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Modus Operandi

To register for the oral exam we expect you to present an
original solution for at least one problem in the exercise
session.

• this is about working together
• don’t worry if your idea doesn’t work!
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Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.
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Definition of Convex Hull

Def: A region S ⊆ R2 is called convex, when for two points
p, q ∈ S then line pq ∈ S.
The convex hull CH(S) of S is the smallest convex
region containing S.

In physics:
• put a large rubber band

around all points
• and let it go!
• unfortunately, does not help

algorithmically

In mathematics:

• define CH(S) =
⋂

C⊇S : C convex

C

• does not help :-(
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Algorithmic Approach

Lemma:
For a set of points P ⊆ R2, CH(P ) is
a convex polygon that contains P and
whose vertices are in P .

Input: A set of points P = {p1, . . . , pn}
Output: List of nodes of CH(P ) in clockwise order

Observation:

(p, q) is an edge of CH(P ) ⇔ each point r ∈ P \ {p, q}
• strictly right of the oriented line −→pq or
• on the line segment pq

p q

−→pq
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Running Time Analysis

FirstConvexHull(P )

E ← ∅
foreach (p, q) ∈ P × P with p 6= q do

valid ← true
foreach r ∈ P do

if not (r is strictly right of −→pq or r ∈ pq) then
valid ← false

if valid then
E ← E ∪ {(p, q)}

construct the sorted node list L from CH(P ) out of E
return L

Θ
(1

)
Θ

(n
)

(n2 − n)·

Θ
(n

3
)

Question: How do we implement this?
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Edges that point to the
right or to the top.
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Alternative: Gift Wrapping

Correctness (ideas):
• Base Case: p1 lies on convex hull.

• Assumption: First i points belong to convex hull CH(P )

• Step: By assump. pi+1 lies to the right of line −−−−→pi−1pi ⇒ ’right bend’

By the chosen angle: all points lie to the right of line −−−−→pipi+1

Idea: Begin with a point p1 of CH(P ), then find the next edge of
CH(P ) in clockwise order.

GiftWrapping(P )

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
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Alternative: Gift Wrapping

Degenerated cases:

Idea: Begin with a point p1 of CH(P ), then find the next edge of
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Alternative: Gift Wrapping

Degenerated cases:

1. Choice of p1 is not unique.

Choose the bottommost rightmost point.

2. Choice of pj+1 is not unique.

Choose the point of largest distances.

Idea: Begin with a point p1 of CH(P ), then find the next edge of
CH(P ) in clockwise order.

GiftWrapping(P )

p1 = (x1, y1) ← rightmost point in P ; p0 ← (x1,∞); j ← 1
while true do

pj+1 ← arg max{∠pj−1, pj , q | q ∈ P \ {pj−1, pj}}
if pj+1 = p1 then break else j ← j + 1

return (p1, . . . , pj+1)
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Computation of Tangents

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Right tangent means polygon lies left
to tangent.
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Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

Right tangent means polygon lies left
to tangent.
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Computation of Tangents

[a, b]← [1, n]
while tangent not found do

midpoint c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

Find: right tangent at P through p in O(log n) time.
Given: convex polygon P (clockswise) and point p outside of P

Idea: Use binary search.

p1

p2

p3 p4
p5

p6

p7

p8
p9

p10

p

`

How to test in constant time?

Right tangent means polygon lies left
to tangent.
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Computation of Tangents

[a, b]← [1, n]
while tangent not found do

middle c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

p
pj

pi

pi lies above pj , if pj lies left to −→ppi.
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Computation of Tangents

[a, b]← [1, n]
while tangent not found do

middle c = ba+b
2 c

if ppc is tangent then return pc
if [c, b] contains index of contact point then

[a, b]← [c, b]

else
[a, b]← [a, c]

p
pj

pi

pi lies above pj , if pj lies left to −→ppi.

pa pc

pb

p

pa+1 above pa:

pa above pa+1: Analogous statements.

[a, b]← [a, c]

pc above pc+1

pc

pa

pb
p

[a, b]← [c, b]

pc+1 above pc

pc

pa

pb p

[a, b]← [a, c]

pc+1 above pc
pc above pa pa above pc

Assumption: −→ppi points from right to left.
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Lower Bound

We require that any algorithm computing the convex hull of a
given set of points returns the convex hull vertices as a
clockwise sorted list of points.
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We require that any algorithm computing the convex hull of a
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clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of
n points has a worst case running time of Ω(n log n) and
thus Graham Scan is worst-case optimal.
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Lower Bound

We require that any algorithm computing the convex hull of a
given set of points returns the convex hull vertices as a
clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of
n points has a worst case running time of Ω(n log n) and
thus Graham Scan is worst-case optimal.

2. Why is the running time of the gift wrapping algorithm not
in contradiction to part (a)?
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Outline

Convex Hull

Line Segment Intersection
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Problem Formulation

Given:Set S = {s1, . . . , sn} of line segments in the plane

Output: • all intersections of two or more line segments
• for each intersection, the line segments involved.
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Warm Up

Algorithm that determines whether a polygon has no
self-intersection using O(n log n) running time.

Find:
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Sweep-Line: Example
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Sweep-Line: Example

Events
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Data Structures

1.) Event Queue Q
• define p ≺ q ⇔def. yp > yq ∨ (yp = yq ∧ xp < xq)

p q
`

• Store events by ≺ in a balanced binary search tree

→ e.g., AVL tree, red-black tree, . . .

• Operations insert, delete and nextEvent in O(log |Q|) time

2.) Sweep-Line Status T `

• Stores ` cut lines ordered from left to right

• Required operations insert, delete, findNeighbor

• This is also a balanced binary search tree with line segments stored in
the leaves!
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Algorithm

FindIntersections(S)

Input: Set S of line segments
Output: Set of all intersection points and the line

segments involved
Q ← ∅; T ← ∅
foreach s ∈ S do
Q.insert(upperEndPoint(s))
Q.insert(lowerEndPoint(s))

while Q 6= ∅ do
p← Q.nextEvent()
Q.deleteEvent(p)
handleEvent(p)
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Algorithm

handleEvent(p)

U(p)← Line segments with p as upper endpoint
L(p)← Line segments with p as lower endpoint
C(p)← Line segments with p as interior point
if |U(p) ∪ L(p) ∪ C(p)| > 1 then

report p and U(p) ∪ L(p) ∪ C(p)

remove L(p) ∪ C(p) from T
add U(p) ∪ C(p) to T
if U(p) ∪ C(p) = ∅ then //sl and sr, neighbors of p in T
Q ← check if sl and sr intersect below p

else //s′ and s′′ left- and rightmost line segment in U(p) ∪ C(p)
Q ← check if sl and s′ intersect below p
Q ← check if sr and s′′ intersect below p
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Space Consumption

Running time: O((n + I) log n)
Storage: O(n + I)

Find algorithm that needs linear space.

Which data structure may use more than linear space?

Find:

Lecture:

Question:
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Space Consumption

Running time: O((n + I) log n)
Storage: O(n + I)

Find algorithm that needs linear space.

Which data structure may use more than linear space?

Find:

Lecture:

Question:

Event-Queue may contain 2n + I many events,
where I ∈ Ω(n2) in the worst case.
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Space Consumption

Idea: Store only intersection points that are currently adjacent in T .

Obs.: At each point in time there are O(n) many such intersection points.

Procedure: If line segments loose their adjacency in T , remove
corresponding intersection points in Q.

Q
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Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

Definition:

Set P with n points.Given:
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Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

P

p

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

Definition:

Set P with n points.Given:
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The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

Definition:

Set P with n points.Given:
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Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

Definition:

t(p) ∈ P : Point in O1 with smallest vert.
distance to p.

r(p) ∈ P : Point in O2 with smallest horz. distance to p.

Set P with n points.Given:
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Largest Top-Right Region

The largest top-right region of a point p ∈ P is the union of all open
axis-aligned squares that touch p with their bottom left corner and
contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or
the intersection of two open half-planes.

b1) Which point in O1 ∩ P restricts the largest
top-right region of p the most?
b2) Which point in O2 ∩ P restricts the largest
top-right region of p the most?

p

octant O2

octant O1

c) Largest top-right region for all points in O(n log n) running time.

Definition:

t(p) ∈ P : Point in O1 with smallest vert.
distance to p.

r(p) ∈ P : Point in O2 with smallest horz. distance to p.

Set P with n points.Given:
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Largest Top-Right Region

Idea: Determine for each point p the
point t(p) (and r(p))

Data structure:
Binary search tree T over P , where point p ∈ T , if

1. p lies below the sweep-line
2. t(p) has not been determined yet.

Sweepline: from bottom to top

Initially T is empty and points in T are sorted w.r.t. their x-coord.

Events: Points in P

Handling event p

2. Find point p′ ∈ T directly left to p:

If p lies in upper octant of p′ :

1. Insert p into T .

= contained in T

t(p′)← p, delete p′ from T
repeat step 2
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Subdivision of plane.

vertex

edge

face

polyline

Requirements:
• Access to vertices, faces and edges.
• Traversing of faces.
• Traversing outgoing edges.

How to store subdivision efficiently?
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Subdivision

f1

f2

f3

f4
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Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)

For each edge of external face introduce directed half-edge (counter-clockw.)

f1

f2

f3

f4
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Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

f1

f2

f3

f4

edge(f4)
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Subdivision

Store for each face arbitrary adjacent half-edge.

edge(f1)

edge(f2)

edge(f3)

Store for each half-edge successor/predecessor, the half-edge on the
opposite side, and the adjacent face.

e

next(e)

partner(e)

f1

f2

f3

f4

edge(f4)

prev(e)

face(e)
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Traversing incident edges

v

e1e2

f2
f1

g2g1

h2

h1

edge(v)
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Traversing incident edges

v

e1e2

f2
f1

g2g1

h2

h1

f2 = next(partner(e2))
g2 = next(partner(f2))
h2 = next(partner(g2))
e2 = next(partner(h2))

Traversing in counter clockwise order.

edge(v)
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