Exercises 1 - Convex Hulls \& Line Segment Intersection

Discussion: Friday, May 4th, 2018

Lecture 1 - 18.04.2018

Exercise 1. Show that the last step of the algorithm FirstConvexHull(P) can be implemented such that is has running time $O(n \log n)$.

```
FirstConvexHull \((P)\)
    \(E \leftarrow \emptyset\)
    foreach \((p, q) \in P \times P\) with \(p \neq q\) do
        valid \(\leftarrow\) true
        foreach \(r \in P\) do
            if not ( \(r\) strictly right of \(\overrightarrow{p q}\) or \(r \in \overline{p q}\) ) then
                valid \(\leftarrow\) false
        if valid then
            \(E \leftarrow E \cup\{(p, q)\}\)
Construct sorted node list \(L\) of \(C H(P)\) from \(E\)
return \(L\)
```

Exercise 2. In the first lecture, we have seen the gift wrapping or Jarvis march algorithm for computing the convex hull of a set of n points. Sketch a proof of the following theorem, in particular the correctness of the algorithm.

Theorem 1. The convex hull $C H(P)$ of a set of n points P in \mathbb{R}^{2} can be computed in $O(n \cdot h)$ time using the gift wrapping algorithm, where $h=|C H(P)|$.

What degeneracies may occur in the input? How can you handle them correctly?

Figure 1: Convex polygon P and the two tangents from an external point p.

Figure 2: Largest top-right region of p
Exercise 3. Let P be a convex polygon with n vertices and let p be a point outside P as shown in Figure 1.

Show that the two tangent lines at P that pass through p can be computed in $O(\log n)$ time, assuming that the polygon is given as a clockwise sorted list of its vertices. In which part of Chan's convex hull algorithm is this subroutine needed?

Exercise 4. We require that any algorithm computing the convex hull of a given set of points returns the convex hull vertices as a clockwise sorted list of points.

1. Show that any algorithm for computing the convex hull of n points has a worst case running time of $\Omega(n \log n)$ and thus Graham Scan is worst-case optimal.
2. Why is the running time of the gift wrapping algorithm not in contradiction to part (a)?

Lecture 2 - 25.04.2018

Exercise 5. The algorithm seen in the lecture for finding the intersection points of n line segments required $O(n+I)$ space, where I is the number of intersection points. Modify the algorithm to use $O(n)$ space only and argue that the modified algorithm remains correct. Does this affect the asymptotic running time?

Exercise 6. Let P be a set of n points in the plane. The largest top-right region of a point $p \in P$ is the union of all open axis-aligned squares that touch p with their bottom left corner and contain no other point of P in their interior.
(1) Prove that the largest top-right region of a point is either a square or the intersection of two open half-planes.
(2) Let p be a point in P, let O_{1} be the upper octant and O_{2} be the right octant of p; see Fig. 2. Which point in $O_{1} \cap P$ restricts the largest top-right region of p at most? Which point in $O_{2} \cap P$ restricts the largest top-right region of p at most?
(3) Describe an algorithm that computes for all points in P the largest top-right region using $O(n \log n)$ running time in total.
Hint: Determine the points of question (2) using two sweeps.

