SKIT

Karlsruhe Institute of Technology

Computational Geometry — Exercise
Triangulation of Polygons & Linear Programming

LEHRSTUHL FUR ALGORITHMIK | - INSTITUT FUR THEORETISCHE INFORMATIK - FAKULTAT FUR INFORMATIK

Guido Briickner
23.05.2018

Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-Problem ﬂ(IT

Karlsruhe Ins of Techno

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

2 Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-Problem AT

Task: Install a number of cameras in an art gallery so that every part of
the galery is visible to at least one of them.

FI)
Assumption: Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)

P

Observation: each camera observes a star-shaped region

Definition: Point p € P is visible fromce Pifcpe P
Goal: Use as few cameras as possible! %
— The number depends on the number of corners n and on the shape of P

2 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border AT

tttttttttttttttttttttttttttttt

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border AUT

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border AUT

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border AUT

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border AT

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Observation of the Border QAT

stitute of Technology

Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that
together observe the complete border of P, then they also observe
the complete interior of P.

3 Guido Briickner - Ubung Algorithmische Geometrie

Problem Simplification

Observation: It is easy to guard a triangle

tttttttttttttttttttttttttttttt

—

4 Guido Briickner - Ubung Algorithmische Geometrie

Problem Simplification AT

Karlsruhe Institute of Technology

Observation: It is easy to guard a triangle —
— I
Idea: Decompose P into triangles and guard each of them

4 Guido Briickner - Ubung Algorithmische Geometrie

Problem Simplification AT

stitute of Technolo

Observation: It is easy to guard a triangle —
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

4 Guido Briickner - Ubung Algorithmische Geometrie

Problem Simplification ﬂ(IT

Karlsruhe Ins

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

The proof implies a recursive O(n?)-Algorithm!

4 Guido Briickner - Ubung Algorithmische Geometrie

titute of Technolo

Problem Simplification AT

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles

4 Guido Briickner - Ubung Algorithmische Geometrie

Problem Simplification AT

stitute of Technolo

Observation: It is easy to guard a triangle —
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles

4 Guido Briickner - Ubung Algorithmische Geometrie

titute of Technolo

Problem Simplification AT

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles

® P can be guarded by =~ n/2 cameras placed on the diagonals

4 Guido Briickner - Ubung Algorithmische Geometrie

titute of Technolo

Problem Simplification AT

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles

® P can be guarded by =~ n/2 cameras placed on the diagonals

4 Guido Briickner - Ubung Algorithmische Geometrie

titute of Technolo

Problem Simplification AT

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles
® P can be guarded by =~ n/2 cameras placed on the diagonals

® P can be observed by even smaller number of cameras placed on the
corners

Guido Briickner - Ubung Algorithmische Geometrie

titute of Technolo

Problem Simplification AT

Observation: It is easy to guard a triangle
— o~
Idea: Decompose P into triangles and guard each of them

Theorem 1: Each simple polygon with n corners admits a triangulation;
any such triangulation contains exactly n — 2 triangles.

® P could be guarded by n — 2 cameras placed in the triangles
® P can be guarded by =~ n/2 cameras placed on the diagonals

® P can be observed by even smaller number of cameras placed on the
corners

Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-Theorem [Chvatal '75] AUAT

tttttttttttttttttttttttttttttt

Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

5 Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-Theorem [Chvatal '75]

AT

tttttttttttttttttttttttttttttt

Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

|

® Sufficiency on the board

5 Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-

heorem [Chvétal '75] AT

tttttttttttttttttttttttttttttt

Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

RN,

® Sufficiency on the board

Conclusion: Given a triangulation, the |n/3| cameras that guard
the polygon can be placed in O(n) time.

5 Guido Briickner - Ubung Algorithmische Geometrie

he Art-Gallery-

heorem [Chvétal '75] AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Theorem 2: For a simple polygon with n vertices, |n/3| cameras are
sometimes necessary and always sufficient to guard it.

Proof:

® Find a simple polygon with n corners that requires ~ n/3 cameras!

W

® Sufficiency on the board

Conclusion: Given a triangulation, the |n/3| cameras that guard
the polygoN.can be placed in O(n) time.

Can we do better than O(n?) described before?

5 Guido Briickner - Ubung Algorithmische Geometrie

riangulation of Polygons AT

tttttttttttttttttttttttttttttt

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢/ N P is connected.

&,

6 Guido Briickner - Ubung Algorithmische Geometrie

riangulation of Polygons QAT

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢/ N P is connected.

The two paths from A A ¢
P/

the topmost to the

bottomost point X

bounding the polygon,
never go upward

6 Guido Briickner - Ubung Algorithmische Geometrie

riangulation of Polygons QAT

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢/ N P is connected.

The two paths from A A ¢
P/

the topmost to the

bottomost point X

bounding the polygon,
never go upward

6 Guido Briickner - Ubung Algorithmische Geometrie

riangulation of Polygons AT

tttttttttttttttttttttttttttttt

2-step process:

® Step 1: Decompose P into y-monotone polygons

Definition: A polygon is y-monotone, if for any horizontal line /,
the interection ¢ N P is connected.

&,

® Step 2: Triangulate the resulting y-monotone polygons

6 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

® start vertices if a < 180°

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

® start vertices if a < 180°

® split vertices if 5> 180°

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

® start vertices if @ < 180°
® split vertices if 5> 180°
® end vertices if v < 180°

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

® start vertices if @ < 180°
® split vertices if 5> 180°
® end vertices if v < 180°

® merge verticesM if & > 180°

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

Partition into y-monotone Polygons AUT

tttttttttttttttttttttttttttttt

Idea: Five different types of vertices

— Turn vertices:
vertical change in direction

® start vertices if @ < 180°
® split vertices if 5> 180°
® end vertices if v < 180°

® merge verticesM if & > 180°

— regular vertices

7 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

1) Diagonals for the split vertices

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

tttttttttttttttttttttttttttttt

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U> left(v)
respect to the horizontal sweep

line /¢ v

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

tttttttttttttttttttttttttttttt

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U> left(v)
respect to the horizontal sweep

line /¢ v

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AT

tttttttttttttttttttttttttttttt

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep
line ¢ v

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
respect to the horizontal sweep
line ¢

left(v)

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep

line ¢ %

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep
line ¢ v

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

® for each edge e save the bottommost vertex w such that
left(w) = e; notation

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm

1) Diagonals for the split vertices

® compute for each vertex v its left
adjacent edge left(v) with
) 5 (U) left(v)
respect to the horizontal sweep
line ¢ v

® connect split vertex v to the nearest vertex w above v, such that
left(w) = left(v)

® for each edge e save the bottommost vertex w such that
left(w) = e; notation

® when ¢ passes through a split vertex v,
we connect v with helper(left(v))

8 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

2) Diagonals for merge vertices \y %
® when the vertex v is reached, we 14
set helper(left(v)) = v left(v) *

9 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v,v’) is introduced

9 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v,v’) is introduced v

® in case we reach a regular vertex v’ /
such that helper(left(v’)) is v the *
diagonal (v,v’) is introduced

9 Guido Briickner - Ubung Algorithmische Geometrie

ldeas for Sweep-Line-Algorithm AUT

2) Diagonals for merge vertices

® when the vertex v is reached, we
set helper(left(v)) = v

® when we reach a split vertex v’
such that left(v’) = left(v) the
diagonal (v, ") is introduced v

® in case we reach a regular vertex v’ /
such that helper(left(v’)) is v the *
diagonal (v, ") is introduced

® if the end of v’ of left(v) is reached,
then the diagonal (v,v’) is /
introduced Y 4

9 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AUT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

10 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AUT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleStartVertex(vertex v)

T < add the left edge e
helper(e) < v

/U\helper(e)

10 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do

v < Q.nextVertex() hel

per(e
Q.deleteVertex(v) ((©)
 handleVertex(v)
return D e
v
handleStartVertex(vertex v) handleEndVertex(vertex v)

T < add the left edge e e < left edge
helper(e) < v if isMergeVertex(helper(e)) then

| D «+ add edge (helper(e), v)

v = helper(e)
/\ remove e from T

10 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D

handleSplitVertex(vertex v)

e < Edge to the left of v in T \

D <+ add edge (helper(e),v) helper(e)
helper(e) < v y

T < add the right edge ¢’ of v ¢

helper(e’) < v /

10 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))

Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do

v <+ Q.nextVertex()

Q.deleteVertex(v)

| handleVertex(v) handleMergeVertex(vertex v)

e < right edge
if isMergeVertex(helper(e)) then
L D <+ add edge (helper(e), v)

/
helper(c’) \/ remove e from T
o \M helper(e) e/ < edge to the left of v in T
if isMergeVertex(helper(e’))
v then

L D < add edge (helper(e’), v)
helper(e’) <+ v

return D

10 Guido Briickner - Ubung Algorithmische Geometrie

Algorithm MakeMonotone(P) AT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)

while Q # () do handleRegularVertex(vertex v)
v < Q.nextVertex() if P lies locally to the right of v
Q.deleteVertex(v) then
handleVertex(v) e, e’ < above, below edge
return D if isMergeVertex(helper(e))
helper then

| D < add edge (helper(e), v)

e remove e from T
" helper / T < add ¢’; helper(e’) + v
else
o/ e < edge to the left of v
! add-eto T

if isMergeVertex(helper(e))

10 Guido Briickner - Ubung Algorithmische Geometrie then

Insertion Diagonals AT

Karlsruhe Institute of Technology

11 Guido Briickner - Ubung Algorithmische Geometrie

Insertion Diagonals AT

Karlsruhe Institute of Technology

11 Guido Briickner - Ubung Algorithmische Geometrie

Insertion Diagonals AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Data structure: Doubly-connected edge list (DCEL)

11 Guido Briickner - Ubung Algorithmische Geometrie

Insertion Diagonals AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Claim:
. Insertion of diagonals in
O(1) time.
/

Data structure: Doubly-connected edge list (DCEL)

11 Guido Briickner - Ubung Algorithmische Geometrie

Insertion Diagonals AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Claim:
. Insertion of diagonals in
O(1) time.
/

Data structure: Doubly-connected edge list (DCEL)

11 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List AT

Karlsruhe Institute of Technology

O

® Map corresponds with subdivision of
plane into polygons.
® Subdivision corresponds with
embedding of planar graph with
® vertices
® edges
® faces

Which operations should be supported by

the data structure?

® Traverse edges of face.
® Go from face to face by edges.
® Traverse neighboring vertices in cyclic order.

12 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List(DCEL) AUT

tttttttttttttttttttttttttttttt

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
t £
win(e) o ace(e) ® Predecessor prev(e) & Successor next(e)
® incident face
‘\next(e)

® Bounding edges for outer face.

® Edge list inner(f) for holes.

13 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL) AUT

tttttttttttttttttttttttttttttt

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
t £
win(e) o ace(e) ® Predecessor prev(e) & Successor next(e)
® incident face
‘\next(e)

® Bounding edges for outer face.

® Edge list inner(f) for holes.

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
® incident face
‘\next(e)
o & Bounding edges™fOr outer face.
-’/\ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e)
ikt
‘\next(e)
o & Bounding edges™fOr outer face.
-’/‘ I I
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL)

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

tttttttttttttttttttttttttttttt

prev(e) ® Vertex origin(v)
: ® Opposite edge twin(e)
twin I;
win(e) o aC@(e) ® Predecessor prev(e) & Successor next(e) ?
ikt
‘\next(e)
o e Bounding edges™fOr outer face.
/ Qe dge list Inn€ QL _holes.

;

14 Guido Briickner - Ubung Algorithmische Geometrie

Doubly Connected Edge List (DCEL) AUT

tttttttttttttttttttttttttttttt

Ingredients:
® \ertices

® Coordinates (z(v),y(v))
% ® (first) outgoing edge

® Edge = two half-edges

prev(e) ® Vertex origin(v)

£ ® Opposite edge twin(e)

e) ® Predecessor prev(e) & Successor next(e) ?
N\ next(e) A

a) Each vertex has O(1) incident edges.
® |nitially each vertex has degree 2.
® Each vertex is at most once helper +1
® Each vertex is handled at most once : +2

twin(e)

b) Using a appropriate ordering, we can find the desired edges.
-

14 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q <« priority queue for V(P) sorted lexicographically; T <+ ()
(binary search tree for sweep-line status)
while Q # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.

15 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

tttttttttttttttttttttttttttttt

MakeMonotone(Polygon P)

D < doubly-connected edge list for (V(P), E(P))
Q < priority queue for V(P) sorted lexicographically; 7 <« ()
(binary search tree for sweep-line status)
while O # () do
v <+ Q.nextVertex()
Q.deleteVertex(v)
handleVertex(v)

return D
Assumption: P contains O(1) turn vertices.

Exercise: Adapt procedure such that it has O(n) running time.

Observation:

Creation of Q costs O(nlogn) time.

Querries in T cost O(nlogn) time in total.

15 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

tttttttttttttttttttttttttttttt

16 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

e Institute of Technology

Step 1: Create queue Q in O(n) time.

Traverse P in counter-clockwise order.
[Add consecutive regular vertices to a list.

Observation:
® Lists are sorted by y-coordinate.

® O(1) many lists.

1. Apply merge-step of Merge-Sort on lists,
to obtain one list.

2. Insert turn vertices into list maintaining
the sorting.

O(n) time, since
O(1) many lists and O(1) many turn vertices.

— Queue O can be created in O(n) time.

16 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

tttttttttttttttttttttttttttttt

Step 2: Replace T.

Task of 7: Determine for vertex v the
edge left(v) directly left to v.

17 Guido Briickner - Ubung Algorithmische Geometrie

Linear Running Time QAT

Step 2: Replace T.

Task of 7: Determine for vertex v the
edge left(v) directly left to v.

Idea: For each vertex v precompute left(v).

Sweep-Line: from top to bottom.
Ly Sweep-State:
Edges that intersect sweep-line

Event: Vertices of polygon.

Determine edge that intersects sweep-line
Ly directly left to current node.

Sweep-line intersects O(1) many edges,

since O(1) many lists and O(1) many turn vertices.

17 Guido Briickner - Ubung Algorithmische Geometrie

Splitting Polygons. AT

tttttttttttttttttttttttttttttt

Given: Polygon P with n vertices.

Find: O(nlogn)-Algorithm, that splits P into two simple polygons
such that each has at most |2n/3]| + 2 vertices.

Hint: Triangulate P and make use of the dual graph of the triangulation.

X

X X
X
X % e
b4 X
X
% * v
. X
X
X
p 4

18 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) X

L 9 5%
X
n =19 X
—(|2n/3] +2) =5 g) 5
n—(12n/3] +2) = ; %)
12n/3] +2 =14 y
X % 54
Annahme: X o
Tree has root with degree > 2. X
Edges are directed to the root. %
X

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

L 9 5
n =19 1 1 Nd 51

—(|2n/3] +2) =5 i 0 ik
n—([2n/ = 41 | 1
2n/3| +2 =14 : . X

X % 56
Annahme: X o
Tree has root with degree > 2. 1 1 ha
Edges are directed to the root. 1x .
X

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

- X
n =19 1 0 §1

—(|2n/3] +2) =5 i 0 ik
n—([2n/ = 41 | 1
12n/3] +2 = 14 : . X

X % 56
Annahme: X o
Tree has root with degree > 2. 1 1 ha
Edges are directed to the root. 1x .
X

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

- X
n =19 1 $1

—(|2n/3] +2) =5 i 0 ik
n—([2n/ = 43 | 1
12n/3] +2 = 14 : . X

X % 56
Annahme: X o
Tree has root with degree > 2. 1 1 ha
Edges are directed to the root. 1x .
X

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

- X
n =19 1 $1

—(|2n/3] +2) =5 i 0 %
n—([2n/ = 43 | 1
12n/3] +2 = 14 : . X

X % 56

Annahme: X ok
Tree has root with degree > 2. 1 1 ha
Edges are directed to the root. 2)(

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

- X
n =19 1 $1

—(|2n/3] +2) =5 i 0 %
n—([2n/ = 43 | 1
12n/3] +2 = 14 : . X

X % 56

Annahme: X ok
Tree has root with degree > 2. 1 1 3><
Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1
- X
n =19 1 $1

X X .
n—(|2n/3|+2)=5 1 1 43 1 1
X X 54

Annahme: X ok
Tree has root with degree > 2. 1 4
Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1

- X

n =19 2 $1
X %

n—(|2n/3|+2)=5 1 43 1 1
X X 54

Annahme: X ok

Tree has root with degree > 2. 1 4

Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1
n =19 X
X %
n—(|2n/3] +2)=5 INY3 1 1
X % 1)(
Annahme: X ok
Tree has root with degree > 2. 1 4

Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T°

while u has degree 1 do

if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then
| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)

Delete u from T

| u < parent(u) x1
n =19 g1
%
n—([2n/3]+2)=5 46 | 1 1
X o 54
Annahme: X ok
Tree has root with degree > 2. 1 4

Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Solution QT

tttttttttttttttttttttttttttttt

Initialitation: Each vertex u € V' receives weight w(u) = 1.

while TRUE do

Let u be leaf of T’

while u has degree 1 do
if n—(|2n/3| +2) <w(u) < |2n/3]| + 2 then

| return Sub-tree of u induces desired partition

w(parent(u)) < w(parent(u)) + w(u)
Delete u from T

| u < parent(u)

n =19

n—(|2n/3]|+2)=5 46

2n/3| +2=14

Annahme:

Tree has root with degree > 2. \

Edges are directed to the root.

19 Guido Briickner - Ubung Algorithmische Geometrie

Linear programming AT

stitute of Technology

Definition: Given a set of linear constraints H and a linear
objective function ¢ in R?, a linear program (LP)
Is formulated as follows:

maximize c1T1+ coxo + -+ cqgxry

under constr. a1,1T1 + -+ 41,44 < b \
a2 121+ -+ agqtqa < b2
» H
Ap, 121 + - Ap, dLd < bn J

20 Guido Briickner - Ubung Algorithmische Geometrie

Linear programming AT

tttttttttttttttttttttttttttttt

Definition: Given a set of linear constraints H and a linear
objective function ¢ in R?, a linear program (LP)
Is formulated as follows:

maximize c1T1+ coxo + -+ cqgxry

under constr. a1,1T1 + -+ 41,44 < b \
a2 121+ -+ agqtqa < b2
» H
Ap, 121 + - Ap, dLd < bn J

® [{ is a set of half-spaces in R.

® We are searching for a point = € (), . h, that maximizes
cl'z, ie. max{ctz | Az < b,z > 0}.

® Linear programming is a central method in operations
research.

20 Guido Briickner - Ubung Algorithmische Geometrie

Algorithms for LPs AT

tttttttttttttttttttttttttttttt

There are many algorithms to solve LPs:

® Simplex-Algorithm [Dantzig, 1947]
® Ellipsoid-Method [Khatchiyan, 1979]
® Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

21 Guido Briickner - Ubung Algorithmische Geometrie

Algorithms for LPs AT

tttttttttttttttttttttttttttttt

There are many algorithms to solve LPs:

® Simplex-Algorithm [Dantzig, 1947]
® Ellipsoid-Method [Khatchiyan, 1979]
® Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

Today: Special case d = 2

21 Guido Briickner - Ubung Algorithmische Geometrie

Algorithms for LPs AT

tttttttttttttttttttttttttttttt

There are many algorithms to solve LPs:

® Simplex-Algorithm [Dantzig, 1947]
® Ellipsoid-Method [Khatchiyan, 1979]
® Interior-Point-Method [Karmarkar, 1979]

They work well in practice, especially for large values of n
(number of constraints) and d (number of variables).

Today: Special case d = 2

Possibilities for the solution space
feasible region (| H is bounded

NH=10 (N H is unbounded solution is not unique solution
infeasible In the direction ¢ unique

21 Guido Briickner - Ubung Algorithmische Geometrie

rains A\‘(IT

stitute of Technology

Algorithm: Which trains are
at least once in leading
position until time %,

22 Guido Briickner - Ubung Algorithmische Geometrie

rains

Location
A

» [Ime

23 Guido Briickner - Ubung Algorithmische Geometrie

tstop

N
Karlsruhe In

T

stitute of Technology

rains

Location
A

» [Ime

23 Guido Briickner - Ubung Algorithmische Geometrie

tstop

N
Karlsruhe In

T

stitute of Technology

rains

Location
A

» [Ime

23 Guido Briickner - Ubung Algorithmische Geometrie

tstop

N
Karlsruhe In

T

stitute of Technology

rains

Location
A

» [Ime

23 Guido Briickner - Ubung Algorithmische Geometrie

tstop

N
Karlsruhe In

T

stitute of Technology

rains

Location
A

» [Ime

23 Guido Briickner - Ubung Algorithmische Geometrie

tstop

N
Karlsruhe In

T

stitute of Technology

First approach AT

tttttttttttttttttttttttttttttt

Idea: Compute the feasible region (| H and search for the
vertex p, that maximizes ¢! p.

® The half-planes are convex
® Let's try a simple Divide-and-Conquer Algorithm

IntersectHalfplanes(H)

if |[H| =1 then
| '+ H
else

(H1, Hs) < SplitInHalves(H)
C'1 < IntersectHalfplanes(H)
(5 < IntersectHalfplanes(H>)
C' < IntersectConvexRegions(C7, C5)

return C

24 Guido Briickner - Ubung Algorithmische Geometrie

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

25 Guido Briickner - Ubung Algorithmische Geometrie

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
current feasible polygon

25 Guido Briickner - Ubung Algorithmische Geometrie

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
/ current feasible polygon

How to deal with the
unbounded feasible regions?

25 Guido Briickner - Ubung Algorithmische Geometrie

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique corner of the
/ current feasible polygon

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y< M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

A mi

Ac

25 Guido Briickner - Ubung Algorithmische Geometrie

ma

g

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique wof the

/ current feasible polygon

When the optimal point is not
unique, select lexicographically
smallest one!

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y< M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

A mq

Ac

ma

>

25 Guido Briickner - Ubung Algorithmische Geometrie

Bounded LPs AT

tttttttttttttttttttttttttttttt

Idea: Instead of computing the feasible region and then
searching for the optimal angle, do this incrementally.

Invariant: Current best solution is a unique gorner of the
/ current feasible polygon \

When the optimal point is not
unique, select lexicographically
smallest one!

How to deal with the
unbounded feasible regions?

Define two half-planes for a big enough value M

r< M if c, >0 y < M if ¢, >0
mi = . ma =— .
—x < M otherwise —y < M otherwise

Consider a LP (H,c) with H = {h1,...,hy}, ¢ = (cz,cy). We
denote the first ¢ constraints by H; = {m1, mo, h1,...,h;},
and the feasible polygon defineed by them by
C’i:mlﬂmgﬂhlﬁ---ﬂhi

25 Guido Briickner - Ubung Algorithmische Geometrie

Properties AUT

stitute of Technology

® each region C); has a single optimal vertex v;

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

tttttttttttttttttttttttttttttt

® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

tttttttttttttttttttttttttttttt

® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane h; is
added?

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

tttttttttttttttttttttttttttttt

® each region C); has a single optimal vertex v;
® it holds that: Co 2 C7 D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane h; is
added?

Lemma 1: For 1 < i <n and bounding line ¢; of h; holds that:
1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® each region C); has a single optimal vertex v;
®itholdsthat: Coy 2 C7y D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane A; is
added?

Lemma 1: For 1 < <n and bounding line ¢; of h; holds that:
1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.

U4

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® ecach region C; has a single optimal vertex v;
®itholdsthat: Coy 2 C7y D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane A; is
added?

Lemma 1: For 1 < <n and bounding line ¢; of h; holds that:
1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.

hs

U4

26 Guido Briickner - Ubung Algorithmische Geometrie

Properties AT

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

® ecach region C; has a single optimal vertex v;
®itholdsthat: Coy 2 C7y D ---DC,, =C

How the optimal vertex v;_1 changes when the half plane A; is
added?

Lemma 1: For 1 < <n and bounding line ¢; of h; holds that:
1. If v;_1 € h; then v; = v;_1,
2. otherwise, either C; = () or v; € ¢;.

hs

U4

26 Guido Briickner - Ubung Algorithmische Geometrie

Randomized incremental algorithm AUT

tttttttttttttttttttttttttttttt

2dRandomizedBoundedLP(H, ¢, m1, ms3)

C() — mq 1My
Vo < unique angle of Cj
H <+ RandomPermutation(H)
for : +— 1 ton do
if v,_1 € h; then
| V; < Vj—1
else
V; < 1dBoundedLP(J(H7;_1), f;)

if V; — nil then
| return infeasible

return v,

27 Guido Briickner - Ubung Algorithmische Geometrie

Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[l...n|
Output: Array A, rearranged into a random permutation

for £ < n to 2 do
r <— Random(k)
exchange A|r| and A|k]

28 Guido Briickner - Ubung Algorithmische Geometrie

Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

Proof of Correctness:

a) Prove that each permutation of A has the same probability
to be chosen.

RandomPermutation(A)

Input: Array A[l...n|
Output: Array A, rearranged into a random permutation

for £ < n to 2 do
r <— Random(k)
exchange A|r| and A|k]

b) Prove, that the stamtent of a) if not true, if we replace k by
n in the second line.

28 Guido Briickner - Ubung Algorithmische Geometrie

Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

RandomPermutation(A)

Input: Array A[l...n]
Output: Array A, rearranged into a random permutation
for £ < 2 ton do
r < Random(k)
L exchange A|r| and A|k]

Each permutation of A has the same probability to be chosen.

Proof by induction:
® A[1] is uniformly distributed
® A[1,...,n — 1] is uniformly distributed
® Aln| is chosen uniformly at random

Guido Briickner - Ubung Algorithmische Geometrie

Fisher-Yates Shuffle AT

tttttttttttttttttttttttttttttt

RandomPermutation(A)

Input: Array A[l...n]
Output: Array A, rearranged into a random permutation
for £ < 2 ton do
r < Random(n)
L exchange A|r| and A|k]

The permutations of A are not chosen with the same probability.

® the algorithm uniformly generates n™ (non-distinct)
permutations

® there are n! distinct permutations

® since n — 1 does not divide n, n™ is not a multiple of n!

Guido Briickner - Ubung Algorithmische Geometrie

	The Art-Gallery-Problem
	Problem Simplification
	The Art-Gallery-Theorem
	Triangulation of Polygons
	Partition into y-monotone Polygons
	Ideas for Sweep-Line-Algorithm
	Ideas for Sweep-Line-Algorithm
	Algorithm MakeMonotone(P)
	Doubly Connected Edge List
	Doubly Connected Edge List(DCEL)
	Linear programming
	Algorithms for LPs
	First approach
	Bounded LPs
	Properties
	Randomized incremental algorithm

