Computational Geometry • Lecture
Duality of Points and Lines

Tamara Mchedlidze
13.7.2018
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

$p = (2, 1)$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

$p = (2, 1)$

$p^*: b = 2a - 1$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

Def: The duality transform $(\cdot)^*$ is defined by

$$ p = (p_x, p_y) \quad \mapsto \quad p^* : b = p_x a - p_y $$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

Def: The duality transform $(\cdot)^*$ is defined by

$$p = (p_x, p_y) \quad \mapsto \quad p^*: b = p_x a - p_y$$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

Def: The duality transform $(\cdot)^*$ is defined by

$$ p = (p_x, p_y) \quad \mapsto \quad p^* : b = p_x a - p_y $$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^2.

Def: The duality transform $(\cdot)^*$ is defined by

$$p = (p_x, p_y) \mapsto p^* : b = p_x a - p_y$$

$$\ell : y = mx + c \mapsto \ell^* = (m, -c)$$
Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \(\mathbb{R}^2 \).

The duality transform \((\cdot)^*\) is defined by

\[
\begin{align*}
\text{primal plane} & \quad \leftrightarrow \quad \text{dual plane} \\
\ell : y = mx + c & \quad \mapsto \quad \ell^* = (m, -c) \\
p = (p_x, p_y) & \quad \mapsto \quad p^* : b = p_x a - p_y
\end{align*}
\]

\(p = (2, 1)\)
\(\ell : y = -x + 1.5\)
\(\ell^* = (-1, -1.5)\)

\(p^* : b = 2a - 1\)
Properties

Lemma 1: The following properties hold

- \((p^*)^* = p\) and \((\ell^*)^* = \ell\)
- \(p\) lies below/on/above \(\ell\) \iff \(p^*\) passes above/through/below \(\ell^*\)
- \(\ell_1\) and \(\ell_2\) intersect in point \(r\)
 \iff \(r^*\) passes through \(\ell_1^*\) and \(\ell_2^*\)
- \(q, r, s\) collinear
 \iff \(q^*, r^*, s^*\) intersect in a common point
Properties

Lemma 1: The following properties hold

- \((p^*)^* = p\) and \((\ell^*)^* = \ell\)
- \(p\) lies below/on/above \(\ell\) \(\iff\) \(p^*\) passes above/through/below \(\ell^*\)
- \(\ell_1\) and \(\ell_2\) intersect in point \(r\) \(\iff\) \(r^*\) passes through \(\ell_1^*\) and \(\ell_2^*\)
- \(q, r, s\) collinear \(\iff\) \(q^*, r^*, s^*\) intersect in a common point

What is the dual object for a line segment \(s = \overline{pq}\)?

What dual property holds for a line \(\ell\), intersecting \(s\)?
Properties

Lemma 1: The following properties hold

- \((p^*)^* = p\) and \((\ell^*)^* = \ell\)
- \(p\) lies below/on/above \(\ell\) \(\iff\) \(p^*\) passes above/through/below \(\ell^*\)
- \(\ell_1\) and \(\ell_2\) intersect in point \(r\)
 \(\iff\) \(r^*\) passes through \(\ell_1^*\) and \(\ell_2^*\)
- \(q, r, s\) collinear
 \(\iff\) \(q^*, r^*, s^*\) intersect in a common point

What is the dual object for a line segment \(s = \overline{pq}\)?
What dual property holds for a line \(\ell\), intersecting \(s\)?
Properties

Lemma 1: The following properties hold

- \((p^*)^* = p\) and \((\ell^*)^* = \ell\)
- \(p\) lies below/on/above \(\ell\) \(\Leftrightarrow\) \(p^*\) passes above/through/below \(\ell^*\)
- \(\ell_1\) and \(\ell_2\) intersect in point \(r\) \(\Leftrightarrow\) \(r^*\) passes through \(\ell_1^*\) and \(\ell_2^*\)
- \(q, r, s\) collinear \(\Leftrightarrow\) \(q^*, r^*, s^*\) intersect in a common point

What is the dual object for a line segment \(s = \overline{pq}\)?

What dual property holds for a line \(\ell\), intersecting \(s\)?
Applications of Duality

Duality does not make geometric problems easier or harder; it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

- upper/lower envelopes of line arrangements
- minimum-area triangle in a point set
Lower Envelope

Def: For a set L of lines the lower envelope $\text{LE}(L)$ of L is the set of all points in $\bigcup_{\ell \in L} \ell$ that are not above any line in the set L (boundary of the intersection of all lower halfplanes).

Several possibilities for computing lower envelopes
• divide&conquer or sweep-line half-plane intersection algorithms (see Chapter 4.2 in [BCKO08])
• consider the dual problem for $L^* = \{\ell^* \mid \ell \in L\}$
Envelopes and Duality

When does an edge pq of ℓ appear as a segment on $LE(L)$?
When does an edge pq of ℓ appear as a segment on $LE(L)$?

- p and q are not above any line in L
When does an edge pq of ℓ appear as a segment on $\text{LE}(L)$?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^*
When does an edge pq of ℓ appear as a segment on $LE(L)$?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^*
 \[\Rightarrow \text{must be neighbors on upper convex hull } UCH(L^*) \]
- intersection point of p^* and q^* is ℓ^*, a vertex of $UCH(L^*)$
Envelopes and Duality

When does an edge pq of \mathcal{L} appear as a segment on $\text{LE}(L)$?

- p and q are not above any line in L
- p^* and q^* are not below any point in L^*
 \[\Rightarrow \text{must be neighbors on upper convex hull } \text{UCH}(L^*) \]
- intersection point of p^* and q^* is \mathcal{L}^*, a vertex of $\text{UCH}(L^*)$

Lemma 2: The lines on $\text{LE}(L)$ ordered from right to left correspond to the vertices of $\text{UCH}(L^*)$ ordered from left to right.
Computing the Envelope

• algorithm for computing upper convex hull in time $O(n \log n)$
 (see Lecture 1 on convex hulls)
Computing the Envelope

• algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)

• primal lines of the points on UCH(L^*) in reverse order form LE(L)
Computing the Envelope

• algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)

• primal lines of the points on $UCH(L^*)$ in reverse order form $LE(L)$

• analogously: upper envelope of $L = \hat{L}$ lower convex hull of L^*
Computing the Envelope

• algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)

• primal lines of the points on UCH(L^*) in reverse order form LE(L)

• analogously: upper envelope of $L = \hat{L}$ lower convex hull of L^*

When does this approach work faster?
Computing the Envelope

• algorithm for computing upper convex hull in time \(O(n \log n)\) (see Lecture 1 on convex hulls)

• primal lines of the points on \(UCH(L^*)\) in reverse order form \(LE(L)\)

• analogously: upper envelope of \(L \hat{=} \) lower convex hull of \(L^*\)

When does this approach work faster?

• output sensitive algorithm for computing convex hull with \(h\) points with time complexity \(O(n \log h)\)
Line Arrangements

Def: A set L of lines defines a subdivision $\mathcal{A}(L)$ of the plane (the line arrangement) composed of vertices, edges, and cells (poss. unbounded). $\mathcal{A}(L)$ is called **simple** if no three lines share a point and no two lines are parallel.
Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $n^2/2 + n/2 + 1$ cells.
Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $n^2/2 + n/2 + 1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) → obtain planar embedded Graph G
- doubly-connected edge list for G
Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $n^2/2 + n/2 + 1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise)
 → obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?
Complexity of $A(L)$

The combinatorial complexity of $A(L)$ is the number of vertices, edges, and cells.

Theorem 1: Let $A(L)$ be a simple line arrangement for n lines. Then $A(L)$ has $\binom{n}{2}$ vertices, n^2 edges, and $n^2/2 + n/2 + 1$ cells.

Data structure for $A(L)$:

- create bounding box of all vertices (s. exercise)
 \[\rightarrow\] obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $A(L)$?

\[\rightarrow\] could use line segment intersection plane sweep in $O(n^2 \log n)$
Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$

Output: DCEL \mathcal{D} for $\mathcal{A}(L)$

$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$

for $i \leftarrow 1$ to n do

 find leftmost edge e of B intersecting ℓ_i

 $f \leftarrow$ inner cell incident to e

 while $f \neq$ outer cell do

 split f, update \mathcal{D} and set f to the next cell
 intersected by ℓ_i

end for
Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{l_1, \ldots, l_n\}$

Output: DCEL D for $\mathcal{A}(L)$

$D \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$

for $i \leftarrow 1$ to n do

 find leftmost edge e of B intersecting l_i

 $f \leftarrow$ inner cell incident to e

 while $f \neq$ outer cell do

 split f, update D and set f to the next cell

 intersected by l_i
Incrementally Constructing $A(L)$

Input: lines $L = \{l_1, \ldots, l_n\}$

Output: DCEL D for $A(L)$

1. $D \leftarrow$ bounding box B of the vertices of $A(L)$
2. for $i \leftarrow 1$ to n do
 - find leftmost edge e of B intersecting l_i
 - $f \leftarrow$ inner cell incident to e
 - while $f \neq$ outer cell do
 - split f, update D and set f to the next cell intersected by l_i
Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$

Output: DCEL D for $\mathcal{A}(L)$

$D \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$

for $i \leftarrow 1$ to n do

 find leftmost edge e of B intersecting ℓ_i

 $f \leftarrow$ inner cell incident to e

 while $f \neq$ outer cell do

 split f, update D and set f to the next cell intersected by ℓ_i
Incrementally Constructing $A(L)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$

Output: DCEL D for $A(L)$

$D \leftarrow$ bounding box B of the vertices of $A(L)$

for $i \leftarrow 1$ **to** n **do**

- find leftmost edge e of B intersecting ℓ_i
- $f \leftarrow$ inner cell incident to e
- **while** $f \neq$ outer cell **do**
 - split f, update D and set f to the next cell intersected by ℓ_i
Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$

Output: DCEL \mathcal{D} for $\mathcal{A}(L)$

$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$

for $i \leftarrow 1$ **to** n **do**

1. find leftmost edge e of B intersecting ℓ_i
2. $f \leftarrow$ inner cell incident to e
3. **while** $f \neq$ outer cell **do**
 - split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i
Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L = \{\ell_1, \ldots, \ell_n\}$

Output: DCEL \mathcal{D} for $\mathcal{A}(L)$

$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$

for $i \leftarrow 1$ to n do

- find leftmost edge e of B intersecting ℓ_i
- $f \leftarrow$ inner cell incident to e
- while $f \neq$ outer cell do
 - split f, update \mathcal{D} and set f to the next cell intersected by ℓ_i

Running time?
Incrementally Constructing \(\mathcal{A}(L) \)

Input: lines \(L = \{l_1, \ldots, l_n\} \)

Output: DCEL \(D \) for \(\mathcal{A}(L) \)

\[
D \leftarrow \text{bounding box } B \text{ of the vertices of } \mathcal{A}(L)
\]

for \(i \leftarrow 1 \text{ to } n \) do

\begin{itemize}
 \item find leftmost edge \(e \) of \(B \) intersecting \(l_i \)
 \item \(f \leftarrow \text{inner cell incident to } e \)
 \item while \(f \neq \text{outer cell} \) do
 \begin{itemize}
 \item split \(f \), update \(D \) and set \(f \) to the next cell intersected by \(l_i \)
 \end{itemize}
\end{itemize}

Running time?

- bounding box: \(O(n^2) \)
- start point of \(l_i \): \(O(i) \)
- **while**-loop: \(O(\|\text{red path}\|) \)
Zone Theorem

Def: For an arrangement $A(L)$ and a line $l \not\in L$ the zone $Z_A(l)$ is defined as the set of all cells of $A(L)$ whose closure intersects l.
Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $l \not\in L$ the *zone* $Z_{\mathcal{A}}(l)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects l.

How many edges are in $Z_{\mathcal{A}}(l)$?
Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \not\in L$ the **zone** $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \not\in L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6n$ edges.
Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \not\in L$ the *zone* $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

![Diagram of zone theorem](image)

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \not\in L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6n$ edges.

Theorem 3: The arrangement $\mathcal{A}(L)$ of a set of n lines can be constructed in $O(n^2)$ time and space.
Smallest Triangle

Given a set P of n points in \mathbb{R}^2, find a minimum-area triangle Δpqr with $p, q, r \in P$.
Smallest Triangle

Given a set \(P \) of \(n \) points in \(\mathbb{R}^2 \), find a minimum-area triangle \(\Delta pqr \) with \(p, q, r \in P \).

Let \(p, q \in P \). The point \(r \in P \setminus \{p, q\} \) minimizing \(\Delta pqr \) lies on the boundary of the most thin empty corridor parallel to \(pq \).
Smallest Triangle

Given a set P of n points in \mathbb{R}^2, find a minimum-area triangle Δpqr with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the most thin empty corridor parallel to pq.

There is no other point in P between pq and the line ℓ_r through r and parallel to pq.
Smallest Triangle

Given a set P of n points in \mathbb{R}^2, find a minimum-area triangle Δpqr with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \setminus \{p, q\}$ minimizing Δpqr lies on the boundary of the most thin empty corridor parallel to pq.

There is no other point in P between pq and the line ℓ_r through r and parallel to pq.

In dual plane:
- ℓ_r^* lies on r^*
- ℓ_r^* and $(pq)^*$ have identical x-coordinate
- no line $p^* \in P^*$ intersects $\ell_r^*(pq)^*$
Computing in the Dual

- \(\ell_r^* \) lies vertically above or below \((pq)^*\) in a common cell of \(\mathcal{A}(P^*)\) \(\Rightarrow\) only two candidates
Computing in the Dual

• \(\ell^*_r \) lies vertically above or below \((pq)^*\) in a common cell of \(\mathcal{A}(P^*)\) \(\Rightarrow\) only two candidates

• Compute in \(O(n^2)\) time the arrangement \(\mathcal{A}(P^*)\)
Computing in the Dual

- \(\ell_r^* \) lies vertically above or below \((pq)^*\) in a common cell of \(A(P^*) \) \(\Rightarrow\) only two candidates

- Compute in \(O(n^2) \) time the arrangement \(A(P^*) \)

- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices \(\rightarrow\) time linear in cell size
Computing in the Dual

- \(\ell^*_r \) lies vertically above or below \((pq)^*\) in a common cell of \(A(P^*)\) \(\Rightarrow\) only two candidates

- Compute in \(O(n^2)\) time the arrangement \(A(P^*)\)

- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices \(\rightarrow\) time linear in cell size

- for all \(O(n^2)\) candidate triples \((pq)^*r^*\) compute in \(O(1)\) time the area of \(\Delta pqr\)
Computing in the Dual

- \(\ell_r^* \) lies vertically above or below \((pq)^*\) in a common cell of \(A(P^*) \) ⇒ only two candidates
- Compute in \(O(n^2) \) time the arrangement \(A(P^*) \)
- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices → time linear in cell size
- for all \(O(n^2) \) candidate triples \((pq)^*r^*\) compute in \(O(1) \) time the area of \(\Delta pqr \)
- finds minimum in \(O(n^2) \) time in total
Further Duality Applications

• Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?
Further Duality Applications

• Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^2. Then there is a line ℓ that divides S and D in half simultaneously.
Further Duality Applications

• Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^2. Then there is a line ℓ that divides S and D in half simultaneously.

• Given n segments in the plane, find a maximum stabbing-line, i.e., a line intersecting as many segments as possible.
Duality is a very useful tool in algorithmic geometry!
Duality is a very useful tool in algorithmic geometry!
Check: ”Monotone Simultaneous Embeddings of Upward Planar Digraphs” Journal of Algorithms and Applications
Discussion

Duality is a very useful tool in algorithmic geometry!
Check: ”Monotone Simultaneous Embeddings of Upward Planar Digraphs” Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Discussion

Duality is a very useful tool in algorithmic geometry!
Check: ”Monotone Simultaneous Embeddings of Upward Planar Digraphs” Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.
Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?
Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?
The arrangement of n hyperplanes in \mathbb{R}^d has complexity $\Theta(n^d)$. A generalization of the Zone Theorem yields an $O(n^d)$-time algorithm.