Karlsruher Institut für Technologie Fakultät für Informatik ITI Wagner

Exercises 1 - Convex Hulls & Line Segment Intersection

Discussion: Friday, May 4th, 2018

Lecture 1 – 18.04.2018

Exercise 1. Show that the last step of the algorithm FIRSTCONVEXHULL(P) can be implemented such that is has running time $O(n \log n)$.

FIRSTCONVEXHULL(P)

Construct sorted node list L of CH(P) from E return L

Exercise 2. In the first lecture, we have seen the *gift wrapping* or *Jarvis march* algorithm for computing the convex hull of a set of n points. Sketch a proof of the following theorem, in particular the correctness of the algorithm.

Theorem 1. The convex hull CH(P) of a set of n points P in \mathbb{R}^2 can be computed in $O(n \cdot h)$ time using the gift wrapping algorithm, where h = |CH(P)|.

What degeneracies may occur in the input? How can you handle them correctly?

Figure 1: Convex polygon P and the two tangents from an external point p.

Figure 2: Largest top-right region of p

Exercise 3. Let P be a convex polygon with n vertices and let p be a point outside P as shown in Figure 1.

Show that the two tangent lines at P that pass through p can be computed in $O(\log n)$ time, assuming that the polygon is given as a clockwise sorted list of its vertices. In which part of Chan's convex hull algorithm is this subroutine needed?

Exercise 4. We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

- 1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus *Graham Scan* is worst-case optimal.
- 2. Why is the running time of the *gift wrapping* algorithm not in contradiction to part (a)?

Lecture 2 - 25.04.2018

Exercise 5. The algorithm seen in the lecture for finding the intersection points of n line segments required O(n + I) space, where I is the number of intersection points. Modify the algorithm to use O(n) space only and argue that the modified algorithm remains correct. Does this affect the asymptotic running time?

Exercise 6. Let P be a set of n points in the plane. The *largest top-right region* of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.

- (1) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
- (2) Let p be a point in P, let O_1 be the upper octant and O_2 be the right octant of p; see Fig. 2. Which point in $O_1 \cap P$ restricts the largest top-right region of p at most? Which point in $O_2 \cap P$ restricts the largest top-right region of p at most?
- (3) Describe an algorithm that computes for all points in P the largest top-right region using $O(n \log n)$ running time in total.

Hint: Determine the points of question (2) using two sweeps.