

Computational Geometry – Problem Session Convex Hull & Line Segment Intersection

LEHRSTUHL FÜR ALGORITHMIK · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Guido Brückner 04.05.2018

Modus Operandi

To register for the oral exam we expect you to present an original solution for at least one problem in the exercise session.

- this is about working together
- don't worry if your idea doesn't work!

Outline

Convex Hull

Line Segment Intersection

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$. The **convex hull** CH(S) of S is the smallest convex region containing S.

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$.

The **convex hull** CH(S) of S is the smallest convex region containing S.

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$. The **convex hull** CH(S) of S is the smallest convex region containing S.

In physics:

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$. The **convex hull** CH(S) of S is the smallest convex region containing S.

In physics:

 put a large rubber band around all points

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p, q \in S$ then line $\overline{pq} \in S$. The **convex hull** CH(S) of S is the smallest convex

In physics:

- put a large rubber band around all points
- and let it go!

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$.

The **convex hull** CH(S) of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically

Def: A region $S \subseteq \mathbb{R}^2$ is called **convex**, when for two points $p,q \in S$ then line $\overline{pq} \in S$.

The **convex hull** CH(S) of S is the smallest convex region containing S.

In physics:

- put a large rubber band around all points
- and let it go!
- unfortunately, does not help algorithmically

In mathematics:

- $\bullet \text{ define } CH(S) = \bigcap_{C \supset S \colon C \text{ convex}} C$
- does not help :-(

Algorithmic Approach

Lemma:

For a set of points $P \subseteq \mathbb{R}^2$, CH(P) is a convex polygon that contains P and whose vertices are in P.

Algorithmic Approach

Karlsruhe Institute of Technology

Lemma:

For a set of points $P \subseteq \mathbb{R}^2$, CH(P) is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P = \{p_1, \ldots, p_n\}$

Output: List of nodes of CH(P) in clockwise order

Algorithmic Approach

Lemma:

For a set of points $P \subseteq \mathbb{R}^2$, CH(P) is a convex polygon that contains P and whose vertices are in P.

Input: A set of points $P = \{p_1, \ldots, p_n\}$

Output: List of nodes of CH(P) in clockwise order

Observation:

(p,q) is an edge of $CH(P) \Leftrightarrow$ each point $r \in P \setminus \{p,q\}$

- strictly right of the oriented line \overrightarrow{pq} or
- ullet on the line segment \overline{pq}

Running Time Analysis

FirstConvexHull(P)

$$E \leftarrow \emptyset$$

```
foreach (p,q) \in P \times P with p \neq q do
                                                                            (n^2-n)\cdot
     valid ← true
     foreach r \in P do
          if not (r \text{ is strictly right of } \overrightarrow{pq} \text{ or } r \in \overline{pq}) \text{ then}
                valid \leftarrow false
```

if valid then

construct the sorted node list L from CH(P) out of E

return L

Question: How do we implement this?

Set of edges.

Sort from left to right*

w.r.t. source vertex

Edges that point to the right or to the top.

Sort from right to left* w.r.t. source vertex

Edges that point to the left or to the bottom.

•

Sort from left to right*

w.r.t. source vertex

Edges that point to the right or to the top.

Sort from right to left* w.r.t. source vertex

*if not unique: from bottom to top. from top to bottom.

Edges that point to the left or to the bottom.

or to the bottom.

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$

if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P$; $p_0 \leftarrow (x_1, \infty)$; $j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

return (p_1,\ldots,p_{j+1})

 p_1

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

return (p_1,\ldots,p_{j+1}) $p_4 \bullet \qquad \bullet \qquad \bullet$

 p_3

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$| p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$
 if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

 $p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$ while true **do**

$$p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$

if $p_{j+1} = p_1$ then break else $j \leftarrow j+1$

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

Correctness (ideas):

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

Correctness (ideas):

• Base Case: p_1 lies on convex hull.

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

Correctness (ideas):

- Base Case: p_1 lies on convex hull.
- **Assumption**: First i points belong to convex hull CH(P)

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

Correctness (ideas):

- Base Case: p_1 lies on convex hull.
- **Assumption**: First i points belong to convex hull CH(P)
- **Step**: By assump. p_{i+1} lies to the right of line $\overrightarrow{p_{i-1}p_i} \Rightarrow$ 'right bend' By the chosen angle: all points lie to the right of line $\overrightarrow{p_ip_{i+1}}$

Alternative: Gift Wrapping

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

Degenerated cases:

Alternative: Gift Wrapping

Idea: Begin with a point p_1 of CH(P), then find the next edge of CH(P) in clockwise order.

GiftWrapping(P)

$$p_1 = (x_1, y_1) \leftarrow \text{rightmost point in } P; \ p_0 \leftarrow (x_1, \infty); \ j \leftarrow 1$$
 while true **do**

$$p_{j+1} \leftarrow \arg\max\{\angle p_{j-1}, p_j, q \mid q \in P \setminus \{p_{j-1}, p_j\}\}$$

$$f_{j+1} = p_1 \text{ then break else } j \leftarrow j+1$$

return
$$(p_1,\ldots,p_{j+1})$$

Degenerated cases:

- 1. Choice of p_1 is not unique. Choose the bottommost rightmost point.
- 2. Choice of p_{j+1} is not unique. Choose the point of largest distances.

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Right tangent means polygon lies left to tangent.

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

 $\bullet p$

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Right tangent means polygon lies left **Idea:** Use binary search. to tangent. p_2 p_7 $[a,b] \leftarrow [1,n]$ while tangent not found do midpoint $c = \lfloor \frac{a+b}{2} \rfloor$ p_{10} if $\overline{pp_c}$ is tangent then return p_c p_8 p_9 if [c,b] contains index of contact point then $[a,b] \leftarrow [c,b]$ else $[a,b] \leftarrow [a,c]$

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search.

Right tangent means polygon lies left to tangent.

else

 $[a,b] \leftarrow [a,c]$

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search. Right tangent means polygon lies left to tangent. p_3 to tangent.

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search. Right tangent means polygon lies left to tangent. p_3 to tangent.

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

Idea: Use binary search. Right tangent means polygon lies left to tangent. p_3 to tangent.

Given: convex polygon P (clockswise) and point p outside of P

Find: right tangent at P through p in $O(\log n)$ time.

 p_i lies above p_j , if p_j lies left to $\overrightarrow{pp_i}$.

 p_i lies above p_j , if p_j lies left to $\overrightarrow{pp_i}$.

Assumption: $\overrightarrow{pp_i}$ points from right to left.

 p_i lies above p_j , if p_j lies left to $\overrightarrow{pp_i}$.

Assumption: $\overrightarrow{pp_i}$ points from right to left.

 $|p_a|$ above p_{a+1} : Analogous statements.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus $Graham\ Scan$ is worst-case optimal.

Lower Bound

We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

- 1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus $Graham\ Scan$ is worst-case optimal.
- 2. Why is the running time of the *gift wrapping* algorithm not in contradiction to part (a)?

Outline

Convex Hull

Line Segment Intersection

Problem Formulation

Given:Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output: • all intersections of two or more line segments

• for each intersection, the line segments involved.

Problem Formulation

Given:Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output: • all intersections of two or more line segments

• for each intersection, the line segments involved.

Def: Line segments are closed

Problem Formulation

Given:Set $S = \{s_1, \ldots, s_n\}$ of line segments in the plane

Output: • all intersections of two or more line segments

• for each intersection, the line segments involved.

Def: Line segments are closed

Warm Up

Find:

Algorithm that determines whether a polygon has no self-intersection using $\mathcal{O}(n \log n)$ running time.

Data Structures

1.) Event Queue Q

• define $p \prec q \quad \Leftrightarrow_{\mathrm{def.}} \quad y_p > y_q \lor (y_p = y_q \land x_p < x_q)$ $\ell \stackrel{p}{\longrightarrow} q$

- Store events by \prec in a **balanced binary search tree** \rightarrow e.g., AVL tree, red-black tree,
- ullet Operations insert, delete and nextEvent in $O(\log |\mathcal{Q}|)$ time

2.) Sweep-Line Status $\mathcal T$

- Stores \(\ell \) cut lines ordered from left to right
- Required operations insert, delete, findNeighbor
- This is also a balanced binary search tree with line segments stored in the leaves!

Algorithm

 $\mathsf{FindIntersections}(S)$

Input: Set S of line segments

Output: Set of all intersection points and the line segments involved

$$Q \leftarrow \emptyset; \quad \mathcal{T} \leftarrow \emptyset$$

foreach $s \in S$ do

Q.insert(upperEndPoint(s))

Q.insert(lowerEndPoint(s))

while $\mathcal{Q} \neq \emptyset$ do

 $p \leftarrow \mathcal{Q}.\mathsf{nextEvent}()$

Q.deleteEvent(p)

handleEvent(p)

Algorithm

handleEvent(p)

```
U(p) \leftarrow \text{Line segments with } p \text{ as upper endpoint}
L(p) \leftarrow \text{Line segments with } p \text{ as lower endpoint}
C(p) \leftarrow \text{Line segments with } p \text{ as interior point}
if |U(p) \cup L(p) \cup C(p)| > 1 then
     report p and U(p) \cup L(p) \cup C(p)
remove L(p) \cup C(p) from \mathcal{T}
add U(p) \cup C(p) to \mathcal{T}
if U(p) \cup C(p) = \emptyset then //s_l and s_r, neighbors of p in \mathcal{T}
     \mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s_r \text{ intersect below } p
else //s' and s'' left- and rightmost line segment in U(p) \cup C(p)
     \mathcal{Q} \leftarrow \text{check if } s_l \text{ and } s' \text{ intersect below } p
     \mathcal{Q} \leftarrow \text{check if } s_r \text{ and } s'' \text{ intersect below } p
```


Lecture:

Running time: $\mathcal{O}((n+I)\log n)$

Storage: $\mathcal{O}(n+I)$

Find:

Find algorithm that needs linear space.

Question:

Which data structure may use more than linear space?

Lecture:

Running time: $\mathcal{O}((n+I)\log n)$

Storage: $\mathcal{O}(n+I)$

Find:

Find algorithm that needs linear space.

Question:

Which data structure may use more than linear space?

Event-Queue may contain 2n+I many events, where $I\in\Omega(n^2)$ in the worst case.

Idea: Store only intersection points that are **currently** adjacent in \mathcal{T} .

Obs.: At each point in time there are O(n) many such intersection points.

Idea: Store only intersection points that are **currently** adjacent in \mathcal{T} .

Obs.: At each point in time there are O(n) many such intersection points.

Idea: Store only intersection points that are **currently** adjacent in \mathcal{T} .

Obs.: At each point in time there are O(n) many such intersection points.

Idea: Store only intersection points that are **currently** adjacent in \mathcal{T} .

Obs.: At each point in time there are O(n) many such intersection points.

Idea: Store only intersection points that are **currently** adjacent in \mathcal{T} .

Obs.: At each point in time there are O(n) many such intersection points.

Given: Set P with n points.

Definition:

Given: Set P with n points.

Definition:

Given: Set P with n points.

Definition:

Given: Set P with n points.

Definition:

Given: Set P with n points.

Definition:

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or

the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p the most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p the most?

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or

the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p the most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p the most?

 $t(p) \in P$: Point in O_1 with smallest vert. distance to p.

 $r(p) \in P$: Point in O_2 with smallest horz. distance to p.

octant O

octant O_2

Given: Set P with n points.

Definition:

The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

a) Prove that the largest top-right region of a point is either a square or

the intersection of two open half-planes.

b1) Which point in $O_1 \cap P$ restricts the largest top-right region of p the most?

b2) Which point in $O_2 \cap P$ restricts the largest top-right region of p the most?

 $t(p) \in P$: Point in O_1 with smallest vert. distance to p.

 $r(p) \in P$: Point in O_2 with smallest horz. distance to p.

c) Largest top-right region for all points in $O(n \log n)$ running time.

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p': $\begin{array}{c} t(p') \leftarrow p, \text{ delete } p' \text{ from } \mathcal{T} \\ \text{repeat step 2} \end{array}$

= contained in ${\cal T}$

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p' :

 $t(p') \leftarrow p$, delete p' from \mathcal{T} repeat step 2

= contained in ${\cal T}$

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Guido Brückner · Computational Geometry – Problem Session

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p':

 $t(p') \leftarrow p$, delete p' from \mathcal{T} repeat step 2

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

 $lue{}$ = contained in ${\cal T}$

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p' :

 $t(p') \leftarrow p$, delete p' from \mathcal{T} repeat step 2

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

lacksquare = contained in ${\cal T}$

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p':

 $t(p') \leftarrow p$, delete p' from \mathcal{T} repeat step 2

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

 $lue{}$ = contained in ${\cal T}$

Idea: Determine for each point p the

point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p' :

 $t(p') \leftarrow p$, delete p' from \mathcal{T} repeat step 2

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

lacksquare = contained in ${\cal T}$

Idea: Determine for each point p the point t(p) (and r(p))

Sweepline: from bottom to top

Events: Points in P

Handling event p

- 1. Insert p into \mathcal{T} .
- 2. Find point $p' \in \mathcal{T}$ directly left to p:

If p lies in upper octant of p': $\begin{array}{c} t(p') \leftarrow p, \text{ delete } p' \text{ from } \mathcal{T} \\ \text{repeat step 2} \end{array}$

= contained in \mathcal{T}

Data structure:

Binary search tree $\mathcal T$ over P, where point $p \in \mathcal T$, if

- 1. p lies below the sweep-line
- 2. t(p) has not been determined yet.

Initially \mathcal{T} is empty and points in \mathcal{T} are sorted w.r.t. their x-coord.

Guido Brückner · Computational Geometry - Problem Session

Subdivision of plane.

Subdivision of plane.

For each edge of internal faces introduce directed half-edge (clockwise)

For each edge of internal faces introduce directed half-edge (clockwise) For each edge of external face introduce directed half-edge (counter-clockw.)

Store for each face arbitrary adjacent half-edge.

Store for each face arbitrary adjacent half-edge. Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face.

Store for each face arbitrary adjacent half-edge.

Store for each half-edge successor/predecessor, the half-edge on the opposite side, and the adjacent face.

Store for each vertex an arbitrary incident outgoing half-edge.

- Access vertices, faces and edges.
- *Traversing* single faces.
- Traversing outgoing edges of vertex.

- Access vertices, faces and edges
- Traversing single faces.
- Traversing outgoing edges of vertex.

- Access vertices, faces and edges
- Traversing single faces
- Traversing outgoing edges of vertex.

- Access vertices, faces and edges
- Traversing single faces
- Traversing outgoing edges of vertex.

Traversing incident edges

Traversing incident edges

Traversing in counter clockwise order.

$$f_2 = \text{next}(\text{partner}(e_2))$$

 $g_2 = \text{next}(\text{partner}(f_2))$
 $h_2 = \text{next}(\text{partner}(g_2))$
 $e_2 = \text{next}(\text{partner}(h_2))$