Computational Geometry - Exercise Triangulation of Polygons \& Linear Programming

Guido Brückner 23.05.2018

The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.

The Art-Gallery-Problem

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.

Assumption: Art gallery is a simple polygon P with n corners (no self-intersections, no holes)
Observation: each camera observes a star-shaped region $\begin{array}{ll}\text { Definition: } & \text { Point } p \in P \text { is visible from } c \in P \text { if } \overline{c p} \in P \text { NP-hard! } \\ \text { Goal: } & \text { Use as few cameras as possible! }\end{array}$
\rightarrow The number depends on the number of corners n and on the shape of P

Observation of the Border

Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement.
Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Observation of the Border

Prove or falsify the following statement. Let \mathcal{P} be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Problem Simplification

Observation: It is easy to guard a triangle

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

The proof implies a recursive $O\left(n^{2}\right)$-Algorithm!

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles

Can we do better?

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles
- P can be guarded by $\approx n / 2$ cameras placed on the diagonals

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles
- P can be guarded by $\approx n / 2$ cameras placed on the diagonals

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles
- P can be guarded by $\approx n / 2$ cameras placed on the diagonals
- P can be observed by even smaller number of cameras placed on the corners

Problem Simplification

Observation: It is easy to guard a triangle

Idea:
Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation; any such triangulation contains exactly $n-2$ triangles.

- P could be guarded by $n-2$ cameras placed in the triangles
- P can be guarded by $\approx n / 2$ cameras placed on the diagonals
- P can be observed by even smaller number of cameras placed on the corners

The Art-Gallery-Theorem [Chvátal '75]
Theorem 2: For a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient to guard it.

The Art-Gallery-Theorem [Chvátal '75]

Theorem 2: For a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

- Find a simple polygon with n corners that requires $\approx n / 3$ cameras!

- Sufficiency on the board

The Art-Gallery-Theorem [Chvátal '75]

Theorem 2: For a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

- Find a simple polygon with n corners that requires $\approx n / 3$ cameras!

- Sufficiency on the board

Conclusion: Given a triangulation, the $\lfloor n / 3\rfloor$ cameras that guard the polygon can be placed in $O(n)$ time.

The Art-Gallery-Theorem [Chvátal '75]

Theorem 2: For a simple polygon with n vertices, $\lfloor n / 3\rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

- Find a simple polygon with n corners that requires $\approx n / 3$ cameras!

- Sufficiency on the board

Conclusion: Given a triangulation, the $\lfloor n / 3\rfloor$ cameras that guard the polygor can be placed in $O(n)$ time.

Can we do better than $O\left(n^{2}\right)$ described before?

Triangulation of Polygons

2-step process:

- Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line ℓ, the interection $\ell \cap P$ is connected.

Triangulation of Polygons

2-step process:

- Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line ℓ, the interection $\ell \cap P$ is connected.

```
The two paths from the topmost to the bottomost point bounding the polygon, never go upward
```


Triangulation of Polygons

2-step process:

- Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line ℓ, the interection $\ell \cap P$ is connected.

The two paths from the topmost to the bottomost point bounding the polygon, never go upward

Triangulation of Polygons

2-step process:

- Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line ℓ, the interection $\ell \cap P$ is connected.

- Step 2: Triangulate the resulting y-monotone polygons

Partition into y-monotone Polygons

Idea: Five different types of vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:

- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:
vertical change in direction

- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices: vertical change in direction - start vertices

- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:
vertical change in direction
- start vertices
- split vertices
 if $\alpha<180^{\circ}$ if $\beta>180^{\circ}$
- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:
vertical change in direction
- start vertices
- split vertices
- end vertices

$$
\text { if } \alpha<180^{\circ}
$$

- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:
vertical change in direction
- start vertices
- split vertices
- end vertices

$$
\text { if } \alpha<180^{\circ}
$$

if $\beta>180^{\circ}$
if $\gamma<180^{\circ}$

- merge vertices

if $\delta>180^{\circ}$
- regular vertices

Partition into y-monotone Polygons

Idea: Five different types of vertices

- Turn vertices:

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

- connect split vertex v to the nearest vertex w above v, such that $\operatorname{left}(w)=\operatorname{left}(v)$

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

- connect split vertex v to the nearest vertex w above v, such that $\operatorname{left}(w)=\operatorname{left}(v)$

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

- connect split vertex v to the nearest vertex w above v, such that $\operatorname{left}(w)=\operatorname{left}(v)$

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

- connect split vertex v to the nearest vertex w above v, such that $\operatorname{left}(w)=\operatorname{left}(v)$
- for each edge e save the bottommost vertex w such that left $(w)=e$; notation helper $(e):=w$

Ideas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

- compute for each vertex v its left adjacent edge left (v) with respect to the horizontal sweep line ℓ

- connect split vertex v to the nearest vertex w above v, such that $\operatorname{left}(w)=\operatorname{left}(v)$
- for each edge e save the bottommost vertex w such that left $(w)=e$; notation helper $(e):=w$
- when ℓ passes through a split vertex v, we connect v with helper $(\operatorname{left}(v))$

Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices

- when the vertex v is reached, we set helper $(\operatorname{left}(v))=v$

Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices

- when the vertex v is reached, we set helper $(\operatorname{left}(v))=v$
- when we reach a split vertex v^{\prime} such that left $\left(v^{\prime}\right)=\operatorname{left}(v)$ the
 diagonal $\left(v, v^{\prime}\right)$ is introduced

Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices

- when the vertex v is reached, we set helper $(\operatorname{left}(v))=v$
- when we reach a split vertex v^{\prime} such that left $\left(v^{\prime}\right)=\operatorname{left}(v)$ the diagonal $\left(v, v^{\prime}\right)$ is introduced
- in case we reach a regular vertex v^{\prime} such that helper $\left(\operatorname{left}\left(v^{\prime}\right)\right)$ is v the diagonal (v, v^{\prime}) is introduced

Ideas for Sweep-Line-Algorithm

2) Diagonals for merge vertices

- when the vertex v is reached, we set helper $(\operatorname{left}(v))=v$
- when we reach a split vertex v^{\prime} such that left $\left(v^{\prime}\right)=\operatorname{left}(v)$ the diagonal $\left(v, v^{\prime}\right)$ is introduced
- in case we reach a regular vertex v^{\prime} such that helper $\left(\operatorname{left}\left(v^{\prime}\right)\right)$ is v the diagonal $\left(v, v^{\prime}\right)$ is introduced
- if the end of v^{\prime} of $\operatorname{left}(v)$ is reached, then the diagonal $\left(v, v^{\prime}\right)$ is introduced

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
Q.deleteVertex (v)
handleVertex (v)
return \mathcal{D}

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
Q.deleteVertex (v)
handleVertex (v)
return \mathcal{D}
handleStartVertex (vertex v)
$\mathcal{T} \leftarrow$ add the left edge e
helper $(e) \leftarrow v$

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex()
\mathcal{Q}.deleteVertex (v)
handleVertex (v)
return \mathcal{D}

handleStartVertex(vertex v)
$\mathcal{T} \leftarrow$ add the left edge e helper $(e) \leftarrow v$

handleEndVertex (vertex v)
$e \leftarrow$ left edge
if isMergeVertex $($ helper $(e))$ then $\mathcal{D} \leftarrow$ add edge (helper $(e), v)$ remove e from \mathcal{T}

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
Q.deleteVertex (v) handleVertex (v)
return \mathcal{D}
handleSplitVertex(vertex v)
$e \leftarrow$ Edge to the left of v in \mathcal{T}
$\mathcal{D} \leftarrow$ add edge (helper $(e), v)$
helper $(e) \leftarrow v$
$\mathcal{T} \leftarrow$ add the right edge e^{\prime} of v
helper $\left(e^{\prime}\right) \leftarrow v$

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
Q.deleteVertex (v) handleVertex (v)

return \mathcal{D}

handleMergeVertex (vertex v)

$e \leftarrow$ right edge
if isMergeVertex(helper $(e))$ then $\mathcal{D} \leftarrow$ add edge $(\operatorname{helper}(e), v)$
remove e from \mathcal{T}
$e^{\prime} \leftarrow$ edge to the left of v in \mathcal{T}
if isMergeVertex $\left(\right.$ helper $\left.\left(e^{\prime}\right)\right)$ then
$\mathcal{D} \leftarrow$ add edge $\left(\right.$ helper $\left.\left(e^{\prime}\right), v\right)$
helper $\left(e^{\prime}\right) \leftarrow v$

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex()
\mathcal{Q}.deleteVertex (v)
handleVertex (v)
return \mathcal{D}

handleRegularVertex(vertex v)
if P lies locally to the right of v then
$e, e^{\prime} \leftarrow$ above, below edge
if isMergeVertex $($ helper (e)) then
$\lfloor\mathcal{D} \leftarrow$ add edge (helper $(e), v)$
remove e from \mathcal{T} $\mathcal{T} \leftarrow$ add $e^{\prime} ;$ helper $\left(e^{\prime}\right) \leftarrow v$
else
$e \leftarrow$ edge to the left of v adde to \mathcal{T} if isMergeVertex $($ helper $(e))$ then

Insertion Diagonals

Insertion Diagonals

Insertion Diagonals

Data structure: Doubly-connected edge list (DCEL)

Insertion Diagonals

Claim:
Insertion of diagonals in $O(1)$ time.

Data structure: Doubly-connected edge list (DCEL)

Insertion Diagonals

Claim:
Insertion of diagonals in $O(1)$ time.

Data structure: Doubly-connected edge list (DCEL)

Doubly Connected Edge List

- Map corresponds with subdivision of plane into polygons.
- Subdivision corresponds with embedding of planar graph with
- vertices
- edges
- faces

Which operations should be supported by the data structure?

- Traverse edges of face.
- Go from face to face by edges.
- Traverse neighboring vertices in cyclic order.

Doubly Connected Edge List(DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$

- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e)$ \& Successor next (e)
- incident face
- Faces

- Bounding edges for outer face.
- Edge list inner (f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices

- Coordinates $(x(v), y(v))$
- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e) \&$ Successor next (e)
- incident face
- Faces

- Bounding edges for outer face.
- Edge list inner (f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$
- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor prev (e) \& Successor next (e)
- incident face
- Faces
- Bounding edges for outer face.
- Eage list inner (f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$
- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e) \&$ Successor next (e)
- incident face

- Bounding edges for outer face.
- Edge list inner(f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$

- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e)$ \& Successor next (e)
- incident face

- Bounding edges for outer face.
- Edge list inner(f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$

- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e)$ \& Successor next (e)
- incident face

- Bounding edges for outer face.
- Edge list inner(f) for holes.

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$

- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e) \&$ Successor next (e)
- incident face

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$

- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e)$ \& Successor next (e)
- incident face

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$
- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e) \&$ Successor next (e) ?
- incident face

Doubly Connected Edge List (DCEL)

Ingredients:

- Vertices
- Coordinates $(x(v), y(v))$
- (first) outgoing edge
- Edge $=$ two half-edges

- Vertex origin (v)
- Opposite edge twin (e)
- Predecessor $\operatorname{prev}(e) \&$ Successor next (e) ?
- incident face
a) Each vertex has $O(1)$ incident edges.
- Initially each vertex has degree 2 .
- Each vertex is at most once helper +1
- Each vertex is handled at most once : +2
b) Using a appropriate ordering, we can find the desired edges.

Linear Running Time

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$ (binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
\mathcal{Q}. deleteVertex (v)
handleVertex (v)
return \mathcal{D}
Assumption: P contains $O(1)$ turn vertices.
Exercise: Adapt procedure such that it has $O(n)$ running time.

Linear Running Time

MakeMonotone(Polygon P)
$\mathcal{D} \leftarrow$ doubly-connected edge list for $(V(P), E(P))$
$\mathcal{Q} \leftarrow$ priority queue for $V(P)$ sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$
(binary search tree for sweep-line status)
while $\mathcal{Q} \neq \emptyset$ do
$v \leftarrow \mathcal{Q}$.nextVertex ()
Q.deleteVertex (v)
handleVertex (v)
return \mathcal{D}
Assumption: P contains $O(1)$ turn vertices.
Exercise: Adapt procedure such that it has $O(n)$ running time.

Observation:

Creation of \mathcal{Q} costs $O(n \log n)$ time.
Querries in \mathcal{T} cost $O(n \log n)$ time in total.

Linear Running Time

Step 1: Create queue \mathcal{Q} in $O(n)$ time.

Linear Running Time

Step 1: Create queue \mathcal{Q} in $O(n)$ time.

\longrightarrow Queue \mathcal{Q} can be created in $O(n)$ time.

Linear Running Time

Step 2: Replace \mathcal{T}.
Task of \mathcal{T} : Determine for vertex v the edge left (v) directly left to v.

Linear Running Time

Step 2: Replace \mathcal{T}.
Task of \mathcal{T} : Determine for vertex v the edge left (v) directly left to v.

Idea: For each vertex v precompute left (v).

Sweep-Line: from top to bottom.
 Sweep-State:

Edges that intersect sweep-line
Event: Vertices of polygon.
Determine edge that intersects sweep-line directly left to current node.

Sweep-line intersects $O(1)$ many edges, since $O(1)$ many lists and $O(1)$ many turn vertices.

Splitting Polygons.

Given: Polygon P with n vertices.
Find: $\quad O(n \log n)$-Algorithm, that splits P into two simple polygons such that each has at most $\lfloor 2 n / 3\rfloor+2$ vertices.
Hint: Triangulate P and make use of the dual graph of the triangulation.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T $u \leftarrow \operatorname{parent}(u)$

$$
\begin{aligned}
& n=19 \\
& n-(\lfloor 2 n / 3\rfloor+2)=5 \\
& \lfloor 2 n / 3\rfloor+2=14
\end{aligned}
$$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T $u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w(\operatorname{parent}(u))+w(u)$
Delete u from T
$u \leftarrow \operatorname{parent}(u)$
$n=19$
$n-(\lfloor 2 n / 3\rfloor+2)=5$
$\lfloor 2 n / 3\rfloor+2=14$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Solution

Initialitation: Each vertex $u \in V$ receives weight $w(u)=1$.
while TRUE do
Let u be leaf of T
while u has degree 1 do

$$
\text { if } n-(\lfloor 2 n / 3\rfloor+2) \leq w(u) \leq\lfloor 2 n / 3\rfloor+2 \text { then }
$$

return Sub-tree of u induces desired partition
$w($ parent $(u)) \leftarrow w($ parent $(u))+w(u)$
Delete u from T $u \leftarrow \operatorname{parent}(u)$

$$
\begin{aligned}
& n=19 \\
& n-(\lfloor 2 n / 3\rfloor+2)=5 \\
& \lfloor 2 n / 3\rfloor+2=14
\end{aligned}
$$

Annahme:
Tree has root with degree ≥ 2. Edges are directed to the root.

Linear programming

Definition: Given a set of linear constraints H and a linear objective function c in \mathbb{R}^{d}, a linear program (LP) is formulated as follows:

$$
\operatorname{maximize} \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d}
$$

under constr.

$$
\left.\begin{array}{rcc}
a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} & \leq & b_{1} \\
a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} & \leq & b_{2} \\
& \vdots & \\
a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} & \leq & b_{n}
\end{array}\right\} H
$$

Linear programming

Definition: Given a set of linear constraints H and a linear objective function c in \mathbb{R}^{d}, a linear program (LP) is formulated as follows:

$$
\left.\begin{array}{rl}
\operatorname{maximize} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{d} x_{d} \\
\text { under constr. } & a_{1,1} x_{1}+\cdots+a_{1, d} x_{d} \leq b_{1} \\
& a_{2,1} x_{1}+\cdots+a_{2, d} x_{d} \leq b_{2} \\
& \\
& a_{n, 1} x_{1}+\cdots+a_{n, d} x_{d} \leq \\
\leq
\end{array}\right\} H
$$

- H is a set of half-spaces in \mathbb{R}^{d}.
- We are searching for a point $x \in \bigcap_{h \in H} h$, that maximizes $c^{T} x$, i.e. $\max \left\{c^{\mathrm{T}} x \mid A x \leq b, x \geq 0\right\}$.
- Linear programming is a central method in operations research.

Algorithms for LPs

There are many algorithms to solve LPs:

- Simplex-Algorithm
- Ellipsoid-Method
- Interior-Point-Method
[Dantzig, 1947]
[Khatchiyan, 1979]
[Karmarkar, 1979]

They work well in practice, especially for large values of n (number of constraints) and d (number of variables).

Algorithms for LPs

There are many algorithms to solve LPs:

- Simplex-Algorithm
- Ellipsoid-Method
- Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n (number of constraints) and d (number of variables).

Today: \quad Special case $d=2$

Algorithms for LPs

There are many algorithms to solve LPs:

- Simplex-Algorithm
[Dantzig, 1947]
- Ellipsoid-Method
- Interior-Point-Method
[Khatchiyan, 1979]
[Karmarkar, 1979]
They work well in practice, especially for large values of n (number of constraints) and d (number of variables).

Today: Special case $d=2$
Possibilities for the solution space
feasible region $\cap H$ is bounded

$\cap H=\emptyset$ infeasible

$\cap H$ is unbounded in the direction c

solution is not unique

unique solution

$$
t=0
$$

Algorithm: Which trains are at least once in leading position until time t_{s}

Trains

Location

Trains

Location

Trains

Location

Trains
Location

Trains
Location

First approach

Idea: Compute the feasible region $\bigcap H$ and search for the vertex p, that maximizes $c^{T} p$.

- The half-planes are convex
- Let's try a simple Divide-and-Conquer Algorithm

IntersectHalfplanes (H)
if $|H|=1$ then
$C \leftarrow H$
else
$\left(H_{1}, H_{2}\right) \leftarrow$ SplitInHalves (H)
$C_{1} \leftarrow$ IntersectHalfplanes $\left(H_{1}\right)$
$C_{2} \leftarrow$ IntersectHalfplanes $\left(H_{2}\right)$
$C \leftarrow \operatorname{Intersect}$ ConvexRegions $\left(C_{1}, C_{2}\right)$
return C

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally.

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally.
Invariant: Current best solution is a unique corner of the current feasible polygon

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally. Invariant: Current best solution is a unique corner of the current feasible polygon

How to deal with the unbounded feasible regions?

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally. Invariant: Current best solution is a unique corner of the current feasible polygon

How to deal with the unbounded feasible regions?

Define two half-planes for a big enough value M

$$
m_{1}=\left\{\begin{array}{ll}
x \leq M & \text { if } c_{x}>0 \\
-x \leq M & \text { otherwise }
\end{array} \quad m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\
-y \leq M & \text { otherwise }\end{cases}\right.
$$

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally. Invariant: Current best solution is a unique gorner of the current feasible polygon

How to deal with the unbounded feasible regions?

When the optimal point is not unique, select lexicographically smallest one!

Define two half-planes for a big enough value M

$$
\begin{aligned}
& m_{1}= \begin{cases}x \leq M & \text { if } c_{x}>0 \\
-x \leq M & \text { otherwise }\end{cases} \\
& \begin{array}{l|l|l}
& m_{1} \\
& m_{c} & \\
\hline
\end{array}
\end{aligned}
$$

$$
m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\ -y \leq M & \text { otherwise }\end{cases}
$$

Bounded LPs

Idea: Instead of computing the feasible region and then searching for the optimal angle, do this incrementally. Invariant: Current best solution is a unique gorner of the current feasible polygon

How to deal with the unbounded feasible regions?

When the optimal point is not unique, select lexicographically smallest one!

Define two half-planes for a big enough value M

$$
m_{1}=\left\{\begin{array}{lll}
x \leq M & \text { if } c_{x}>0 \\
-x \leq M & \text { otherwise }
\end{array} \quad m_{2}= \begin{cases}y \leq M & \text { if } c_{y}>0 \\
-y \leq M & \text { otherwise }\end{cases}\right.
$$

Consider a LP (H, c) with $H=\left\{h_{1}, \ldots, h_{n}\right\}, c=\left(c_{x}, c_{y}\right)$. We denote the first i constraints by $H_{i}=\left\{m_{1}, m_{2}, h_{1}, \ldots, h_{i}\right\}$, and the feasible polygon defineed by them by $C_{i}=m_{1} \cap m_{2} \cap h_{1} \cap \cdots \cap h_{i}$

Properties

- each region C_{i} has a single optimal vertex v_{i}

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

How the optimal vertex v_{i-1} changes when the half plane h_{i} is added?

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

How the optimal vertex v_{i-1} changes when the half plane h_{i} is added?

Lemma 1: For $1 \leq i \leq n$ and bounding line ℓ_{i} of h_{i} holds that:

1. If $v_{i-1} \in h_{i}$ then $v_{i}=v_{i-1}$,
2. otherwise, either $C_{i}=\emptyset$ or $v_{i} \in \ell_{i}$.

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

How the optimal vertex v_{i-1} changes when the half plane h_{i} is added?

Lemma 1: For $1 \leq i \leq n$ and bounding line ℓ_{i} of h_{i} holds that:

1. If $v_{i-1} \in h_{i}$ then $v_{i}=v_{i-1}$,
2. otherwise, either $C_{i}=\emptyset$ or $v_{i} \in \ell_{i}$.

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

How the optimal vertex v_{i-1} changes when the half plane h_{i} is added?

Lemma 1: For $1 \leq i \leq n$ and bounding line ℓ_{i} of h_{i} holds that:

1. If $v_{i-1} \in h_{i}$ then $v_{i}=v_{i-1}$,
2. otherwise, either $C_{i}=\emptyset$ or $v_{i} \in \ell_{i}$.

Properties

- each region C_{i} has a single optimal vertex v_{i}
- it holds that: $C_{0} \supseteq C_{1} \supseteq \cdots \supseteq C_{n}=C$

How the optimal vertex v_{i-1} changes when the half plane h_{i} is added?

Lemma 1: For $1 \leq i \leq n$ and bounding line ℓ_{i} of h_{i} holds that:

1. If $v_{i-1} \in h_{i}$ then $v_{i}=v_{i-1}$,
2. otherwise, either $C_{i}=\emptyset$ or $v_{i} \in \ell_{i}$.

Randomized incremental algorithm

2dRandomizedBoundedLP $\left(H, c, m_{1}, m_{2}\right)$
$C_{0} \leftarrow m_{1} \cap m_{2}$
$v_{0} \leftarrow$ unique angle of C_{0}
$H \leftarrow$ RandomPermutation (H)
for $i \leftarrow 1$ to n do
if $v_{i-1} \in h_{i}$ then
$v_{i} \leftarrow v_{i-1}$
else
$v_{i} \leftarrow 1 \mathrm{dBoundedLP}\left(\sigma\left(H_{i-1}\right), f_{c}^{i}\right)$
if $v_{i}=$ nil then
\llcorner return infeasible
return v_{n}

Fisher-Yates Shuffle

Proof of Correctness:

a) Prove that each permutation of A has the same probability to be chosen.

RandomPermutation (A)
Input: Array $A[1 \ldots n]$
Output: Array A, rearranged into a random permutation for $k \leftarrow n$ to 2 do
$r \leftarrow$ Random (k)
exchange $A[r]$ and $A[k]$

Fisher-Yates Shuffle

Proof of Correctness:

a) Prove that each permutation of A has the same probability to be chosen.

RandomPermutation (A)
Input: Array $A[1 \ldots n]$
Output: Array A, rearranged into a random permutation for $k \leftarrow n$ to 2 do
$r \leftarrow$ Random (k)
exchange $A[r]$ and $A[k]$
b) Prove, that the stamtent of a) if not true, if we replace k by n in the second line.

Fisher-Yates Shuffle

RandomPermutation (A)
Input: Array $A[1 \ldots n]$
Output: Array A, rearranged into a random permutation for $k \leftarrow 2$ to n do
$r \leftarrow$ Random (k)
exchange $A[r]$ and $A[k]$

Each permutation of A has the same probability to be chosen.

Proof by induction:

- $A[1]$ is uniformly distributed
- $A[1, \ldots, n-1]$ is uniformly distributed
- $A[n]$ is chosen uniformly at random

Fisher-Yates Shuffle

RandomPermutation (A)
Input: Array $A[1 \ldots n]$
Output: Array A, rearranged into a random permutation for $k \leftarrow 2$ to n do
$r \leftarrow$ Random (n)
exchange $A[r]$ and $A[k]$

The permutations of A are not chosen with the same probability.

- the algorithm uniformly generates n^{n} (non-distinct) permutations
- there are n ! distinct permutations
- since $n-1$ does not divide n, n^{n} is not a multiple of n !

