

Computational Geometry LectureRange Searching

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Chih-Hung Liu · Tamara Mchledidze 20.06.2018

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

Geometric Interpretation:

Entries are points: (birth year, income level) and the query is an axis-parallel rectangle

Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are saved. We now want to perform a search: which employees have an income between 2,000 and 3,000 Euro and were born between 1960 and 1980?

This problem can easily be generalized to d dimensions.

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- lacksquare Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- lacksquare Internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: A data structure that efficiently answers queries of

the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:

- Stores points in the leaves
- lacksquare Internal node v stores pivot value x_v

Example:

Search for all points in [6,50]

Answer:

Points in the leaves between the search paths, (i.e.,

 $\{7,8,12,15,17,21,33,41\}$

1dRangeQuery

FindSplitNode(T, x, x')

```
v \leftarrow \operatorname{root}(T)
while v not a leaf and (x' \le x_v \text{ or } x > x_v) do
\sqsubseteq \inf x' \le x_v \text{ then } v \leftarrow \operatorname{lc}(v) \text{ else } v \leftarrow \operatorname{rc}(v)
return v
```

1dRangeQuery(T, x, x')

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')

if v_{\text{split}} is leaf then report v_{\text{split}}

else
```

```
v \leftarrow \operatorname{lc}(v_{\operatorname{split}})
while v not a leaf do

if x \leq x_v then

ReportSubtree(\operatorname{rc}(v)); v \leftarrow \operatorname{lc}(v)
else v \leftarrow \operatorname{rc}(v)

report v
// analog. for x' and \operatorname{rc}(v_{\operatorname{split}})
```


1dRangeQuery

FindSplitNode(T, x, x')

```
v \leftarrow \operatorname{root}(T)
while v not a leaf and (x' \le x_v \text{ or } x > x_v) do
     if x' \leq x_v then v \leftarrow lc(v) else v \leftarrow rc(v)
```

return v

1dRangeQuery(T, x, x')

 $v_{\sf split} \leftarrow {\sf FindSplitNode}(T, x, x')$ if v_{split} is leaf then report v_{split} else

> $v \leftarrow \mathsf{lc}(v_{\mathsf{split}})$ while v not a leaf doif $x \leq x_v$ then ReportSubtree(rc(v)); $v \leftarrow lc(v)$ else $v \leftarrow rc(v)$ report v

Can find canonical subset in linear time

Analysis of 1dRangeQuery


```
\begin{aligned} \mathbf{1dRangeQuery}(T, x, x') \\ v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x') \\ \mathbf{if} \ v_{\mathsf{split}} \ \mathsf{is} \ \mathsf{leaf} \ \mathbf{then} \ \mathsf{report} \ v_{\mathsf{split}} \\ \mathbf{else} \end{aligned}
```


Theorem 1: A set of n points in \mathbb{R} can preprocessed in $O(n\log n)$ time and stored in O(n) space so that we can answer range queries in $O(k + \log n)$ time, where k is the number of reported points.

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of the form $R = [x, x'] \times [y, y']$

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solutions:

- one search tree, alternate search for x and y coordinates $\rightarrow kd$ -Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - → Range Tree

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solutions:

- one search tree, alternate search for x and y coordinates $\rightarrow kd$ -Tree
- primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - → Range Tree

Temporary assumption: general position, that is no two points have the same x- or y-coordinates

BuildKdTree(P, depth)

BuildKdTree(P, depth)

$$\begin{array}{ll} \mbox{if } |P|=1 \mbox{ then} \\ | \mbox{ return leaf with the point in } P \\ \mbox{else} \end{array}$$


```
BuildKdTree(P, depth)
  if |P| = 1 then
          return leaf with the point in P
  else
          if depth is even then Point \lceil |P|/2 \rceil
                 \begin{array}{c} \text{divide } P \text{ vertically at} \\ \ell : x = x_{\text{median}(P)} \text{ in} \end{array}
                 P_1 (Points left to or on \ell) and
                  P_2 = P \setminus P_1
          else
```


BuildKdTree(P, depth)

if
$$|P|=1$$
 then $|$ return leaf with the point in P else

if
$$depth$$
 is even **then**

$$divide P \text{ vertically at}$$

$$\ell: x = x_{\mathsf{median}(P)} \text{ in}$$

$$P_1 \text{ (Points left to or on } \ell) \text{ and}$$

$$P_2 = P \setminus P_1$$

else

divide
$$P$$
 horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$


```
BuildKdTree(P, depth)
```

if
$$|P| = 1$$
 then $|$ return leaf with the point in P else

else

divide
$$P$$
 horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

$$v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$$

 $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$

BuildKdTree(P, depth)

$$\begin{array}{ll} \mbox{if} \ |P|=1 \ \mbox{then} \\ | \ \ \mbox{return leaf with the point in } P \\ \mbox{else} \end{array}$$

else

divide
$$P$$
 horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$

BuildKdTree(P, depth)

 $\begin{array}{ll} \mbox{if } |P|=1 \mbox{ then} \\ | \mbox{ return leaf with the point in } P \\ \mbox{else} \end{array}$

else

divide P horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$ Create node v, which stores ℓ

 $\begin{aligned} & \textbf{BuildKdTree}(P, depth) \\ & \textbf{if } |P| = 1 \textbf{ then} \\ & | \textbf{ return leaf with the point in } P \\ & \textbf{else} \end{aligned}$

else

divide P horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$ Create node v, which stores ℓ


```
\begin{aligned} &\textbf{BuildKdTree}(P, depth) \\ &\textbf{if } |P| = 1 \textbf{ then} \\ &| \textbf{ return leaf with the point in } P \\ &\textbf{else} \\ &| \textbf{ if } depth \textbf{ is even then} \\ &| \textbf{ divide } P \textbf{ vertically at} \\ &| \ell: x = x_{\text{median}(P)} \textbf{ in} \\ &| P_1 \textbf{ (Points left to or on } \ell) \textbf{ and} \\ &| P_2 = P \setminus P_1 \\ &| \textbf{ else} \end{aligned}
```

divide
$$P$$
 horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$ Create node v, which stores ℓ Make v_{left} und v_{right} children of v

BuildKdTree(P, depth)

 $\begin{array}{ll} \mbox{if } |P|=1 \mbox{ then} \\ | \mbox{ return leaf with the point in } P \\ \mbox{else} \end{array}$

if depth is even then divide P vertically at $\ell: x = x_{\mathsf{median}(P)}$ in P_1 (Points left to or on ℓ) and $P_2 = P \setminus P_1$

else

divide P horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1) \\ v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1) \\ \mathsf{Create} \ \mathsf{node} \ v, \ \mathsf{which} \ \mathsf{stores} \ \ell \\ \mathsf{Make} \ v_{\mathsf{left}} \ \mathsf{und} \ v_{\mathsf{right}} \ \mathsf{children} \ \mathsf{of} \ v$

BuildKdTree(P, depth)if |P| = 1 then

| return leaf with the point in Pelse

| if depth is even then

if
$$depth$$
 is even then divide P vertically at $\ell: x = x_{\mathsf{median}(P)}$ in P_1 (Points left to or on ℓ) and $P_2 = P \setminus P_1$

else

divide
$$P$$
 horizontally at $\ell: y = y_{\mathsf{median}(P)}$ in P_1 (Points below or on ℓ) und $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildKdTree}(P_1, depth + 1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildKdTree}(P_2, depth + 1)$ Create node v, which stores ℓ Make v_{left} und v_{right} children of vreturn v

 v_{left}

 v_{right}

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n \log n)$ time, using O(n) space.

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n \log n)$ time, using O(n) space.

Proof sketch:

- Determine median:
 - make two lists sorted on x- and y-coordinates
 - at each step, determine median and divide the lists

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time, using O(n) space.

Proof sketch:

- Determine median:
 - make two lists sorted on x- and y-coordinates
 - at each step, determine median and divide the lists
- We get the following recurrence:

$$T(n) \; = \; \begin{cases} O(1) & \text{if } n=1 \\ O(n) + 2T(\lceil n/2 \rceil) & \text{otherwise} \end{cases}$$

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time, using O(n) space.

Proof sketch:

- Determine median:
 - make two lists sorted on x- and y-coordinates
 - at each step, determine median and divide the lists
- We get the following recurrence:

$$T(n) \; = \; \begin{cases} O(1) & \text{if } n=1 \\ O(n) + 2T(\lceil n/2 \rceil) & \text{otherwise} \end{cases}$$

• Solves to $T(n) = O(n \log n)$ (analogous to MergeSort)

Lemma 1: A kd-tree for n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time, using O(n) space.

Proof sketch:

- Determine median:
 - make two lists sorted on x- and y-coordinates
 - at each step, determine median and divide the lists
- We get the following recurrence:

$$T(n) \; = \; \begin{cases} O(1) & \text{if } n=1 \\ O(n) + 2T(\lceil n/2 \rceil) & \text{otherwise} \end{cases}$$

- Solves to $T(n) = O(n \log n)$ (analogous to MergeSort)
- ullet Linear space, since we are using a binary tree with n leaves.

Range Queries in a kd-Tree


```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R \neq \emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R \neq \emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```



```
SearchKdTree(v, R)
  if v leaf then
      report point p in v when p \in R
  else
      if region(lc(v)) \subseteq R then
          ReportSubtree(lc(v))
      else
          if region(lc(v))\cap R \neq \emptyset then
          SearchKdTree(Ic(v), R)
      if region(rc(v)) \subseteq R then
          ReportSubtree(rc(v))
      else
          if region(rc(v))\cap R\neq\emptyset then
          SearchKdTree(rc(v), R)
```

Analysis of Queries in kd-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a kd-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Analysis of Queries in kd-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a kd-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Proof sketch:

• Calls to ReportSubtree take O(k) time in total

Analysis of Queries in kd-Trees

Lemma 2: A range query with an axis-aligned rectangle R in a kd-tree on n points may use $O(\sqrt{n}+k)$ time, where k is the number of reported points.

Proof sketch:

- Calls to ReportSubtree take O(k) time in total
- Still missing: Number of remaining nodes visited
 - \rightarrow Exercise

Orthogonal Range Queries for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solutions:

ullet one search tree, alternate search for x and y coordinates

$$\rightarrow kd$$
-Tree \checkmark

• primary search tree on x-coordinates, several secondary search trees on y-coordinates

\rightarrow Range Tree

Temporary assumption: general position, that is no two points have the same x- or y-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

lacksquare a 1d search tree T_x on x-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- lacktriangle a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ stores the canonical subset P(v) on y-coordinates

Range Trees

Idea: Use 1-dimensional search trees on two levels:

- lacktriangle a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ stores the canonical subset P(v) on y-coordinates
- compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x

Range Trees: Construction

BuildRangeTree(P)

if |P| = 1 then

Create leaf v for the point in P

else

Split P at x_{median} into $P_1 = \{ p \in P \mid p_x \leq x_{\text{median}} \}$, $P_2 = P \setminus P_1$

 $v_{\mathsf{left}} \leftarrow \mathsf{BuildRangeTree}(P_1)$

 $v_{\mathsf{right}} \leftarrow \mathsf{BuildRangeTree}(P_2)$

Create node v with pivot $x_{\rm median}$ and children $v_{\rm left}$ and $v_{\rm right}$

 $T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$

return v

Range Trees: Construction

BuildRangeTree(P)

if |P| = 1 then

Create leaf v for the point in P

else

Split P at x_{median} into $P_1 = \{ p \in P \mid p_x \leq x_{\text{median}} \}$, $P_2 = P \setminus P_1$ $v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1)$

 $v_{\mathsf{right}} \leftarrow \mathsf{BuildRangeTree}(P_2)$

Create node v with pivot $x_{\rm median}$ and children $v_{\rm left}$ and $v_{\rm right}$

 $T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$ **return** v

Problem: How much space and runtime does BuildRangeTree use?

Range Trees: Construction


```
{\sf BuildRangeTree}(P)
```

```
if |P| = 1 then
```

Create leaf v for the point in P

else

```
Split P at x_{\text{median}} into P_1 = \{p \in P \mid p_x \leq x_{\text{median}}\}, P_2 = P \setminus P_1 v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1) v_{\text{right}} \leftarrow \text{BuildRangeTree}(P_2) Create node v with pivot v_{\text{median}} and children v_{\text{left}} and v_{\text{right}}
```

 $T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$ return v

Problem: How much space and runtime does BuildRangeTree use?

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Range Queries in a Range Tree

Reminder:

```
1dRangeQuery(T, x, x')
  v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x')
  if v_{\rm split} is leaf then report v_{\rm split}
  else
       v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf do
             if x \leq x_v then
            ReportSubtree(rc(v))
v \leftarrow lc(v)
           else v \leftarrow rc(v)
        report v
        // analogous for x' and rc(v_{split})
```

Range Queries in a Range Tree

Reminder:

```
1dRangeQuery(T, x, x') 2dRangeQuery(T, [x, x'] \times [y, y'])
   v_{\sf split} \leftarrow {\sf FindSplitNode}(T, x, x')
   if v_{\rm split} is leaf then report v_{\rm split}
   else
       v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf do
             if x \leq x_v then
            ReportSubtree(rc(v)) 1dRangeQuery(T_y(rc(v)), y, y') v \leftarrow \text{lc}(v)
          else v \leftarrow rc(v)
        report v
        // analogous for x' and rc(v_{split})
```

Range Queries in a Range Tree

Reminder:

```
1dRangeQuery(T, x, x') 2dRangeQuery(T, [x, x'] \times [y, y'])
   v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x')
   if v_{\rm split} is leaf then report v_{\rm split}
   else
       v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf do
             if x < x_v then
            | ReportSubtree(rc(v)) | 1dRangeQuery(T_y(rc(v)), y, y') | v \leftarrow \text{lc}(v)
         else v \leftarrow rc(v)
        report v
        // analogous for x' and rc(v_{split})
```

Lemma 4: A range query in a Range Tree takes $O(\log^2 n + k)$ time, where k is the number of reported points.

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Observation: Range queries in a Range Tree perform $O(\log n)$

1d queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to $O(1+k_{v})$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

A	3	10	19	23	30	37	59	62	70	80	100	105
---	---	----	----	----	----	----	----	----	----	----	-----	-----

B 10 19 30 62 70 80 100

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

B 10 19 30 62 70 80 100

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to $O(1 + l_0)$ times

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

A 3 10 19 23 30 37 59 62 70 80 100 105

Can we do better than two binary searches?

B 10 19 30 62 70 80 100

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

link $a \in A$ with smallest b > a in B

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time. The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

 $\begin{array}{l} \text{link } a \in A \\ \text{with smallest} \\ b \geq a \text{ in } B \end{array}$

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$ 1d queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

link $a \in A$ with smallest $b \ge a \text{ in } B$

Search interval [20,65]

Pointer yields starting point for second search in O(1) time

Speed-up with Fractional Cascading

• In Range Trees we have $P(\mathsf{lc}(v)) \subseteq P(v)$ and $P(\mathsf{rc}(v)) \subseteq P(v)$ as the canonical sets.

Speed-up with Fractional Cascading

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ as the canonical sets.
- Define for each array element A(v)[i] two pointers into the arrays $A(\operatorname{lc}(v))$ and $A(\operatorname{rc}(v))$
 - → Layered Range Tree

Speed-up with Fractional Cascading

- In Range Trees we have $P(\mathsf{lc}(v)) \subseteq P(v)$ and $P(\mathsf{rc}(v)) \subseteq P(v)$ as the canonical sets.
- ullet Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers in the children

Speed-up with Fractional Cascading

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ as the canonical sets.
- lacktriangleright Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- In the split node a binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers in the children
- **Theorem 2:** A Layered Range Tree on n points in \mathbb{R}^2 can be constructed in $O(n\log n)$ time and space. Range queries take $O(\log n + k)$ time, where k is the number of reported points.

So far: Points in general position, where no two points have the same x- or y-coordinate

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p = (p_x, p_y)$$

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
 unique coord.

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x)) \longrightarrow$$

Rectangle $R = [x, x'] \times [y, y']$ unique coord.

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p=(p_x,p_y)$$
 \longrightarrow $\hat{p}=\left((p_x|p_y),\;(p_y|p_x)\right)$ Rectangle $R=[x,x']\times[y,y']$ unique coord.

So far: Points in general position, where no two points have the same x- or y-coordinate

$$p = (p_x, p_y) \rightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
Rectangle $R = [x, x'] \times [y, y']$ unique coord.

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

So far: Points in general position, where no two points have the same x- or y-coordinate

Idea: Instead of \mathbb{R} , use pairs of numbers (a|b) with total order \leftrightarrow lexicographic order

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
 Rectangle $R = [x, x'] \times [y, y']$ unique coord.

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

Then:

So far: Points in general position, where no two points have the same x- or y-coordinate

Idea: Instead of \mathbb{R} , use pairs of numbers (a|b) with total order ↔ lexicographic order

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x)) \longrightarrow$$

Rectangle $R = [x, x'] \times [y, y']$ unique coord.

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

Then: $p \in R \iff \hat{p} \in \hat{R}$

Given: Set P of n points in \mathbb{R}^2

Construct: Data structures with efficient range queries of the form $R = [x,x'] \times [y,y']$

	kd-Tree	Range Tree
Preprocessing		
Space		
Query time		

Given: Set P of n points in \mathbb{R}^2

Construct: Data structures with efficient range queries of the form $R = [x, x'] \times [y, y']$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

Given: Set P of n points in \mathbb{R}^2

Construct: Data structures with efficient range queries of the form $R = [x, x'] \times [y, y']$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

Given: Set P of n points in \mathbb{R}^2

Construct: Data structures with efficient range queries of the form $R = [x, x'] \times [y, y']$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

How can the data structures generalize to *d*-dimensions?

How can the data structures generalize to d-dimensions?

 kd-Trees function analogously and by dividing the points alternately on d coordinates. Space is still O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.

How can the data structures generalize to d-dimensions?

- kd-Trees function analogously and by dividing the points alternately on d coordinates. Space is still O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space takes $O(n \log^{d-1} n)$ time; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

How can the data structures generalize to d-dimensions?

- kd-Trees function analogously and by dividing the points alternately on d coordinates. Space is still O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space takes $O(n \log^{d-1} n)$ time; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

How can the data structures generalize to *d*-dimensions?

- kd-Trees function analogously and by dividing the points alternately on d coordinates. Space is still O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space takes $O(n \log^{d-1} n)$ time; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

Yes, we can transform any polygon into a point in 4d space (exercise) or we can use windowing queries (comes in a later lecture).

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points
- 1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n\log n} + k)$

Dynamic Range Queries

Question: Can we adapt these data structures for dynamic point sets?

- Inserting points
- Removing points
- 1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n\log n} + k)$
- 2) Augmented dynamic range trees [Mehlhorn, Näher '90] support updates in $O(\log n \log \log n)$ time and queries in $O(\log n \log \log n + k)$ time