Computational Geometry • Lecture Duality of Points and Lines

INSTITUTE FOR THEORETICAL INFORMATICS • FACULTY OF INFORMATICS

Tamara Mchedlidze
13.7.2018

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
p=\left(p_{x}, p_{y}\right) \quad \mapsto \quad p^{*}: b=p_{x} a-p_{y}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
\begin{array}{rll}
p=\left(p_{x}, p_{y}\right) & \mapsto & p^{*}: b=p_{x} a-p_{y} \\
\ell: y=m x+c & \mapsto & \ell^{*}=(m,-c)
\end{array}
$$

Duality Transforms

We have seen duality for planar graphs and duality of Voronoi diagrams and Delaunay triangulations. Here we will see a duality of points and lines in \mathbb{R}^{2}.

Def: The duality transform $(\cdot)^{*}$ is defined by

$$
\begin{array}{rll}
p=\left(p_{x}, p_{y}\right) & \mapsto & p^{*}: b=p_{x} a-p_{y} \\
\ell: y=m x+c & \mapsto & \ell^{*}=(m,-c)
\end{array}
$$

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Properties

Lemma 1: The following properties hold

- $\left(p^{*}\right)^{*}=p$ and $\left(\ell^{*}\right)^{*}=\ell$
- p lies below/on/above $\ell \Leftrightarrow p^{*}$ passes above/through/below ℓ^{*}
- ℓ_{1} and ℓ_{2} intersect in point r
$\Leftrightarrow r^{*}$ passes through ℓ_{1}^{*} and ℓ_{2}^{*}
- q, r, s collinear
$\Leftrightarrow q^{*}, r^{*}, s^{*}$ intersect in a common point
What is the dual object for a line segment $s=\overline{p q}$? What dual property holds for a line ℓ, intersecting s ?

Applications of Duality

Duality does not make geometric problems easier or harder; it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

- upper/lower envelopes of line arrangements
- minimum-area triangle in a point set

Lower Envelope

Def: For a set L of lines the lower envelope $\operatorname{LE}(L)$ of L is the set of all points in $\cup_{\ell \in L} \ell$ that are not above any line in the set L (boundary of the intersection of all lower halfplanes).

Several possibilities for computing lower envelopes

- divide\&conquer or sweep-line half-plane intersection algorithms (see Chapter 4.2 in [BCKO08])
- consider the dual problem for $L^{*}=\left\{\ell^{*} \mid \ell \in L\right\}$

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\operatorname{LE}(L)$?

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\operatorname{LE}(L)$?

- p and q are not above any line in L

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\mathrm{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*}

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\mathrm{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*} \Rightarrow must be neighbors on upper convex hull $\mathrm{UCH}\left(L^{*}\right)$
- intersection point of p^{*} and q^{*} is ℓ^{*}, a vertex of $\mathrm{UCH}\left(L^{*}\right)$

Envelopes and Duality

When does an edge $\overline{p q}$ of ℓ appear as a segment on $\operatorname{LE}(L)$?

- p and q are not above any line in L
- p^{*} and q^{*} are not below any point in L^{*} \Rightarrow must be neighbors on upper convex hull $\mathrm{UCH}\left(L^{*}\right)$
- intersection point of p^{*} and q^{*} is ℓ^{*}, a vertex of $\mathrm{UCH}\left(L^{*}\right)$

Lemma 2: The lines on $\operatorname{LE}(L)$ ordered from right to left correspond to the vertices of $\mathrm{UCH}\left(L^{*}\right)$ ordered from left to right.

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\mathrm{UCH}\left(L^{*}\right)$ in reverse order form LE(L)

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\mathrm{UCH}\left(L^{*}\right)$ in reverse order form LE (L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\mathrm{UCH}\left(L^{*}\right)$ in reverse order form LE (L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

When does this approach work faster?

Computing the Envelope

- algorithm for computing upper convex hull in time $O(n \log n)$ (see Lecture 1 on convex hulls)
- primal lines of the points on $\mathrm{UCH}\left(L^{*}\right)$ in reverse order form LE(L)
- analogously: upper envelope of $L \hat{=}$ lower convex hull of L^{*}

When does this approach work faster?

- output sensitive algorithm for computing convex hull with h points with time complexity $O(n \log h)$

Line Arrangements

Def: A set L of lines defines a subdivision $\mathcal{A}(L)$ of the plane (the line arrangement) composed of vertices, edges, and cells (poss. unbounded).
$\mathcal{A}(L)$ is called simple if no three lines share a point and no two lines are parallel.

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $n^{2} / 2+n / 2+1$ cells.

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $n^{2} / 2+n / 2+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $n^{2} / 2+n / 2+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?

Complexity of $\mathcal{A}(L)$

The combinatorial complexity of $\mathcal{A}(L)$ is the number of vertices, edges, and cells.
Theorem 1: Let $\mathcal{A}(L)$ be a simple line arrangement for n lines. Then $\mathcal{A}(L)$ has $\binom{n}{2}$ vertices, n^{2} edges, and $n^{2} / 2+n / 2+1$ cells.

Data structure for $\mathcal{A}(L)$:

- create bounding box of all vertices (s. exercise) \rightarrow obtain planar embedded Graph G
- doubly-connected edge list for G

Do we already know a way to compute $\mathcal{A}(L)$?
\rightarrow could use line segment intersection plane sweep in $O\left(n^{2} \log n\right)$

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Running time?

Incrementally Constructing $\mathcal{A}(L)$

Input: lines $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$
Output: DCEL \mathcal{D} for $\mathcal{A}(L)$
$\mathcal{D} \leftarrow$ bounding box B of the vertices of $\mathcal{A}(L)$
for $i \leftarrow 1$ to n do
find leftmost edge e of B intersecting ℓ_{i}
$f \leftarrow$ inner cell incident to e
while $f \neq$ outer cell do split f, update \mathcal{D} and set f to the next cell intersected by ℓ_{i}

Running time?

- bounding box: $O\left(n^{2}\right)$
- start point of $\ell_{i}: O(i)$
- while-loop: $O(\mid$ red path $\mid)$

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6 n$ edges.

Zone Theorem

Def: For an arrangement $\mathcal{A}(L)$ and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ is defined as the set of all cells of $\mathcal{A}(L)$ whose closure intersects ℓ.

How many edges are in $Z_{\mathcal{A}}(\ell)$?

Theorem 2: For an arrangement $\mathcal{A}(L)$ of n lines in the plane and a line $\ell \notin L$ the zone $Z_{\mathcal{A}}(\ell)$ consist of at most $6 n$ edges.

Theorem 3: The arrangement $\mathcal{A}(L)$ of a set of n lines can be constructed in $O\left(n^{2}\right)$ time and space.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the most thin empty corridor parallel to $p q$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the most thin empty corridor parallel to $p q$.
There is no other point in P between $p q$ and the line ℓ_{r} through r and parallel to $p q$.

Smallest Triangle

Given a set P of n points in \mathbb{R}^{2}, find a minimum-area triangle $\Delta p q r$ with $p, q, r \in P$.

Let $p, q \in P$. The point $r \in P \backslash\{p, q\}$ minimizing $\Delta p q r$ lies on the boundary of the most thin empty corridor parallel to $p q$.
There is no other point in P between $p q$ and the line ℓ_{r} through r and parallel to $p q$.

In dual plane:

- ℓ_{r}^{*} lies on r^{*}
- ℓ_{r}^{*} and $(p q)^{*}$ have identical x-coordinate
- no line $p^{*} \in P^{*}$ intersects $\overline{\ell_{r}^{*}(p q)^{*}}$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices \rightarrow time linear in cell size

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices \rightarrow time linear in cell size
- for all $O\left(n^{2}\right)$ candidate triples $(p q)^{*} r^{*}$ compute in $O(1)$ time the area of $\Delta p q r$

Computing in the Dual

- ℓ_{r}^{*} lies vertically above or below $(p q)^{*}$ in a common cell of $\mathcal{A}\left(P^{*}\right) \Rightarrow$ only two candidates
- Compute in $O\left(n^{2}\right)$ time the arrangement $\mathcal{A}\left(P^{*}\right)$
- With a single traversal of a cell (left-to-right) compute the vertical neighbors of the vertices \rightarrow time linear in cell size
- for all $O\left(n^{2}\right)$ candidate triples $(p q)^{*} r^{*}$ compute in $O(1)$ time the area of $\Delta p q r$
- finds minimum in $O\left(n^{2}\right)$ time in total

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^{2}. Then there is a line ℓ that divides S and D in half simultaneously.

Further Duality Applications

- Two thieves have stolen a necklace of diamonds and emeralds. They want to share fairly without destroying the necklace more than necessary. How many cuts do they need?

Theorem 4: Let D, E be two finite sets of points in \mathbb{R}^{2}. Then there is a line ℓ that divides S and D in half simultaneously.

- Given n segments in the plane, find a maximum stabbing-line, i.e., a line intersecting as many segments as possible.

Discussion

Duality is a very useful tool in algorithmic geometry!

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Discussion

Duality is a very useful tool in algorithmic geometry!
 Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar
Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?

Discussion

Duality is a very useful tool in algorithmic geometry!
Check: "Monotone Simultaneous Embeddings of Upward Planar
Digraphs" Journal of Algorithms and Applications

Can we use duality in higher dimensions?
Yes, you can define incidence- and order-preserving duality transforms between d-dimensional points and hyperplanes.

What about higher-dimensional arrangements?
The arrangement of n hyperplanes in \mathbb{R}^{d} has complexity $\Theta\left(n^{d}\right)$. A generalization of the Zone Theorem yields an $O\left(n^{d}\right)$-time algorithm.

