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Motivation: Spanners

Task:

A set of cities shall be connected by
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Motivation: Spanners

Task:

A set of cities shall be connected by
a new road network.

Idea 1: Euclidean minimum spanning tree

But for no pair (x, y) the path length
in the road network should be much
larger than the distance ||xy||.

Idea 2: complete graph

Construction costs must remain
reasonable, e.g., only O(n) edges.

Idea 3: sparse t-spanner
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Well-Separated Pairs

Def: A pair of disjoint point sets A and B in Rd is called
s-well separated for some s > 0, if A and B can each be
covered by a ball of radius r whose distance is at least sr.
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Well-Separated Pairs

Def: A pair of disjoint point sets A and B in Rd is called
s-well separated for some s > 0, if A and B can each be
covered by a ball of radius r whose distance is at least sr.

≥ sr
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Obs: • s-well separated ⇒ s′-well separated for all s′ ≤ s
• singletons {a} and {b} are s-well separated for all s > 0
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Well-Separated Pair Decomposition (WSPD)

Goal: o(n2)-sized data structure that approximates the distances
of all

(
n
2

)
pairs of points in a set P = {p1, . . . , pn}.

For well-separated pair {A,B} we know that the distance for all
point pairs in A⊗B = {{a, b} | a ∈ A, b ∈ B, a 6= b} is similar.
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Well-Separated Pair Decomposition (WSPD)

Goal: o(n2)-sized data structure that approximates the distances
of all

(
n
2

)
pairs of points in a set P = {p1, . . . , pn}.

For well-separated pair {A,B} we know that the distance for all
point pairs in A⊗B = {{a, b} | a ∈ A, b ∈ B, a 6= b} is similar.

Def: For a point set P and some s > 0 an s-well separated
pair decomposition (s-WSPD) is a set of pairs
{{A1, B1}, . . . , {Am, Bm}} with
• Ai, Bi ⊂ P for all i
• Ai ∩Bi = ∅ for all i
• ⋃m

i=1Ai ⊗Bi = P ⊗ P
• {Ai, Bi} s-well separated for all i

3



Tamara Mchedlidze · Darren Strash Well-Separated Pair Decompositions

Example

28 point pairs

4



Tamara Mchedlidze · Darren Strash Well-Separated Pair Decompositions

Example

28 point pairs 12 s-well separated pairs

4



Tamara Mchedlidze · Darren Strash Well-Separated Pair Decompositions

Example

28 point pairs 12 s-well separated pairs

WSPD of size O(n2) is trivial. Can we do it in O(n)?
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Recall: Quadtrees

NE NW SW SE

Def: A quadtree T (P ) for a point set P is a rooted tree, where
each internal node has four children. Each node
corresponds to a square, and the squares of the leaves
form a partition of the root square.
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Recall: Quadtrees

Def: A quadtree T (P ) for a point set P is a rooted tree, where
each internal node has four children. Each node
corresponds to a square, and the squares of the leaves
form a partition of the root square.

Lemma 1: The height of T (P ) is at most log(s/c) + 3/2, where
c is the smallest distance in P and s is the side
length of the root square Q.

Thm 1: A quadtree T (P ) on n points with height h has
O(hn) nodes and can be constructed in O(hn) time.
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Compressed Quadtrees

Def: A compressed quadtree is a quadtree, in which each path
of non-separating inner nodes is contracted into a single
edge. Each such edge has a label to reconstruct the path
structure.

quadtree
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Compressed Quadtrees

Def: A compressed quadtree is a quadtree, in which each path
of non-separating inner nodes is contracted into a single
edge. Each such edge has a label to reconstruct the path
structure.

quadtree compressed quadtree

(SW,NW,NE)
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Properties of Compressed Quadtrees

Obs: • inner nodes split their point set into ≥ 2 non-empty
parts ⇒ max. n− 1 inner nodes
• depth can be d = n, so the algorithm to construct

quadtrees takes O(n2) time

(SW,NW,NE)
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Properties of Compressed Quadtrees

Obs: • inner nodes split their point set into ≥ 2 non-empty
parts ⇒ max. n− 1 inner nodes
• depth can be d = n, so the algorithm to construct

quadtrees takes O(n2) time

Thm 2: A compressed quadtree for n points in Rd with a fixed
dimension d can be constructed in O(n log n) time.

e.g. skip-quadtree [Eppstein et al. 2005] (without proof)

(SW,NW,NE)
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Packing Lemma

Lemma 2: Let K be a ball with radius r in Rd and let X be a
set of pairwise disjoint quadtree cells with side length
≥ x that intersect K. Then it holds

|X| ≤ (1 + d2r/xe)d.
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Packing Lemma

Lemma 2: Let K be a ball with radius r in Rd and let X be a
set of pairwise disjoint quadtree cells with side length
≥ x that intersect K. Then it holds

|X| ≤ (1 + d2r/xe)d.
Proof:
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Representatives and Level

Def: For each node u of a quadtree T (P ) for point set P let
Pu = Qu ∩ P be the set of points in the corresponding
square Qu. In each leaf u define the representative

rep(u) =

{
p falls Pu = {p} (u is leaf)

∅ otherwise.

For an inner node v assign rep(v) = rep(u) for a
non-empty child u of v.
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Representatives and Level

Def: For each node u of a quadtree T (P ) for point set P let
Pu = Qu ∩ P be the set of points in the corresponding
square Qu. In each leaf u define the representative

rep(u) =

{
p falls Pu = {p} (u is leaf)

∅ otherwise.

For an inner node v assign rep(v) = rep(u) for a
non-empty child u of v.

Def: For each node u of a quadtree T (P ) let level(u) be the
level of u in the corresponding uncompressed quadtree. We
have level(u) ≤ level(v) iff area(Qu) ≥ area(Qv).

Level 0

Level 1

Level 3
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Constructing a WSPD

wsPairs(u, v, T , s)

Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

if rep(u) = ∅ or rep(v) = ∅ or leaf u = v then return ∅
else if Pu and Pv s-well separated then return {{u, v}}
else

if level(u) > level(v) then swap u and v
(u1, . . . , um)← children of u in T
return

⋃m
i=1 wsPairs(ui, v, T , s)

a b
c

d

e

u0

b

d

c

a

e
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circles around Qu and Qv (or radius 0 for point in a leaf)

increase smaller circle and check if distance ≥ sr

a

e
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Constructing a WSPD

wsPairs(u, v, T , s)

Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

if rep(u) = ∅ or rep(v) = ∅ or leaf u = v then return ∅
else if Pu and Pv s-well separated then return {{u, v}}
else
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(u1, . . . , um)← children of u in T
return

⋃m
i=1 wsPairs(ui, v, T , s)

a b
c

d

e

u0

{{b, c}, {d}}
{{b, c}, {d}}

b

d

c

a

e

circles around Qu and Qv (or radius 0 for point in a leaf)

increase smaller circle and check if distance ≥ sr
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Constructing a WSPD

wsPairs(u, v, T , s)

Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

if rep(u) = ∅ or rep(v) = ∅ or leaf u = v then return ∅
else if Pu and Pv s-well separated then return {{u, v}}
else

if level(u) > level(v) then swap u and v
(u1, . . . , um)← children of u in T
return

⋃m
i=1 wsPairs(ui, v, T , s)

a b
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d
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u0
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e

• initial call wsPairs(u0, u0, T , s)
• avoid duplicates wsPairs(ui, uj , T , s) and wsPairs(uj , ui, T , s)
• leaf pairs are always s-well separated, so algorithm terminates
• output are pairs of quadtree nodes
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Constructing a WSPD

wsPairs(u, v, T , s)

Input: quadtree nodes u, v, quadtree T , s > 0
Output: WSPD for Pu ⊗ Pv

if rep(u) = ∅ or rep(v) = ∅ or leaf u = v then return ∅
else if Pu and Pv s-well separated then return {{u, v}}
else

if level(u) > level(v) then swap u and v
(u1, . . . , um)← children of u in T
return

⋃m
i=1 wsPairs(ui, v, T , s)

a b
c

d

e

u0

b

d

c

a

e

• initial call wsPairs(u0, u0, T , s)
• avoid duplicates wsPairs(ui, uj , T , s) and wsPairs(uj , ui, T , s)
• leaf pairs are always s-well separated, so algorithm terminates
• output are pairs of quadtree nodes

Question: How many pairs does the algorithm create?
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Analysis of WSPD Construction

Thm 3: Given a point set P in Rd and s ≥ 1 we can construct
an s-WSPD with O(sdn) pairs in time O(n log n+ sdn).
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Analysis of WSPD Construction

Thm 3: Given a point set P in Rd and s ≥ 1 we can construct
an s-WSPD with O(sdn) pairs in time O(n log n+ sdn).

Sketch of proof:
• simplifying assumption: no quadtree compression required
⇒ in wsPairs(u, v, T , s) sizes of u and v differ by at most factor 2

• goal: count calls to wsPairs
• call is trivial if it produces no further recursive calls
• each trivial call produces at most one ws pair
• each non-trivial call produces ≤ 2d trivial calls and thus ≤ 2d ws pairs

• let’s count non-trivial calls and charge cost to the smaller of the two cells

goal: each quadtree node has cost O(sd)
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Analysis of WSPD Construction

Thm 3: Given a point set P in Rd and s ≥ 1 we can construct
an s-WSPD with O(sdn) pairs in time O(n log n+ sdn).

Sketch of proof:
• simplifying assumption: no quadtree compression required
⇒ in wsPairs(u, v, T , s) sizes of u and v differ by at most factor 2

• goal: count calls to wsPairs
• call is trivial if it produces no further recursive calls
• each trivial call produces at most one ws pair
• each non-trivial call produces ≤ 2d trivial calls and thus ≤ 2d ws pairs

• let’s count non-trivial calls and charge cost to the smaller of the two cells

• call non-trivial ⇒ u and v not ws, u ≥ v
• let x be side length of v and rv = x

√
d/2 the radius of the enclosing ball

• side length of u is x or 2x and ru ≤ 2rv
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Recall Lemma 2:
Given ball K with radius r
in Rd and set X of
pairwise disjoint quadtree
cells with side length ≥ x
that intersect K. Then

|X| ≤ (1 + d2r/xe)d.
• all cells charging cost to
v have size x or 2x and
intersect Kv; let C be
their number and apply
Lemma 2 (see board)

• yields C = O(sd)

Sketch of proof:

• have O(n) nodes in T
• each causes O(sd) non-trivial calls
• each non-trivial call produces O(2d)

ws-pairs

• in total O(sdn) ws-pairs
• time: O(n log n) for quadtree and
O(sdn) for the s-WSPD
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Analysis of WSPD Construction

Thm 3: Given a point set P in Rd and s ≥ 1 we can construct
an s-WSPD with O(sdn) pairs in time O(n log n+ sdn).

Obs: each point pair {u, v} is represented by exactly one
ws-pair {Ai, Bi} in this WSPD
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t-Spanner

For a set P of n points in Rd the Euclidean graph
EG(P ) = (P,

(
P
2

)
) is the complete weighted graph, whose edge

weights correspond to the Euclidean distances of the edges’
endpoints.
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t-Spanner

For a set P of n points in Rd the Euclidean graph
EG(P ) = (P,

(
P
2

)
) is the complete weighted graph, whose edge

weights correspond to the Euclidean distances of the edges’
endpoints.

Since EG(P ) has Θ(n2) edges, one is often interested in a
sparse graphs with O(n) edges, whose shortest paths
approximate the edge weights in EG(P ).

Def: A weighted graph G with vertex set P is called
t-spanner for P with a stretch factor t ≥ 1,
if for all pairs x, y ∈ P it holds

||xy|| ≤ δG(x, y) ≤ t · ||xy||,
where δG(x, y) = length of shortest x-y-path in G.
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WSPD und t-Spanner

Def: For n points P in Rd and a WSPD W of P define the
graph G = (P,E), where
E = {{x, y} | ∃{u, v} ∈W with rep(u) = x, rep(v) = y}.

Recall: For each node u of a quadtree T (P ) for point set P let
Pu = Qu ∩ P be the set of points in the corresponding square Qu.
In each leaf u define the representative

rep(u) =

{
p if Pu = {p} (u is leaf)

∅ otherwise.

For inner node v assign rep(v) = rep(u) for non-empty child u of v.
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Lemma 3: If W is a s-WSPD for a suitable s = s(t) ≥ 4, then
G is a t-spanner for P with O(sdn) edges.
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Summary

Thm 4: For a set P of n points in Rd and some ε ∈ (0, 1] we
can compute an (1 + ε)-spanner for P with O(n/εd)
edges in O(n log n+ n/εd) time.
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