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Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.
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he Art-Gallery-Problem AT

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

FI )
Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P

Observation:  each camera observes a star-shaped region

Definition: Point p € P is visible fromce Pifcpe P
Goal: Use as few cameras as possible! %
— The number depends on the number of corners n and on the shape of P
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Observation of the Border AT
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Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.
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Problem Simplification

Observation: It is easy to guard a triangle
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Karlsruhe Institute of Technology

Observation: It is easy to guard a triangle —
— I
Idea: Decompose P into triangles and guard each of them
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Observation: It is easy to guard a triangle —
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.
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Problem Simplification ﬂ(IT

Karlsruhe Ins

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

The proof implies a recursive O(n?)-Algorithm!
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Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.
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he Art-Gallery-Theorem [Chvatal '75]

AT
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Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

|

® Sufficiency on the board
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he Art-Gallery-

heorem [Chvétal '75] AT
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Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

RN,

® Sufficiency on the board

Conclusion: Given a triangulation, the |n/3| cameras that guard
the polygon can be placed in O(n) time.
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he Art-Gallery-

heorem [Chvétal '75] AT
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Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

W

® Sufficiency on the board

Conclusion: Given a triangulation, the |n/3| cameras that guard
the polygoN.can be placed in O(n) time.

Can we do better than O(n?) described before?
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riangulation of Polygons AT
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2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢/ N P is connected.

&,
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riangulation of Polygons QAT

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢/ N P is connected.

The two paths from A A ¢
P/

the topmost to the

bottomost point X

bounding the polygon,
never go upward
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riangulation of Polygons AT

tttttttttttttttttttttttttttttt

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢ N P is connected.

&,

® Step 2: Triangulate the resulting y-monotone polygons
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Partition into y-monotone Polygons AUT
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Idea: Five different types of vertices
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Idea: Five different types of vertices

— Turn vertices:

— regular vertices
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ldeas for Sweep-Line-Algorithm AUT
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1) Diagonals for the split vertices
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1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U> left(v)
respect to the horizontal sweep

line /¢ v
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1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep
line ¢ v

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)
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ldeas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep
line ¢ v

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

® for each edge e save the bottommost vertex w such that
left(w) = e; notation

® when ¢ passes through a split vertex v,
we connect v with helper(left(v))
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ldeas for Sweep-Line-Algorithm AUT
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2) Diagonals for merge vertices \y %
® when the vertex v is reached, we 14
set helper(left(v)) = v left(v) *
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ldeas for Sweep-Line-Algorithm AUT

2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v,v’) is introduced
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2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v,v’) is introduced v

® in case we reach a regular vertex v’ /
such that helper(left(v’)) is v the *
diagonal (v,v’) is introduced
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ldeas for Sweep-Line-Algorithm AUT

2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v, ") is introduced v

® in case we reach a regular vertex v’ /
such that helper(left(v’)) is v the *
diagonal (v, ") is introduced

® if the end of v’ of left(v) is reached,
then the diagonal (v,v’) is /
introduced Y 4
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Algorithm MakeMonotone(P) AUT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
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Algorithm MakeMonotone(P) AUT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T < add the left edge e
helper(e) < v

/U\helper(e)
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Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do

v < Q.nextVertex() hel

per(e
Q.deleteVertex(v) ( (©)
 handleVertex(v)
return D e
v
handleStartVertex(vertex v) handleEndVertex(vertex v)

T < add the left edge e e < left edge
helper(e) < v if isMergeVertex(helper(e)) then

| D «+ add edge (helper(e), v)

v = helper(e)
/\ remove e from T
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Algorithm MakeMonotone(P) AT
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MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleSplitVertex(vertex v)

e < Edge to the left of v in T \

D <+ add edge (helper(e),v) helper(e)
helper(e) < v y

T < add the right edge ¢’ of v ¢

helper(e’) < v /
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Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))

Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do

v <+ Q.nextVertex()

Q.deleteVertex(v)

| handleVertex(v) handleMergeVertex(vertex v)

e < right edge
if isMergeVertex(helper(e)) then
L D <+ add edge (helper(e), v)

/
helper(c’) \/ remove e from T
o \M helper(e) e/ < edge to the left of v in T
if isMergeVertex(helper(e’))
v then

L D < add edge (helper(e’), v)
helper(e’) <+ v

return D
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Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do handleRegularVertex(vertex v)
v < Q.nextVertex() if P lies locally to the right of v
Q.deleteVertex(v) then
handleVertex(v) e, e’ < above, below edge
return D if isMergeVertex(helper(e))
helper then

| D < add edge (helper(e), v)

e remove e from T
" helper / T < add ¢’; helper(e’) + v
else
o/ e < edge to the left of v
! add-eto T

if isMergeVertex(helper(e))
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Data structure: Doubly-connected edge list (DCEL)

11 Guido Briickner - Ubung Algorithmische Geometrie



Insertion Diagonals AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Claim:
. Insertion of diagonals in
O(1) time.
/

Data structure: Doubly-connected edge list (DCEL)
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Doubly Connected Edge List AT

Karlsruhe Institute of Technology

O

® Map corresponds with subdivision of
plane into polygons.
® Subdivision corresponds with
embedding of planar graph with
® vertices
® edges
® faces

Which operations should be supported by

the data structure?

® Traverse edges of face.
® Go from face to face by edges.
® Traverse neighboring vertices in cyclic order.
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Doubly Connected Edge List(DCEL) AUT

tttttttttttttttttttttttttttttt

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
t £
win(e) o ace(e) ® Predecessor prev(e) & Successor next(e)
® incident face
‘\next(e)

® Bounding edges for outer face.

® Edge list inner(f) for holes.
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twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;
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Doubly Connected Edge List (DCEL) AUT

tttttttttttttttttttttttttttttt

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

prev(e) ® Vertex origin(v)

£ ® Opposite edge twin(e)

e ) ® Predecessor prev(e) & Successor next(e) ?
N\ next(e) A

a) Each vertex has O(1) incident edges.
® |nitially each vertex has degree 2.
® Each vertex is at most once helper +1
® Each vertex is handled at most once : +2

twin(e)

b) Using a appropriate ordering, we can find the desired edges.
-
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Linear Running Time QAT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.
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MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q < priority queue for V(P) sorted lexicographically; 7 <« ()
(binary search tree for sweep-line status)
while O # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.

Observation:

Creation of Q costs O(nlogn) time.

Querries in T cost O(nlogn) time in total.
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Linear Running Time QAT

tttttttttttttttttttttttttttttt
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Linear Running Time QAT

e Institute of Technology

Step 1: Create queue Q in O(n) time.

Traverse P in counter-clockwise order.
[ Add consecutive regular vertices to a list.

Observation:
® Lists are sorted by y-coordinate.

® O(1) many lists.

1. Apply merge-step of Merge-Sort on lists,
to obtain one list.

2. Insert turn vertices into list maintaining
the sorting.

O(n) time, since
O(1) many lists and O(1) many turn vertices.

— Queue O can be created in O(n) time.

16 Guido Briickner - Ubung Algorithmische Geometrie



Linear Running Time QAT

tttttttttttttttttttttttttttttt

Step 2: Replace T.

Task of 7: Determine for vertex v the
edge left(v) directly left to v.
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Linear Running Time QAT

Step 2: Replace T.

Task of 7: Determine for vertex v the
edge left(v) directly left to v.

Idea: For each vertex v precompute left(v).

Sweep-Line: from top to bottom.
Ly Sweep-State:
Edges that intersect sweep-line

Event: Vertices of polygon.

Determine edge that intersects sweep-line
Ly directly left to current node.

Sweep-line intersects O(1) many edges,

since O(1) many lists and O(1) many turn vertices.
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Splitting Polygons. AT

tttttttttttttttttttttttttttttt

Given: Polygon P with n vertices.

Find: O(nlogn)-Algorithm, that splits P into two simple polygons
such that each has at most |2n/3]| + 2 vertices.

Hint: Triangulate P and make use of the dual graph of the triangulation.

X

X X
X
X % e
b4 X
X
% * v
. X
X
X
p 4
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Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) X

L 9 5%
X
n =19 X
—(|2n/3] +2) =5 g ) 5
n—(12n/3] +2) = ; % )
12n/3] +2 =14 y
X % 54
Annahme: X o
Tree has root with degree > 2. X
Edges are directed to the root. %
X
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Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T’

while u has degree 1 do
if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then

| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)
Delete u from T

| u < parent(u)

n =19

n—(|2n/3]|+2)=5 46

2n/3| +2=14

Annahme:

Tree has root with degree > 2. \

Edges are directed to the root.
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Linear programming AT

stitute of Technology

Definition: Given a set of linear constraints H and a linear
objective function ¢ in R?, a linear program (LP)
Is formulated as follows:

maximize c1T1+ coxo + -+ cqgxry

under constr. a1,1T1 + -+ 41,44 < b \
a2 121+ -+ agqtqa < b2
» H
Ap, 121 + - Ap, dLd < bn J
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Linear programming AT

tttttttttttttttttttttttttttttt

Definition: Given a set of linear constraints H and a linear
objective function ¢ in R?, a linear program (LP)
Is formulated as follows:

maximize c1T1+ coxo + -+ cqgxry

under constr. a1,1T1 + -+ 41,44 < b \
a2 121+ -+ agqtqa < b2
» H
Ap, 121 + - Ap, dLd < bn J

® [{ is a set of half-spaces in R.

® We are searching for a point = € (), . h, that maximizes
cl'z, ie. max{ctz | Az < b,z > 0}.

® Linear programming is a central method in operations
research.
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Algorithms for LPs AT

tttttttttttttttttttttttttttttt

There are many algorithms to solve LPs:

® Simplex-Algorithm [Dantzig, 1947]
® Ellipsoid-Method [Khatchiyan, 1979]
® Interior-Point-Method  [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).
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There are many algorithms to solve LPs:

® Simplex-Algorithm [Dantzig, 1947]
® Ellipsoid-Method [Khatchiyan, 1979]
® Interior-Point-Method  [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

Today: Special case d = 2

Possibilities for the solution space
feasible region (| H is bounded

NH=10 (N H is unbounded solution is not unique solution
infeasible In the direction ¢ unique
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rains A\‘(IT

stitute of Technology

Algorithm: Which trains are
at least once in leading
position until time %,
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First approach AT

tttttttttttttttttttttttttttttt

Idea: Compute the feasible region (| H and search for the
vertex p, that maximizes ¢! p.

® The half-planes are convex
® Let's try a simple Divide-and-Conquer Algorithm

IntersectHalfplanes(H)

if |[H| =1 then
| '+ H
else

(H1, Hs) < SplitInHalves(H )
C'1 < IntersectHalfplanes(H)
(5 < IntersectHalfplanes(H>)
C' < IntersectConvexRegions(C7, C5)

return C
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Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.
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Invariant:  Current best solution is a unique corner of the
current feasible polygon
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unbounded feasible regions?
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Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant:  Current best solution is a unique corner of the
/ current feasible polygon

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y< M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

A mi

Ac
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Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant:  Current best solution is a unique wof the

/ current feasible polygon

When the optimal point is not
unique, select lexicographically
smallest one!

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y< M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

A mq

Ac

ma

>
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Bounded LPs AT
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Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant:  Current best solution is a unique gorner of the
/ current feasible polygon \

When the optimal point is not
unique, select lexicographically
smallest one!

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y < M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

Consider a LP (H,c) with H = {h1,...,hy}, ¢ = (cz,cy). We
denote the first ¢ constraints by H; = {m1, mo, h1,...,h;},
and the feasible polygon defineed by them by
C’i:mlﬂmgﬂhlﬁ---ﬂhi
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Properties AUT

stitute of Technology

® each region C); has a single optimal vertex v;
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® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C
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® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane h; is
added?
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® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane h; is
added?

Lemma 1: For 1 < i <n and bounding line ¢; of h; holds that:
1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.
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1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.

hs

U4

26 Guido Briickner - Ubung Algorithmische Geometrie



Randomized incremental algorithm AUT

tttttttttttttttttttttttttttttt

2dRandomizedBoundedLP(H, ¢, m1, ms3)

C() — mq 1My
Vo < unique angle of Cj
H <+ RandomPermutation(H)
for : +— 1 ton do
if v,_1 € h; then
| V; < Vj—1
else
V; < 1dBoundedLP(J(H7;_1), f;)

if V; — nil then
| return infeasible

return v,
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Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[l...n|
Output: Array A, rearranged into a random permutation

for £ < n to 2 do
r <— Random(k)
exchange A|r| and A|k]
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Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[l...n|
Output: Array A, rearranged into a random permutation

for £ < n to 2 do
r <— Random(k)
exchange A|r| and A|k]

b) Prove, that the stamtent of a) if not true, if we replace k by
n in the second line.
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Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

RandomPermutation(A)

Input: Array A[l...n]
Output: Array A, rearranged into a random permutation
for £ < 2 ton do
r < Random(k)
L exchange A|r| and A|k]

Each permutation of A has the same probability to be chosen.

Proof by induction:
® A[1] is uniformly distributed
® A[1,...,n — 1] is uniformly distributed
® Aln| is chosen uniformly at random
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Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

RandomPermutation(A)

Input: Array A[l...n]
Output: Array A, rearranged into a random permutation
for £ < 2 ton do
r < Random(n)
L exchange A|r| and A|k]

The permutations of A are not chosen with the same probability.

® the algorithm uniformly generates n™ (non-distinct)
permutations

® there are n! distinct permutations

® since n — 1 does not divide n, n™ is not a multiple of n!
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