distance to nuclear power plants.
Candidates: ® \/oronoi vertices

® Corners of R
® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient

b) Computation in O(n) time

Assume: optimal Point r that does not
satisfy criteria.

Construct better solution:
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Assume: optimal Point r that does not
satisfy criteria.

Construct better solution:

r 1s contained in interior of cell.
—» Move r towards boundary.
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Given: nuclear plants (set P of points) and preferred region (rectangle R).
Find: Point p € R with maximum distance to nuclear power plants.
Candidates: ® \/oronoi vertices

® Corners of R
® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient

b) Computation in O(n) time

Assume: optimal Point r that does not
satisfy criteria.

Construct better solution:

r 1s contained in interior of cell.
—» Move r towards boundary.

r lies on voronoi edge. —#  Push towards to one of both end points.
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Exercise 4 — Nuclear Power Plants

Given: nuclear plants (set P of points) and preferred region (rectangle R).
Find: Point p € R with maximum distance to nuclear power plants.
Candidates: ® \/oronoi vertices

® Corners of R
® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient
b) Computation in O(n) time

Assume: optimal Point r that does not
satisfy criteria.

Construct better solution:

r 1s contained in interior of cell.
—» Move r towards boundary.

r lies on voronoi edge. —#  Push towards to one of both end points.

r lies on edge of R —» Push towards intersection of R & Vor .-
edges, or
—»  Push towards corner of R
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Exercise 4 — Nuclear Power Plants

Given: nuclear plants (set P of points) and preferred region (rectangle R).
Find: Point p € R with maximum distance to nuclear power plants.
Candidates: ® \/oronoi vertices

® Corners of R
® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient
b) Computation in O(n) time
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Exercise 4 — Nuclear Power Plants

Given: nuclear plants (set P of points) and preferred region (rectangle R).
Find: Point p € R with maximum distance to nuclear power plants.

Candidates: ® \/oronoi vertices
® Corners of R

® |ntersections of R & Voronoi-Kanten

a) Candidates are sufficient
b) Computation in O(n) time

Idea: Check all candidates.

There are O(n) many:
- O(n) many Vor.—edges & —vertices

- R intersects each edge in at most
two Intersection points.

— Computation in O(n) linear time.
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Exercise 4 — Nuclear Power Plants

Now: Convex polygon P with m nodes instead of rectangle R.
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Exercise 4 — Nuclear Power Plants

Now: Convex polygon P with m nodes instead of rectangle R.
Candidates:

® \/oronoi vertices
® Corners of R

® |ntersections of R &
Voronoi-Kanten

1) Candidates are sufficient
2) Computaiton in O(n + m) time
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Exercise 4 — Nuclear Power Plants

Now: Convex polygon P with m nodes instead of rectangle R.
Candidates:

® \/oronoi vertices
® Corners of R

® |ntersections of R &
Voronoi-Kanten

1) Candidates are sufficient
2) Computaiton in O(n + m) time

1.) Same arguments as in a).
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Exercise 4 — Nuclear Power Plants

Now: Convex polygon P with m nodes instead of rectangle R.

Candidates:

® \/oronoi vertices

® Corners of R
® |ntersections of R &
Voronoi-Kanten

1) Candidates are sufficient
2) Computaiton in O(n + m) time

1.) Same arguments as in a).

2.) Determine set C of all cells that are intersected by P or contained in
P in O(m + n) time.
— set C induces candidates.
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Construct Set C

Find cells intersected by P:
Init.: C < cell containing pg, 7 < 0.
1) Mark C as visited

2) Determine intersection s of half-line
through p;, p;11 with cell C
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Construct Set C

Find cells intersected by P:
Init.: C < cell containing pg, 7 < 0.
1) Mark C as visited

2) Determine intersection s of half-line
through p;, p;11 with cell C

Case 1: s lies on segment p;p; 1.
— p;21 lies not in C.

C <+ C’, where C' is neighbor cell
induced by intersection s.
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Construct Set C

Find cells intersected by P:
Init.: C < cell containing pg, 7 < 0.
1) Mark C as visited

2) Determine intersection s of half-line
through p;, p;+1 with cell C
Case 1: s lies on segment p;p; 1.
— p;21 lies not in C.

C <+ C’, where C' is neighbor cell
induced by intersection s.

Case 2: s lies not on segment p;p; 1.
—» Di+1 lies in C.
11+ 1
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Construct Set C

Find cells intersected by P:
Init.: C < cell containing pg, 7 < 0.
1) Mark C as visited

2) Determine intersection s of half-line
through p;, p;11 with cell C
Case 1: s lies on segment p;p; 1.
— p;21 lies not in C.
C <+ C', where C’ is neighbor cell
induced by intersection s.
Case 2: s lies not on segment p;p;11.
—» p;11 liesin C.
11+ 1
3) Repeat 1)-3) until P is traversed.
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Construct Set C

Find cells intersected by P:
Init.: C < cell containing pg, 7 < 0.

1) Mark C as visited
2) Determine intersection s of half-line
through p;, p;+1 with cell C
Case 1: s lies on segment p;p; 1.
— p;21 lies not in C.

C <+ C’, where C' is neighbor cell
induced by intersection s.

Case 2: s lies not on segment p;p;11.
—» p;11 liesin C.
11+ 1
3) Repeat 1)-3) until P is traversed.

Find cells contained in polygon.

depth-first search, bounded by the cells found in the first step.
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Construct Set C

Frl Average running time O(1), because each
INcell has O(1) complexity in average.

1) Mark C' as\ fsited

2) Determine intersection s of half-line
through p;, p;11 with cell C

Case 1: s lies on segment p;p;1 1.
— p;21 lies not in C.
C <+ C', where C’ is neighbor cell
induced by intersection s.

Case 2: s lies not on segment p;p;11.
—» p;11 liesin C.
11+ 1
3) Repeat 1)-3) until P is traversed.

Find cells contained in polygon.
depth-first search, bounded by the cells found in the first step.
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Construct Set C

Frl Average running time O(1), because each
INcell has O(1) complexity in average.

1) Mark C' as\ fsited

2) Determine intersection s of half-line
through p;, p;o1 with cell C

Case 1: s lies on segment p;p; 1.
— p;21 lies not in C.

C < C', where (' is neighbor cell 5x\__\ [/

Since P is convex, each Voronoi edge is intersected at most twice.
—» O(m + n) running time.

—» Di+1 lies in C. \‘\\
i—i+1 /.

3) Repeat 1)-3) until P is traversed.

Find cells contained in polygon.
depth-first search, bounded by the cells found in the first step.
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