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Duality Transforms

p = (2, 1)

We have seen duality for planar graphs and duality of Voronoi
diagrams and Delaunay triangulations. Here we will see a duality
of points and lines in R2.
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Properties

Lemma 1: The following properties hold
• (p∗)∗ = p and (`∗)∗ = `
• p lies below/on/above ` ⇔ p∗ passes above/through/below `∗

• `1 and `2 intersect in point r
⇔ r∗ passes through `∗1 and `∗2
• q, r, s collinear
⇔ q∗, r∗, s∗ intersect in a common point
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Applications of Duality

Duality does not make geometric problems easier or harder;
it simply provides a different (but often helpful) perspective!

We will look at two examples in more detail:

• upper/lower envelopes of line arrangements
• minimum-area triangle in a point set

3
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Lower Envelope

Def: For a set L of lines the lower envelope LE(L) of L is the
set of all points in ∪`∈L` that are not above any line in the
set L (boundary of the intersection of all lower halfplanes).

Several possibilities for computing lower envelopes
• divide&conquer or sweep-line half-plane intersection

algorithms (see Chapter 4.2 in [BCKO08])
• consider the dual problem for L∗ = {`∗ | ` ∈ L}

LE(L)

4
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Envelopes and Duality

`

p q

When does an edge pq of ` appear as a segment on LE(L)?
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Envelopes and Duality

`

p q

When does an edge pq of ` appear as a segment on LE(L)?

• p and q are not above any line in L

p∗

q∗`∗

• p∗ and q∗ are not below any point in L∗
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Envelopes and Duality

`

p q

When does an edge pq of ` appear as a segment on LE(L)?

• p and q are not above any line in L
• p∗ and q∗ are not below any point in L∗

⇒ must be neighbors on upper convex hull UCH(L∗)
• intersection point of p∗ and q∗ is `∗, a vertex of UCH(L∗)
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Envelopes and Duality

`
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When does an edge pq of ` appear as a segment on LE(L)?

• p and q are not above any line in L
• p∗ and q∗ are not below any point in L∗

⇒ must be neighbors on upper convex hull UCH(L∗)
• intersection point of p∗ and q∗ is `∗, a vertex of UCH(L∗)

p∗

q∗`∗

UCH(L∗)

Lemma 2: The lines on LE(L) ordered from right to left
correspond to the vertices of UCH(L∗) ordered from
left to right.
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Computing the Envelope

• algorithm for computing upper convex hull in time O(n log n)
(see Lecture 1 on convex hulls)
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• output sensitive algorithm for computing convex hull with h
points with time complexity O(n log h)

When does this approach work faster?
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Line Arrangements

Def: A set L of lines defines a subdivision A(L) of the plane
(the line arrangement) composed of vertices, edges, and
cells (poss. unbounded).
A(L) is called simple if no three lines share a point and
no two lines are parallel.

edge vertex

cell
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Complexity of A(L)
The combinatorial complexity of A(L) is the number of
vertices, edges, and cells.

Theorem 1: Let A(L) be a simple line arrangement for n lines.
Then A(L) has

(
n
2

)
vertices, n2 edges, and

n2/2 + n/2 + 1 cells.
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Complexity of A(L)
The combinatorial complexity of A(L) is the number of
vertices, edges, and cells.

Theorem 1: Let A(L) be a simple line arrangement for n lines.
Then A(L) has

(
n
2

)
vertices, n2 edges, and

n2/2 + n/2 + 1 cells.

Data structure for A(L):
• create bounding box of all vertices (s. exercise)
→ obtain planar embedded Graph G
• doubly-connected edge list for G

Do we already know a way to compute A(L)?

→ could use line segment intersection plane sweep in O(n2 log n)
9
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Incrementally Constructing A(L)

Input: lines L = {`1, . . . , `n}
Output: DCEL D for A(L)
D ← bounding box B of the vertices of A(L)
for i← 1 to n do

find leftmost edge e of B intersecting `i
f ← inner cell incident to e
while f 6= outer cell do

split f , update D and set f to the next cell
intersected by `i

e
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Incrementally Constructing A(L)

Input: lines L = {`1, . . . , `n}
Output: DCEL D for A(L)
D ← bounding box B of the vertices of A(L)
for i← 1 to n do

find leftmost edge e of B intersecting `i
f ← inner cell incident to e
while f 6= outer cell do

split f , update D and set f to the next cell
intersected by `i

e

Running time?

• start point of `i: O(i)
• while-loop:
O(|red path|)

• bounding box: O(n2)
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Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.

11



Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.

How many edges
are in ZA(`)?

right bounding
edge ZA(`)

left bounding
edge

11



Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.

How many edges
are in ZA(`)?

Theorem 2: For an arrangement A(L) of n lines in the plane
and a line ` 6∈ L the zone ZA(`) consist of at most
6n edges.

right bounding
edge ZA(`)

left bounding
edge

11



Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Zone Theorem

Def: For an arrangement A(L) and a line ` 6∈ L the zone
ZA(`) is defined as the set of all cells of A(L) whose
closure intersects `.

How many edges
are in ZA(`)?

Theorem 2: For an arrangement A(L) of n lines in the plane
and a line ` 6∈ L the zone ZA(`) consist of at most
6n edges.

Theorem 3: The arrangement A(L) of a set of n lines can be
constructed in O(n2) time and space.

right bounding
edge ZA(`)

left bounding
edge
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Smallest Triangle

Given a set P of n points in R2, find a minimum-area
triangle ∆pqr with p, q, r ∈ P .

?
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Given a set P of n points in R2, find a minimum-area
triangle ∆pqr with p, q, r ∈ P .

Let p, q ∈ P . The point r ∈ P \ {p, q} minimizing ∆pqr lies on
the boundary of the most thin empty corridor parallel to pq.

p
qr

There is no other point in P between pq and the line `r
through r and parallel to pq.

`r

In dual plane: • `∗r lies on r∗

• `∗r and (pq)∗ have identical x-coordinate
• no line p∗ ∈ P ∗ intersects `∗r(pq)∗

(pq)∗

`∗r

r∗

q∗

p∗
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Computing in the Dual

(pq)∗

`∗r

r∗

q∗

p∗

• `∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

p
qr

`r
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• `∗r lies vertically above or below (pq)∗ in a common cell of
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• Compute in O(n2) time the arrangement A(P ∗)

p
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`r
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• `∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

• Compute in O(n2) time the arrangement A(P ∗)

• With a single traversal of a cell (left-to-right) compute the
vertical neighbors of the vertices → time linear in cell size
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• `∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

• Compute in O(n2) time the arrangement A(P ∗)

• With a single traversal of a cell (left-to-right) compute the
vertical neighbors of the vertices → time linear in cell size

• for all O(n2) candidate triples (pq)∗r∗ compute in O(1)
time the area of ∆pqr
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Computing in the Dual

(pq)∗

`∗r

r∗

q∗

p∗

• `∗r lies vertically above or below (pq)∗ in a common cell of
A(P ∗) ⇒ only two candidates

• Compute in O(n2) time the arrangement A(P ∗)

• With a single traversal of a cell (left-to-right) compute the
vertical neighbors of the vertices → time linear in cell size

• for all O(n2) candidate triples (pq)∗r∗ compute in O(1)
time the area of ∆pqr
• finds minimum in O(n2) time in total

p
qr

`r
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Further Duality Applications

• Two thieves have stolen a necklace of diamonds and
emeralds. They want to share fairly without destroying the
necklace more than necessary. How many cuts do they need?

15



Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Further Duality Applications

• Two thieves have stolen a necklace of diamonds and
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Theorem 4: Let D,E be two finite sets of points in R2. Then
there is a line ` that divides S and D in half
simultaneously.
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Further Duality Applications

• Given n segments in the plane, find a maximum stabbing-line,
i.e., a line intersecting as many segments as possible.

• Two thieves have stolen a necklace of diamonds and
emeralds. They want to share fairly without destroying the
necklace more than necessary. How many cuts do they need?

Theorem 4: Let D,E be two finite sets of points in R2. Then
there is a line ` that divides S and D in half
simultaneously.

15



Tamara Mchedlidze · Darren Strash Delaunay-Triangulations

Discussion

Duality is a very useful tool in algorithmic geometry!
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Discussion

Duality is a very useful tool in algorithmic geometry!

Yes, you can define incidence- and order-preserving duality transforms
between d-dimensional points and hyperplanes.

Can we use duality in higher dimensions?

What about higher-dimensional arrangements?

The arrangement of n hyperplanes in Rd has complexity Θ(nd). A
generalization of the Zone Theorem yields an O(nd)-time algorithm.

16

Check: ”Monotone Simultaneous Embeddings of Upward Planar
Digraphs”Journal of Algorithms and Applications
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