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The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.
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The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

Observation: each camera observes a star-shaped region

Definition: Point p ∈ P is visible from c ∈ P if cp ∈ P

X
7

Goal: Use as few cameras as possible!

Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P

→ The number depends on the number of corners n and on the shape of P

NP-hard!
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Observation of the Border

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P , then they also observe
the complete interior of P .
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Guido Brückner · Übung Algorithmische Geometrie

Observation of the Border

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P , then they also observe
the complete interior of P .

3



Guido Brückner · Übung Algorithmische Geometrie

Problem Simplification

Observation: It is easy to guard a triangle
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Guido Brückner · Übung Algorithmische Geometrie

Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

4
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Problem Simplification

Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n− 2 triangles.

The proof implies a recursive O(n2)-Algorithm!
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Can we do better?
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

[Chvátal ’75]
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:
• Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

• Sufficiency on the board

[Chvátal ’75]
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The Art-Gallery-Theorem

Theorem 2: For a simple polygon with n vertices, bn/3c cameras are
sometimes necessary and always sufficient to guard it.

Proof:
• Find a simple polygon with n corners that requires ≈ n/3 cameras!

7 X

• Sufficiency on the board

[Chvátal ’75]

Conclusion: Given a triangulation, the bn/3c cameras that guard
the polygon can be placed in O(n) time.

Can we do better than O(n2) described before?
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Triangulation of Polygons

2-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line `,
the interection ` ∩ P is connected.

7X

`
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Guido Brückner · Übung Algorithmische Geometrie

Triangulation of Polygons

2-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line `,
the interection ` ∩ P is connected.

7X

`

• Step 2: Triangulate the resulting y-monotone polygons
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Partition into y-monotone Polygons

Idea: Five different types of vertices

7
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Partition into y-monotone Polygons

Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

• start vertices

• split vertices

α

β

if α < 180◦

if β > 180◦
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Partition into y-monotone Polygons

Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

• start vertices

• split vertices

• end vertices

α

γ

β

if α < 180◦

if β > 180◦

if γ < 180◦
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Partition into y-monotone Polygons

Idea: Five different types of vertices

– Turn vertices:
vertical change in direction

– regular vertices

• start vertices

• split vertices

• end vertices

• merge vertices

α

δ

γ

β

if α < 180◦

if β > 180◦

if γ < 180◦

if δ > 180◦
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v
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v

left(v)

• compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v

left(v)

• connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

e
helper(e)

• for each edge e save the bottommost vertex w such that
left(w) = e; notation helper(e) := w

`

• compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `

w
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Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

v

left(v)

• connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

e
helper(e)

• for each edge e save the bottommost vertex w such that
left(w) = e; notation helper(e) := w

` v

• compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line `

w

• when ` passes through a split vertex v,
we connect v with helper(left(v))
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
• when the vertex v is reached, we

set helper(left(v)) = v

v

left(v)
`
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
• when the vertex v is reached, we

set helper(left(v)) = v

v

• when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
• when the vertex v is reached, we

set helper(left(v)) = v

v

• when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′

• in case we reach a regular vertex v′

such that helper(left(v′)) is v the
diagonal (v, v′) is introduced

v

`
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Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices
• when the vertex v is reached, we

set helper(left(v)) = v

v

• when we reach a split vertex v′

such that left(v′) = left(v) the
diagonal (v, v′) is introduced

` v′

• in case we reach a regular vertex v′

such that helper(left(v′)) is v the
diagonal (v, v′) is introduced

v

`
v′

• if the end of v′ of left(v) is reached,
then the diagonal (v, v′) is
introduced

v

`v′
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T ← add the left edge e
helper(e)← v

v = helper(e)
e

10
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T ← add the left edge e
helper(e)← v

v = helper(e)
e

handleEndVertex(vertex v)

e← left edge
if isMergeVertex(helper(e)) then
D ← add edge (helper(e), v)

remove e from T

e
v

helper(e)
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleSplitVertex(vertex v)

e← Edge to the left of v in T
D ← add edge (helper(e), v)
helper(e)← v
T ← add the right edge e′ of v
helper(e′)← v

helper(e)
e

v

e′
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleMergeVertex(vertex v)

e← right edge
if isMergeVertex(helper(e)) then
D ← add edge (helper(e), v)

remove e from T
e′ ← edge to the left of v in T
if isMergeVertex(helper(e′))
then
D ← add edge (helper(e′), v)

helper(e′)← v

v

e
helper(e)e′

helper(e′)

10
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Algorithm MakeMonotone(P)

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleRegularVertex(vertex v)

if P lies locally to the right of v
then
e, e′ ← above, below edge
if isMergeVertex(helper(e))
then
D ← add edge (helper(e), v)

remove e from T
T ← add e′; helper(e′)← v

else
e← edge to the left of v
add e to T
if isMergeVertex(helper(e))
then
D ← add (helper(e), v)

helper(e)← v

v

e

e′

helper(e)
v

e

helper(e)
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Insertion Diagonals
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O(1) time.
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Doubly Connected Edge List

• Map corresponds with subdivision of
plane into polygons.

• Subdivision corresponds with
embedding of planar graph with
• vertices
• edges
• faces

Which operations should be supported by
the data structure?

• Traverse edges of face.
• Go from face to face by edges.
• Traverse neighboring vertices in cyclic order.

12
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Doubly Connected Edge List(DCEL)

• Faces
• Bounding edges for outer face.

Ingredients:
• Vertices

• Edge = two half-edges

twin(e)
e

next(e)

prev(e)

face(e)

• Vertex origin(v)
• Opposite edge twin(e)
• Predecessor prev(e) & Successor next(e)
• incident face

• Coordinates (x(v), y(v))
• (first) outgoing edge

• Edge list inner(f) for holes.
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• Faces
• Bounding edges for outer face.

Ingredients:
• Vertices

• Edge = two half-edges

twin(e)
e

next(e)

prev(e)

face(e)

• Vertex origin(v)
• Opposite edge twin(e)
• Predecessor prev(e) & Successor next(e)
• incident face

• Coordinates (x(v), y(v))
• (first) outgoing edge

• Edge list inner(f) for holes.

a) Each vertex has O(1) incident edges.
• Initially each vertex has degree 2.
• Each vertex is at most once helper +1
• Each vertex is handled at most once : +2

b) Using a appropriate ordering, we can find the desired edges.

14
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Linear Running Time

Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

15
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Linear Running Time

Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.

Observation:

Creation of Q costs O(n log n) time.

Querries in T cost O(n log n) time in total.

MakeMonotone(Polygon P )

D ← doubly-connected edge list for (V (P ), E(P ))
Q ← priority queue for V (P ) sorted lexicographically; T ← ∅

(binary search tree for sweep-line status)
while Q 6= ∅ do

v ← Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
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Linear Running Time

Step 1: Create queue Q in O(n) time.
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Linear Running Time

Traverse P in counter-clockwise order.

Add consecutive regular vertices to a list.

L1

L2

L3

L4

Observation:
• Lists are sorted by y-coordinate.
• O(1) many lists.

1. Apply merge-step of Merge-Sort on lists,
to obtain one list.

2. Insert turn vertices into list maintaining
the sorting.

O(1) many lists and O(1) many turn vertices.
O(n) time, since

Queue Q can be created in O(n) time.

Step 1: Create queue Q in O(n) time.

16
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Linear Running Time

L1

L2

L3

L4

Step 2: Replace T .

Task of T : Determine for vertex v the
edge left(v) directly left to v.
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Linear Running Time

L1

L2

L3

L4

Step 2: Replace T .

Task of T : Determine for vertex v the
edge left(v) directly left to v.

Idea: For each vertex v precompute left(v).

Sweep-Line: from top to bottom.
Sweep-State:

Edges that intersect sweep-line

Event: Vertices of polygon.

Determine edge that intersects sweep-line
directly left to current node.

`

left(v)

Sweep-line intersects O(1) many edges,

since O(1) many lists and O(1) many turn vertices.

17
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Splitting Polygons.

Hint: Triangulate P and make use of the dual graph of the triangulation.

Find: O(n log n)-Algorithm, that splits P into two simple polygons
such that each has at most b2n/3c+ 2 vertices.

Given: Polygon P with n vertices.

18
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Solution

Initialitation: Each vertex u ∈ V receives weight w(u) = 1.

while True do
Let u be leaf of T
while u has degree 1 do

if n− (b2n/3c+ 2) ≤ w(u) ≤ b2n/3c+ 2 then
return Sub-tree of u induces desired partition

w(parent(u))← w(parent(u)) + w(u)
Delete u from T
u← parent(u)

n = 19

n− (b2n/3c+ 2) = 5

b2n/3c+ 2 = 14

Annahme:
Tree has root with degree ≥ 2.

Edges are directed to the root.
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while u has degree 1 do

if n− (b2n/3c+ 2) ≤ w(u) ≤ b2n/3c+ 2 then
return Sub-tree of u induces desired partition
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Annahme:
Tree has root with degree ≥ 2.
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Linear programming

Definition: Given a set of linear constraints H and a linear
objective function c in Rd, a linear program (LP)
is formulated as follows:

maximize c1x1 + c2x2 + · · ·+ cdxd

under constr. a1,1x1 + · · ·+ a1,dxd ≤ b1
a2,1x1 + · · ·+ a2,dxd ≤ b2

...
an,1x1 + · · ·+ an,dxd ≤ bn

}H
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Linear programming

Definition: Given a set of linear constraints H and a linear
objective function c in Rd, a linear program (LP)
is formulated as follows:

maximize c1x1 + c2x2 + · · ·+ cdxd

under constr. a1,1x1 + · · ·+ a1,dxd ≤ b1
a2,1x1 + · · ·+ a2,dxd ≤ b2

...
an,1x1 + · · ·+ an,dxd ≤ bn

• H is a set of half-spaces in Rd.
• We are searching for a point x ∈

⋂
h∈H h, that maximizes

cTx, i.e. max{cTx | Ax ≤ b, x ≥ 0}.
• Linear programming is a central method in operations

research.

}H
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Algorithms for LPs

There are many algorithms to solve LPs:

• Simplex-Algorithm [Dantzig, 1947]
• Ellipsoid-Method [Khatchiyan, 1979]
• Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).
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Algorithms for LPs

There are many algorithms to solve LPs:

• Simplex-Algorithm [Dantzig, 1947]
• Ellipsoid-Method [Khatchiyan, 1979]
• Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

Today: Special case d = 2

Possibilities for the solution space

⋂
H = ∅ ⋂

H is unbounded
in the direction c

c c

c

infeasible

feasible region
⋂
H is bounded

solution is not
unique

unique solution
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Trains

z1

z2

z3

k2

k1

k3

v1 v2 v3

Algorithm: Which trains are
at least once in leading
position until time ts

t = 0
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Trains

Time

Location

tstop

k3

k1

k2

k2

k1
k3
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Guido Brückner · Übung Algorithmische Geometrie

Trains

Time

Location

tstop

k3

k1

k2

k2

k1
k3

23
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Guido Brückner · Übung Algorithmische Geometrie

Trains

Time

Location

tstop

k3

k1

k2

k2

k1
k3

23
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First approach

Idea: Compute the feasible region
⋂
H and search for the

vertex p, that maximizes cT p.
• The half-planes are convex
• Let’s try a simple Divide-and-Conquer Algorithm

IntersectHalfplanes(H)

if |H| = 1 then
C ← H

else
(H1, H2)← SplitInHalves(H)
C1 ← IntersectHalfplanes(H1)
C2 ← IntersectHalfplanes(H2)
C ← IntersectConvexRegions(C1, C2)

return C
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Bounded LPs

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

25
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Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon
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Bounded LPs

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon

How to deal with the
unbounded feasible regions?
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Bounded LPs

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

m1 =

{
x ≤M if cx > 0

−x ≤M otherwise
m2 =

{
y ≤M if cy > 0

−y ≤M otherwise

c

m1
m2
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Bounded LPs

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

m1 =

{
x ≤M if cx > 0

−x ≤M otherwise
m2 =

{
y ≤M if cy > 0

−y ≤M otherwise

When the optimal point is not
unique, select lexicographically
smallest one!

c

m1
m2

c
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Bounded LPs

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

m1 =

{
x ≤M if cx > 0

−x ≤M otherwise
m2 =

{
y ≤M if cy > 0

−y ≤M otherwise

Consider a LP (H, c) with H = {h1, . . . , hn}, c = (cx, cy). We
denote the first i constraints by Hi = {m1,m2, h1, . . . , hi},
and the feasible polygon defineed by them by
Ci = m1 ∩m2 ∩ h1 ∩ · · · ∩ hi

When the optimal point is not
unique, select lexicographically
smallest one!
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Properties

• each region Ci has a single optimal vertex vi
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• each region Ci has a single optimal vertex vi
• it holds that: C0 ⊇ C1 ⊇ · · · ⊇ Cn = C
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• each region Ci has a single optimal vertex vi
• it holds that: C0 ⊇ C1 ⊇ · · · ⊇ Cn = C

How the optimal vertex vi−1 changes when the half plane hi is
added?
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Properties

• each region Ci has a single optimal vertex vi
• it holds that: C0 ⊇ C1 ⊇ · · · ⊇ Cn = C

How the optimal vertex vi−1 changes when the half plane hi is
added?

Lemma 1: For 1 ≤ i ≤ n and bounding line `i of hi holds that:
1. If vi−1 ∈ hi then vi = vi−1,
2. otherwise, either Ci = ∅ or vi ∈ `i.
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Properties

• each region Ci has a single optimal vertex vi
• it holds that: C0 ⊇ C1 ⊇ · · · ⊇ Cn = C

How the optimal vertex vi−1 changes when the half plane hi is
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Lemma 1: For 1 ≤ i ≤ n and bounding line `i of hi holds that:
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2. otherwise, either Ci = ∅ or vi ∈ `i.
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Properties

• each region Ci has a single optimal vertex vi
• it holds that: C0 ⊇ C1 ⊇ · · · ⊇ Cn = C

How the optimal vertex vi−1 changes when the half plane hi is
added?

Lemma 1: For 1 ≤ i ≤ n and bounding line `i of hi holds that:
1. If vi−1 ∈ hi then vi = vi−1,
2. otherwise, either Ci = ∅ or vi ∈ `i.

c

v4

c

v4 = v5

h5

c

v5
v6

h6
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Randomized incremental algorithm

2dRandomizedBoundedLP(H, c,m1,m2)

C0 ← m1 ∩m2

v0 ← unique angle of C0

H ← RandomPermutation(H)
for i← 1 to n do

if vi−1 ∈ hi then
vi ← vi−1

else
vi ← 1dBoundedLP(σ(Hi−1), f

i
c)

if vi = nil then
return infeasible

return vn
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Fisher-Yates Shuffle

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[1 . . . n]
Output: Array A, rearranged into a random permutation
for k ← n to 2 do

r ← Random(k)
exchange A[r] and A[k]
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Fisher-Yates Shuffle

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[1 . . . n]
Output: Array A, rearranged into a random permutation
for k ← n to 2 do

r ← Random(k)
exchange A[r] and A[k]

b) Prove, that the stamtent of a) if not true, if we replace k by
n in the second line.

28
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Fisher-Yates Shuffle

RandomPermutation(A)

Input: Array A[1 . . . n]
Output: Array A, rearranged into a random permutation
for k ← 2 to n do

r ← Random(k)
exchange A[r] and A[k]

Each permutation of A has the same probability to be chosen.

Proof by induction:
• A[1] is uniformly distributed
• A[1, . . . , n− 1] is uniformly distributed
• A[n] is chosen uniformly at random
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Fisher-Yates Shuffle

RandomPermutation(A)

Input: Array A[1 . . . n]
Output: Array A, rearranged into a random permutation
for k ← 2 to n do

r ← Random(n)
exchange A[r] and A[k]

• the algorithm uniformly generates nn (non-distinct)
permutations
• there are n! distinct permutations
• since n− 1 does not divide n, nn is not a multiple of n!

The permutations of A are not chosen with the same probability.
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