
Guido Brückner · Computational Geometry – Problem Session

Guido Brückner

Computational Geometry – Problem Session

LEHRSTUHL FÜR ALGORITHMIK · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Convex Hull & Line Segment Intersection

04.05.2018

Guido Brückner · Computational Geometry – Problem Session

Guido Brückner · Computational Geometry – Problem Session

Modus Operandi

To register for the oral exam we expect you to present an
original solution for at least one problem in the exercise
session.

• this is about working together
• don’t worry if your idea doesn’t work!

Guido Brückner · Computational Geometry – Problem Session

Outline

Convex Hull

Line Segment Intersection

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:
• put a large rubber band

around all points

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:
• put a large rubber band

around all points
• and let it go!

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:
• put a large rubber band

around all points
• and let it go!
• unfortunately, does not help

algorithmically

Guido Brückner · Computational Geometry – Problem Session

Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:
• put a large rubber band

around all points
• and let it go!
• unfortunately, does not help

algorithmically

In mathematics:

• define CH(S) =
⋂

C⊇S : C convex

C

• does not help :-(

Guido Brückner · Computational Geometry – Problem Session

Algorithmic Approach

Lemma:
For a set of points P ⊆ R2, CH(P) is
a convex polygon that contains P and
whose vertices are in P .

Guido Brückner · Computational Geometry – Problem Session

Algorithmic Approach

Lemma:
For a set of points P ⊆ R2, CH(P) is
a convex polygon that contains P and
whose vertices are in P .

Input: A set of points P = {p1, . . . , pn}
Output: List of nodes of CH(P) in clockwise order

Guido Brückner · Computational Geometry – Problem Session

Algorithmic Approach

Lemma:
For a set of points P ⊆ R2, CH(P) is
a convex polygon that contains P and
whose vertices are in P .

Input: A set of points P = {p1, . . . , pn}
Output: List of nodes of CH(P) in clockwise order

Observation:

(p, q) is an edge of CH(P) ⇔ each point r ∈ P \ {p, q}
• strictly right of the oriented line −→pq or
• on the line segment pq

p q

−→pq

Guido Brückner · Computational Geometry – Problem Session

Running Time Analysis

FirstConvexHull(P)

E ← ∅
foreach (p, q) ∈ P × P with p 6= q do

valid ← true
foreach r ∈ P do

if not (r is strictly right of −→pq or r ∈ pq) then
valid ← false

if valid then
E ← E ∪ {(p, q)}

construct the sorted node list L from CH(P) out of E
return L

Θ
(1

)
Θ

(n
)

(n2 − n)·

Θ
(n

3
)

Question: How do we implement this?

Guido Brückner · Computational Geometry – Problem Session

Solution

Set of edges.

Guido Brückner · Computational Geometry – Problem Session

Solution

Set of edges.

Sort from right to left?

w.r.t. source vertex

Edges that point to the left
or to the bottom.

Sort from
left to right?

w.r.t. source vertex

Edges that point to the
right or to the top.

Guido Brückner · Computational Geometry – Problem Session

Solution

Set of edges.

Sort from right to left?

w.r.t. source vertex

Edges that point to the left
or to the bottom.

Sort from
left to right?

w.r.t. source vertex

?if not unique:
from bottom to top.
from top to bottom.

Edges that point to the
right or to the top.

Guido Brückner · Computational Geometry – Problem Session

Solution

Set of edges.

Sort from right to left?

w.r.t. source vertex

Edges that point to the left
or to the bottom.

Sort from
left to right?

w.r.t. source vertex

?if not unique:
from bottom to top.
from top to bottom.

Edges that point to the
right or to the top.

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

p2

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

p2p3

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

p2p3

p4

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

p1

p2p3

p4

p5

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

= p6p1

p2p3

p4

p5

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Correctness (ideas):

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Correctness (ideas):
• Base Case: p1 lies on convex hull.

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Correctness (ideas):
• Base Case: p1 lies on convex hull.

• Assumption: First i points belong to convex hull CH(P)

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Correctness (ideas):
• Base Case: p1 lies on convex hull.

• Assumption: First i points belong to convex hull CH(P)

• Step: By assump. pi+1 lies to the right of line −−−−→pi−1pi ⇒ ’right bend’

By the chosen angle: all points lie to the right of line −−−−→pipi+1

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Degenerated cases:

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Alternative: Gift Wrapping

Degenerated cases:

1. Choice of p1 is not unique.

Choose the bottommost rightmost point.

2. Choice of pj+1 is not unique.

Choose the point of largest distances.

Idea: Begin with a point p1 of CH(P), then find the next edge of
CH(P) in clockwise order.

GiftWrapping(P)

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

`

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

`

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

`

How to test in constant time?

Right tangent means polygon lies left
to tangent.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

middle c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

p
pj

pi

pi lies above pj , if pj lies left to −→ppi.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

middle c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

p
pj

pi

pi lies above pj , if pj lies left to −→ppi.

Assumption: −→ppi points from right to left.

Guido Brückner · Computational Geometry – Problem Session

Computation of Tangents

[a, b]← [1, n]
while tangent not found do

middle c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

p
pj

pi

pi lies above pj , if pj lies left to −→ppi.

pa pc

pb

p

pa+1 above pa:

pa above pa+1: Analogous statements.

[a, b]← [a, c]

pc above pc+1

pc

pa

pb
p

[a, b]← [c, b]

pc+1 above pc

pc

pa

pb p

[a, b]← [a, c]

pc+1 above pc
pc above pa pa above pc

Assumption: −→ppi points from right to left.

Guido Brückner · Computational Geometry – Problem Session

Lower Bound

We require that any algorithm computing the convex hull of a
given set of points returns the convex hull vertices as a
clockwise sorted list of points.

Guido Brückner · Computational Geometry – Problem Session

Lower Bound

We require that any algorithm computing the convex hull of a
given set of points returns the convex hull vertices as a
clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of
n points has a worst case running time of Ω(n log n) and
thus Graham Scan is worst-case optimal.

Guido Brückner · Computational Geometry – Problem Session

Lower Bound

We require that any algorithm computing the convex hull of a
given set of points returns the convex hull vertices as a
clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of
n points has a worst case running time of Ω(n log n) and
thus Graham Scan is worst-case optimal.

2. Why is the running time of the gift wrapping algorithm not
in contradiction to part (a)?

Guido Brückner · Computational Geometry – Problem Session

Outline

Convex Hull

Line Segment Intersection

Guido Brückner · Computational Geometry – Problem Session

Problem Formulation

Given:Set S = {s1, . . . , sn} of line segments in the plane

Output: • all intersections of two or more line segments
• for each intersection, the line segments involved.

Guido Brückner · Computational Geometry – Problem Session

Problem Formulation

Given:Set S = {s1, . . . , sn} of line segments in the plane

Output: • all intersections of two or more line segments
• for each intersection, the line segments involved.

Def: Line segments are closed

Guido Brückner · Computational Geometry – Problem Session

Problem Formulation

Given:Set S = {s1, . . . , sn} of line segments in the plane

Output: • all intersections of two or more line segments
• for each intersection, the line segments involved.

Def: Line segments are closed

Guido Brückner · Computational Geometry – Problem Session

Warm Up

Algorithm that determines whether a polygon has no
self-intersection using O(n log n) running time.

Find:

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Events

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

sweep line

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Sweep-Line: Example

Guido Brückner · Computational Geometry – Problem Session

Data Structures

1.) Event Queue Q
• define p ≺ q ⇔def. yp > yq ∨ (yp = yq ∧ xp < xq)

p q
`

• Store events by ≺ in a balanced binary search tree

→ e.g., AVL tree, red-black tree, . . .

• Operations insert, delete and nextEvent in O(log |Q|) time

2.) Sweep-Line Status T `

• Stores ` cut lines ordered from left to right

• Required operations insert, delete, findNeighbor

• This is also a balanced binary search tree with line segments stored in
the leaves!

Guido Brückner · Computational Geometry – Problem Session

Algorithm

FindIntersections(S)

Input: Set S of line segments
Output: Set of all intersection points and the line

segments involved
Q ← ∅; T ← ∅
foreach s ∈ S do
Q.insert(upperEndPoint(s))
Q.insert(lowerEndPoint(s))

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)

Guido Brückner · Computational Geometry – Problem Session

Algorithm

handleEvent(p)

U(p)← Line segments with p as upper endpoint
L(p)← Line segments with p as lower endpoint
C(p)← Line segments with p as interior point
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report p and U(p) ∪ L(p) ∪ C(p)

remove L(p) ∪ C(p) from T
add U(p) ∪ C(p) to T
if U(p) ∪ C(p) = ∅ then //sl and sr, neighbors of p in T
Q ← check if sl and sr intersect below p

else //s′ and s′′ left- and rightmost line segment in U(p) ∪ C(p)
Q ← check if sl and s′ intersect below p
Q ← check if sr and s′′ intersect below p

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Running time: O((n + I) log n)
Storage: O(n + I)

Find algorithm that needs linear space.

Which data structure may use more than linear space?

Find:

Lecture:

Question:

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Running time: O((n + I) log n)
Storage: O(n + I)

Find algorithm that needs linear space.

Which data structure may use more than linear space?

Find:

Lecture:

Question:

Event-Queue may contain 2n + I many events,
where I ∈ Ω(n2) in the worst case.

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q

Guido Brückner · Computational Geometry – Problem Session

Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

Definition:

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

Definition:

t(p) ∈ P : Point in O1 with smallest vert.
distance to p.

r(p) ∈ P : Point in O2 with smallest horz. distance to p.

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

c) Largest top-right region for all points in O(n log n) running time.

Definition:

t(p) ∈ P : Point in O1 with smallest vert.
distance to p.

r(p) ∈ P : Point in O2 with smallest horz. distance to p.

Set P with n points.Given:

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

Q
u
el
le
:
G
o
o
g
le

E
ar
th

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

Q
u
el
le
:
G
o
o
g
le

E
ar
th

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

vertex

edge

face

polyline

Guido Brückner · Computational Geometry – Problem Session

Subdivision of plane.

vertex

edge

face

polyline

Requirements:
• Access to vertices, faces and edges.
• Traversing of faces.
• Traversing outgoing edges.

How to store subdivision efficiently?

Guido Brückner · Computational Geometry – Problem Session

Subdivision

f1

f2

f3

f4

Guido Brückner · Computational Geometry – Problem Session

Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)

f1

f2

f3

f4

Guido Brückner · Computational Geometry – Problem Session

Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)

For each edge of external face introduce directed half-edge (counter-clockw.)

f1

f2

f3

f4

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

f1

f2

f3

f4

edge(f4)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

f1

f2

f3

f4

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

edge(v)

v

Store for each vertex an arbitrary incident outgoing half-edge.

f1

f2

f3

f4

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

edge(v)

v

Store for each vertex an arbitrary incident outgoing half-edge.

f1

f2

f3

f4

• Access vertices, faces and edges.
• Traversing single faces.
• Traversing outgoing edges of vertex.

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

edge(v)

v

Store for each vertex an arbitrary incident outgoing half-edge.

f1

f2

f3

f4

• Access vertices, faces and edges.
• Traversing single faces.
• Traversing outgoing edges of vertex.

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

edge(v)

v

Store for each vertex an arbitrary incident outgoing half-edge.

f1

f2

f3

f4

• Access vertices, faces and edges.
• Traversing single faces.
• Traversing outgoing edges of vertex.

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

edge(v)

v

Store for each vertex an arbitrary incident outgoing half-edge.

f1

f2

f3

f4

• Access vertices, faces and edges.
• Traversing single faces.
• Traversing outgoing edges of vertex.

edge(f4)

prev(e)

face(e)

Guido Brückner · Computational Geometry – Problem Session

Traversing incident edges

v

e1e2

f2
f1

g2g1

h2

h1

edge(v)

Guido Brückner · Computational Geometry – Problem Session

Traversing incident edges

v

e1e2

f2
f1

g2g1

h2

h1

f2 = next(partner(e2))
g2 = next(partner(f2))
h2 = next(partner(g2))
e2 = next(partner(h2))

Traversing in counter clockwise order.

edge(v)

	Definition of Convex Hull
	Algorithmic Approach
	Running Time Analysis
	Alternative: Gift Wrapping
	Problem Formulation
	Sweep-Line: Example
	Data Structures
	Algorithm
	Algorithm

