Computational Geometry - Problem Session

 Convex Hull \& Line Segment Intersection
Guido Brückner
 04.05.2018

Modus Operandi

To register for the oral exam we expect you to present an original solution for at least one problem in the exercise session.

- this is about working together
- don't worry if your idea doesn't work!

Outline

Convex Hull

Line Segment Intersection

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$. The convex hull $C H(S)$ of S is the smallest convex region containing S.

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$. The convex hull $C H(S)$ of S is the smallest convex region containing S.

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$. The convex hull $C H(S)$ of S is the smallest convex region containing S.

In physics:

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$.
The convex hull $C H(S)$ of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$.
The convex hull $C H(S)$ of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points
- and let it go!

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$.
The convex hull $C H(S)$ of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically

Definition of Convex Hull

Def: A region $S \subseteq \mathbb{R}^{2}$ is called convex, when for two points $p, q \in S$ then line $\overline{p q} \in S$.
The convex hull $C H(S)$ of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically

In mathematics:

- define $C H(S)=$

$$
C \supseteq S: C \text { convex }
$$

- does not help :-(

Algorithmic Approach

Lemma:

For a set of points $P \subseteq \mathbb{R}^{2}, C H(P)$ is a convex polygon that contains P and whose vertices are in P.

Algorithmic Approach

Lemma:

For a set of points $P \subseteq \mathbb{R}^{2}, C H(P)$ is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$
Output: List of nodes of $C H(P)$ in clockwise order

Algorithmic Approach

Lemma:

For a set of points $P \subseteq \mathbb{R}^{2}, C H(P)$ is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$
Output: List of nodes of $C H(P)$ in clockwise order

Observation:

(p, q) is an edge of $C H(P) \Leftrightarrow$ each point $r \in P \backslash\{p, q\}$

- strictly right of the oriented line $\overrightarrow{p q}$ or
- on the line segment $\overline{p q}$

Running Time Analysis

FirstConvexHull (P)

$E \leftarrow \emptyset$

foreach $(p, q) \in P \times P$ with $p \neq q$ do
valid \leftarrow true foreach $r \in P$ do if not (r is strictly right of $\overrightarrow{p q}$ or $r \in \overline{p q}$) then \lfloor valid \leftarrow false

$\stackrel{1}{(1)}$
if valid then

$$
E \leftarrow E \cup\{(p, q)\}
$$

construct the sorted node list L from $C H(P)$ out of E return L

Question: How do we implement this?

Solution

Set of edges.

Solution

Set of edges.

Sort from left to right* w.r.t. source vertex

Edges that point to the right or to the top.

Edges that point to the left or to the bottom.

Solution

Set of edges.

Sort from
left to right*
w.r.t. source vertex

Edges that point to the right or to the top.
*if not unique:
from bottom to top.
from top to bottom.

Edges that point to the left or to the bottom.

Solution

Set of edges.

Sort from
left to right ${ }^{\star}$
w.r.t. source vertex

Edges that point to the right or to the top.

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$
p_{1}

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Correctness (ideas):

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Correctness (ideas):

- Base Case: p_{1} lies on convex hull.

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Correctness (ideas):

- Base Case: p_{1} lies on convex hull.
- Assumption: First i points belong to convex hull $\mathrm{CH}(P)$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Correctness (ideas):

- Base Case: p_{1} lies on convex hull.
- Assumption: First i points belong to convex hull $\mathrm{CH}(P)$
- Step: By assump. p_{i+1} lies to the right of line $\overrightarrow{p_{i-1} p_{i}} \Rightarrow$ 'right bend' By the chosen angle: all points lie to the right of line $\overrightarrow{p_{i} p_{i+1}}$

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Degenerated cases:

Alternative: Gift Wrapping

Idea: Begin with a point p_{1} of $C H(P)$, then find the next edge of $C H(P)$ in clockwise order.

GiftWrapping (P)
$p_{1}=\left(x_{1}, y_{1}\right) \leftarrow$ rightmost point in $P ; p_{0} \leftarrow\left(x_{1}, \infty\right) ; j \leftarrow 1$ while true do
$p_{j+1} \leftarrow \arg \max \left\{\angle p_{j-1}, p_{j}, q \mid q \in P \backslash\left\{p_{j-1}, p_{j}\right\}\right\}$
if $p_{j+1}=p_{1}$ then break else $j \leftarrow j+1$
return $\left(p_{1}, \ldots, p_{j+1}\right)$

Degenerated cases:

1. Choice of p_{1} is not unique.

Choose the bottommost rightmost point.

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Right tangent means polygon lies left to tangent.

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then
$L[a, b] \leftarrow[c, b]$
else
$[a, b] \leftarrow[a, c]$

Computation of Tangents

Given: convex polygon P (clockswise) and point p outside of P Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

How to test in constant time?

Right tangent means polygon lies left to tangent.
$[a, b] \leftarrow[1, n]$
while tangent not found do
midpoint $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then $[a, b] \leftarrow[c, b]$
else

$$
[a, b] \leftarrow[a, c]
$$

Computation of Tangents

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
middle $c=\left\lfloor\frac{a+b}{2}\right\rfloor$
if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then

$$
[a, b] \leftarrow[c, b]
$$

else
$[a, b] \leftarrow[a, c]$

p_{i} lies above p_{j}, if p_{j} lies left to $\overrightarrow{p p_{i}}$.

Computation of Tangents

```
[a,b]\leftarrow[1,n]
while tangent not found do
    middle c=\\frac{a+b}{2}\rfloor
    if }\overline{p\mp@subsup{p}{c}{}}\mathrm{ is tangent then return }\mp@subsup{p}{c}{
    if [c,b] contains index of contact point then
        [a,b]\leftarrow[c,b]
        else
            [a,b]\leftarrow[a,c]
```


${ }^{\bullet} p_{j}$
p_{i} lies above p_{j}, if p_{j} lies left to $\overrightarrow{p p_{i}}$.

Assumption: $\overrightarrow{p p_{i}}$ points from right to left.

Computation of Tangents

$$
[a, b] \leftarrow[1, n]
$$

while tangent not found do
middle $c=\left\lfloor\frac{a+b}{2}\right\rfloor$ if $\overline{p p_{c}}$ is tangent then return p_{c}
if $[c, b]$ contains index of contact point then

$$
[a, b] \leftarrow[c, b]
$$

else

$$
[a, b] \leftarrow[a, c]
$$

p_{i} lies above p_{j}, if p_{j} lies left to $\overrightarrow{p p_{i}}$.

Assumption: $\overrightarrow{p p_{i}}$ points from right to left.

p_{a+1} above p_{a} :			
p_{c} above p_{c+1}	p_{c+1} above p_{c} p_{c} above p_{a} $[a, b] \leftarrow[c, b]$	p_{c+1} above p_{c} p_{a} above p_{c} $[a, b] \leftarrow[a, c]$	$\stackrel{\square}{p}$

p_{a} above p_{a+1} : Analogous statements.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus Graham Scan is worst-case optimal.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus Graham Scan is worst-case optimal.
2. Why is the running time of the gift wrapping algorithm not in contradiction to part (a)?

Outline

Convex Hull

Line Segment Intersection

Problem Formulation

Given:Set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments in the plane
Output: • all intersections of two or more line segments

- for each intersection, the line segments involved.

Problem Formulation

Given:Set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments in the plane Output: • all intersections of two or more line segments - for each intersection, the line segments involved.

Def: Line segments are closed

Problem Formulation

Given:Set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments in the plane
Output: • all intersections of two or more line segments

- for each intersection, the line segments involved.

Def: Line segments are closed

Warm Up

Find:

Algorithm that determines whether a polygon has no self-intersection using $\mathcal{O}(n \log n)$ running time.

x

Sweep-Line: Example

Sweep-Line: Example

Karlsruhe Institute of Technology

Sweep-Line: Example

Sweep-Line: Example

Karlsruhe Institute of Technology

Sweep-Line: Example

Sweep-Line: Example

Sweep-Line: Example

Sweep-Line: Example

Sweep-Line: Example

Karlsruhe Institute of Technology

Sweep-Line: Example

Karlsruhe Institute of Technology

Sweep-Line: Example

Karlsruhe Institute of Technology

Sweep-Line: Example

Data Structures

1.) Event Queue \mathcal{Q}
\bullet define $p \prec q \quad \Leftrightarrow_{\text {def. }} . \quad y_{p}>y_{q} \vee\left(y_{p}=y_{q} \wedge x_{p}<x_{q}\right)$

- Store events by \prec in a balanced binary search tree
\rightarrow e.g., AVL tree, red-black tree, ...
- Operations insert, delete and nextEvent in $O(\log |\mathcal{Q}|)$ time
2.) Sweep-Line Status \mathcal{T}

- Stores ℓ cut lines ordered from left to right
- Required operations insert, delete, findNeighbor
- This is also a balanced binary search tree with line segments stored in the leaves!

Algorithm

FindIntersections (S)
Input: Set S of line segments
Output: Set of all intersection points and the line segments involved
$\mathcal{Q} \leftarrow \emptyset ; \quad \mathcal{T} \leftarrow \emptyset$
foreach $s \in S$ do
\mathcal{Q}.insert(upperEndPoint(s))
\mathcal{Q}.insert(lowerEndPoint(s))
while $\mathcal{Q} \neq \emptyset$ do
$p \leftarrow \mathcal{Q}$.nextEvent()
\mathcal{Q}. deleteEvent (p)
handleEvent (p)

Algorithm

handleEvent (p)
$U(p) \leftarrow$ Line segments with p as upper endpoint
$L(p) \leftarrow$ Line segments with p as lower endpoint
$C(p) \leftarrow$ Line segments with p as interior point
if $|U(p) \cup L(p) \cup C(p)|>1$ then report p and $U(p) \cup L(p) \cup C(p)$
remove $L(p) \cup C(p)$ from \mathcal{T}
add $U(p) \cup C(p)$ to \mathcal{T}
if $U(p) \cup C(p)=\emptyset$ then $\quad / / s_{l}$ and s_{r}, neighbors of p in \mathcal{T}
$\mathcal{Q} \leftarrow$ check if s_{l} and s_{r} intersect below p
else $\quad / / s^{\prime}$ and $s^{\prime \prime}$ left- and rightmost line segment in $U(p) \cup C(p)$
$\mathcal{Q} \leftarrow$ check if s_{l} and s^{\prime} intersect below p
$\mathcal{Q} \leftarrow$ check if s_{r} and $s^{\prime \prime}$ intersect below p

Space Consumption

Lecture:

Running time: $\mathcal{O}((n+I) \log n)$
Storage: $\mathcal{O}(n+I)$
Find:
Find algorithm that needs linear space.

Question:
Which data structure may use more than linear space?

Space Consumption

Lecture:
Running time: $\mathcal{O}((n+I) \log n)$
Storage: $\mathcal{O}(n+I)$

Find:

Find algorithm that needs linear space.

Question:

Which data structure may use more than linear space?

Event-Queue may contain $2 n+I$ many events,
where $I \in \Omega\left(n^{2}\right)$ in the worst case.

Space Consumption

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.
Obs.: At each point in time there are $O(n)$ many such intersection points.
Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.

Space Consumption

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.
Obs.: At each point in time there are $O(n)$ many such intersection points.
Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.

Space Consumption

\mathcal{Q}

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.
Obs.: At each point in time there are $O(n)$ many such intersection points.
Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.

Space Consumption

\mathcal{Q}

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.
Obs.: At each point in time there are $O(n)$ many such intersection points.
Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.

Space Consumption

\mathcal{Q}

Idea: Store only intersection points that are currently adjacent in \mathcal{T}.
Obs.: At each point in time there are $O(n)$ many such intersection points.
Procedure: If line segments loose their adjacency in \mathcal{T}, remove corresponding intersection points in Q.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
b1) Which point in $O_{1} \cap P$ restricts the largest top-right region of p the most?
b2) Which point in $O_{2} \cap P$ restricts the largest top-right region of p the most?

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
b1) Which point in $O_{1} \cap P$ restricts the largest top-right region of p the most?
b2) Which point in $O_{2} \cap P$ restricts the largest top-right region of p the most?
$t(p) \in P:$ Point in O_{1} with smallest vert. distance to p.

$r(p) \in P:$ Point in O_{2} with smallest horz. distance to p.

Largest Top-Right Region

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
b1) Which point in $O_{1} \cap P$ restricts the largest top-right region of p the most?
b2) Which point in $O_{2} \cap P$ restricts the largest top-right region of p the most?
$t(p) \in P:$ Point in O_{1} with smallest vert. distance to p.

$r(p) \in P$: Point in O_{2} with smallest horz. distance to p.
c) Largest top-right region for all points in $O(n \log n)$ running time.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: \quad Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :

$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T}
repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: \quad Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Largest Top-Right Region

Idea: Determine for each point p the point $t(p)$ (and $r(p)$)

Sweepline: from bottom to top
Events: Points in P

Handling event p

1. Insert p into \mathcal{T}.
2. Find point $p^{\prime} \in \mathcal{T}$ directly left to p :

If p lies in upper octant of p^{\prime} :
$t\left(p^{\prime}\right) \leftarrow p$, delete p^{\prime} from \mathcal{T} repeat step 2

Data structure:

Binary search tree \mathcal{T} over P, where point $p \in \mathcal{T}$, if

1. p lies below the sweep-line
2. $t(p)$ has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Subdivision of plane.

Guido Brückner • Computational Geometry - Problem Session

Subdivision of plane.

Guido Brückner • Computational Geometry - Problem Session

Subdivision of plane.

Subdivision of plane.

Subdivision of plane.

Subdivision of plane.

Subdivision

Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)

Subdivision

For each edge of internal faces introduce directed half-edge (clockwise)
For each edge of external face introduce directed half-edge (counter-clockw.)

Subdivision

Store for each face arbitrary adjacent half-edge.

Subdivision

Store for each face arbitrary adjacent half-edge.
Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face.

Subdivision

Store for each face arbitrary adjacent half-edge.
Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face.
Store for each vertex an arbitrary incident outgoing half-edge.

Subdivision

- Access vertices, faces and edges.
- Traversing single faces.
- Traversing outgoing edges of vertex.

Subdivision

- Access vertices, faces and edges
- Traversing single faces.
- Traversing outgoing edges of vertex.

Subdivision

- Access vertices, faces and edges
- Traversing single faces
- Traversing outgoing edges of vertex.

Subdivision

- Access vertices, faces and edges
- Traversing single faces
- Traversing outgoing edges of vertex. ?

Traversing incident edges

Traversing incident edges

Traversing in counter clockwise order.

$$
\begin{gathered}
f_{2}=\operatorname{next}\left(\operatorname{partner}\left(e_{2}\right)\right) \\
g_{2}=\operatorname{next}\left(\operatorname{partner}\left(f_{2}\right)\right) \\
h_{2}=\operatorname{next}\left(\operatorname{partner}\left(g_{2}\right)\right) \\
e_{2}=\operatorname{next}\left(\operatorname{partner}\left(h_{2}\right)\right)
\end{gathered}
$$

