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Geometry in Databases AT

tttttttttttttttttttttttttttttt

In a personnel database, the employees of a company are
anonymized and their monthly income and birth year are
saved. We now want to perform a search: which employees

have an income between 2,000 and 3,000 Euro and were born
between 1960 and 19807
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Geometry in Databases AT
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In a personnel database, the employees of a company are
anonymized and their monthly income and birth year are
saved. We now want to perform a search: which employees
have an income between 2,000 and 3,000 Euro and were born

between 1960 and 19807

A
Income .
3000-_.....'............ :
2000 e é- | .
.
1960 1980 birth year

Geometric Interpretation:
Entries are points: (birth year, income level) and the query is
an axis-parallel rectangle
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Geometry in Databases AT

tttttttttttttttttttttttttttttt

In a personnel database, the employees of a company are
anonymized and their monthly income and birth year are
saved. We now want to perform a search: which employees

have an income between 2,000 and 3,000 Euro and were born
between 1960 and 19807

A
income .
3000--."."; ,,,,, :
20004k L2 %
N T I P R
(‘}‘& 2./ / /
i i - Lt
1960 1980 Irth year

This problem can easily be generalized to d dimensions.
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Orthogonal Range Queries AT

tttttttttttttttttttttttttttttt

Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [aq1,b1] X - -+ X [ag, b4]
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Orthogonal Range Queries AT
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Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [a1,b1] X - -+ X |ag, b4]

Problem: Design a data structure for the case d = 1.
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Orthogonal Range Queries AT

tttttttttttttttttttttttttttttt

Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [a1,b1] X - -+ X |ag, b4]

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
= Stores points in the leaves
» [nternal node v stores pivot value z,

)
(8) (52)

(5) 15) 33 58)
) (1) @ 11 @ @) B 6

2][5](7][8]12][15
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Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
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(17 Example:
2 2 Search for all points in [6,50]

(5) 15) 33 58)
) (1) @ 11 @ @) B 6
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Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [a1,b1] X - -+ X |ag, b4]

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
= Stores points in the leaves
» [nternal node v stores pivot value z,

P Example:
2/ R Search for all points in [6,50]

(5) (15) 33 58)
) (1) (MY ) () B (67

21/ 33)ja1)/2]  [67] 193

2] (5] (718 12h15
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Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [a1,b1] X - -+ X |ag, b4]

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
= Stores points in the leaves
» [nternal node v stores pivot value z,

‘}/?fg Ekmnmm
split (52) Search for all points in [6,50]

33 58)

(8)
7
(s)

(15)

6

) (1) (M7 U @) By (67)

2] (5] (718 12h15
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Orthogonal Range Queries AT

Given: n points in R?
Output: A data structure that efficiently answers queries of
the form [a1,b1] X - -+ X |ag, b4]

Problem: Design a data structure for the case d = 1.

Solution: Balanced binary search tree:
= Stores points in the leaves
» [nternal node v stores pivot value z,

Example:
Search for all points in [6,50]

Answer:
Points in the leaves between the

search paths, (i.e.,
{7,8,12,15,17,21,33,41})
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1dRangeQuery AT

FindSplitNode(T', x, ')

v < root(T)
while v not a leaf and (¢’ <z, or x > x,) do
| if 2’ <z, then v < Ic(v) else v + rc(v)

return v
1dRangeQuery(T, x, x’)

vsplit <— FindSplitNode(T', z, z’)
if vspiit IS leaf then report vgpi
else
v 4 lc(vsplit)
while v not a leaf do

if + <z, then

| ReportSubtree(rc(v)); v + lc(v)
else v+ rc(v)

report v 6;
 // analog. for z' and rc(vgpit) HE E
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1dRangeQuery AT

FindSplitNode(7’, x, ')

v < root(T)
while v not a leaf and (¢’ <z, or x > x,) do
| if 2’ <z, then v < Ic(v) else v + rc(v)
return v

1dRangeQuery(T, x, z’)

vsplit <— FindSplitNode(T', z, z’)
if vspiit IS leaf then report vgpi
else
v 4 lc(vsplit)
while v not a leaf do

if + <z, then

| ReportSubtree(rc(v)); v « Ic(v) &
else v+ rc(v)

report v 6;
. // analog. for z’ and rc(vgpis) HE E
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Analysis of 1dRangeQuery AT

1dRangeQuery(T, x, ')

vsplit <— FindSplitNode(T', z, z’)
if vspiit IS leaf then report vgpi
else
v 4 lc(vsplit)
while v not a leaf do

if <z, then

| ReportSubtree(rc(v)); v + Ic(v)
else v < rc(v)

report v

Theorem 1: A set of n points in R can preprocessed in
O(nlogn) time and stored in O(n) space so that
we can answer range queries in O(k + logn)
time, where k is the number of reported points.
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Orthogonal Range Queries for d = 2 QAT

tttttttttttttttttttttttttttttt

Given: Set P of n points in R?

Goal: A data structure to efficiently answer range queries of
the form R = [z, 2’| X [y, /']
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Orthogonal Range Queries for d = 2 QAT

tttttttttttttttttttttttttttttt

Given: Set P of n points in R?

Goal: A data structure to efficiently answer range queries of
the form R = [z, 2’| X [y, /']

Ideas for generalizing the 1d case?
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Orthogonal Range Queries for d = 2 QAT

tttttttttttttttttttttttttttttt

Given: Set P of n points in R?

Goal: A data structure to efficiently answer range queries of
the form R = [z, 2’| X [y, /']

Ideas for generalizing the 1d case?

Solutions:

m one search tree, alternate search for x and y coordinates
— kd-Tree

m primary search tree on z-coordinates,
several secondary search trees on y-coordinates
— Range Tree
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Orthogonal Range Queries for d = 2 QAT

tttttttttttttttttttttttttttttt

Given: Set P of n points in R?
Goal: A data structure to efficiently answer range queries of
the form R = [z, 2’| X [y, /']

Ideas for generalizing the 1d case?

Solutions:

m one search tree, alternate search for x and y coordinates
— kd-Tree

m primary search tree on z-coordinates,
several secondary search trees on y-coordinates
— Range Tree

Temporary assumption: general position, that is no two
points have the same x- or y-coordinates
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Karlsruhe Institute of Technolo

kd-Trees: Example QAT

p,® D, ® P, ®
°
P1g
° ®,
° Pg
Ps .
Dg
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
P, P, Py
o

P1g

° ®,
° Pe
P3 °
Dg
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
P, P, Py
o

P1g

° ®,
° Pe
P3 °
Dg
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kd-Trees: Example

p,® p® P ¢
°
P1g
S —
62 Py
° ®,
° Ps
P3 °
Dg
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kd-Trees: Example

p,® p® P ¢
°
P1g
S —
52 Py
° ®,
° Ps
P3 °
Dg
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

Py Ps ® Pg @
o
P19
52 P>
° ®,
., Pe
3 ‘p
6
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

Py Ps ® Pg @
o
P1o
& " (C)
° ®,
., Pe
3 ‘p
6

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-Trees: Example QAT

Karlsruhe Institute of Technology

Py ® Pg
P —_
. (£2)
P1g
@
f2 " (Ly)
o
—— o
lg P °
° Pe
P3 °
Dg
ly
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
Py Ds ® Pg
o
P1g
@
/s P
o
——] o
lg P1 °
° Pe
P3 °
Dg
ly

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
Py Ds ® Pg
o
P1g
@
/s P
o
——] o
lg P1 °
° Pe
P3 °
Dg
ly

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
Py Ds ® Pg
o
P1g
@
/s P
o
——] o
lg P1 °
° Pe
P3 °
Dg
ly

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-Trees: Example QAT

Karlsruhe Institute of Technology

o o
Py Ds ® Pg
o
P1g
@
/s P
o
——] o
lg P1 °
° Pe
P3 °
Dg
ly

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-Trees: Example QAT

Karlsruhe Institute of Technology
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

s
[ ] o
Py p5. Pg
o
P1g
@
52 P>
S —
P, /
lg P1 o
° Pe
P3 °
Dg
ly
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kd-Trees: Example QAT

Karlsruhe Institute of Technology

7 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



kd-

rees: Example

s
[ ] o
Py p5. Pg
o
P1g
@
/s P
@
P, /
lg P1 o
° Pe
P3
Dg
€4 66
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kd-

rees: Example

s
[ ] o
Py p5. Pg
o
P1g
@
/s P
@
P, /
lg P1 o
° Pe
P3
Dg
€4 66
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kd-

rees: Example

ly
Us
® o
Py p5. Pg
[
P1o
9
52 Py
o
P, /
lg P o °
° Pe
P3 I |
69 Pg
/4 Ve
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P1o
9
52 Py
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lg P o °
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kd-Trees: Example QAT

tttttttttttttttttttttttttttttt

ly
s U7
@
Py p5. Pg
o
P1o
52 .p2
o
@ P, /
ls P P
° Pe
P3 ®
69 Pg
84 66
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kd-

rees: Example

ly
s U7
@
Py p5. Pg
o
P1o
52 .p2
o
P, /
ls P P
° Pe
P3 ®
69 Pg
84 66

P3

P4

P1

P2
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kd-

rees: Example

ly
s U7
@
Py p5. Pg
o
P1o
52 .p2
o
P, /
ls P P
° Pe
P3 ®
69 Pg
84 66

P3

P4

P1

P2
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kd-Trees: Example QAT

tttttttttttttttttttttttttttttt

14
0 e () |
p4. p5. Pg —_—
'plo @ @
P 2
, d W & W
7 .pl D7 63
8 ‘p8
®p, ¢ (¢s) p3l[pd]  [ps (&9 pg| [po]  [p1o
Yo Pe
0y ls D1 [p2 pel|[p7
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kd-Trees: Construction &‘(lT

stitute of Technology

BuildKdTree( P, depth)
/
p,® b, P, ®
¢ P10
.,
°
. P, o
o, 8
3 ‘p6

Dr. Martin Nollenburg - Vorlesung Algorithmische Geometrie Bereichsabfragen



kd-Trees: Construction &‘(lT

BuildKd Tree( P, depth) -
if |P| =1 then

¢ return leaf with the point in P
. o else
o e Py
o
P10
sz
° ®,
° Pg
P3 °
Pe

Dr. Martin Nollenburg - Vorlesung Algorithmische Geometrie Bereichsabfragen



kd-Trees: Construction T

BuildKdTree(P, depth)
if |P| =1 then

¢ return leaf with the point in P
else
o o . :
P4 e Py if depth is even then
o
P10
sz
. ®,
! ®, else
®o
3 ..
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kd-Trees: Construction AT

BuildKdTree(P, depth)
if |P| =1 then

¢ return leaf with the point in P
else _
p,® P, Pg. if depth is even then [LELI [[P]/2]
o, divide P vertically#
® ° bz = Lmedian(P) In
P2 Py (Points left to or on £) and
° ®p, P, =P\ P
P, o |
Pg else
®o
3 ..

Dr. Martin Nollenburg - Vorlesung Algorithmische Geometrie Bereichsabfragen



kd-Trees: Construction T

BuildKdTree( P, depth)
if |P| =1 then
return leaf with the point in P

else

P, Py if depth is even then
Py divide P vertically at

l:x = Lmedian(P) in

4 P2 Py (Points left to or on £) and
° o Po=P\ P

Ps else

divide P horizontally at

by = Ymedian(P) in
P; (Points below or on ¢) und
Py =P\ P
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kd-Trees: Construction T

BuildKdTree( P, depth)

if |P| =1 then
return leaf with the point in P
else

P, Py if depth is even then
PY divide P vertically at

o b:x = Lmedian(P) In
Py (Points left to or on £) and
° ®, Po=P\ P
Pg else
divide P horizontally at

by = Ymedian(P) in
P; (Points below or on ¢) und
PR =P\ P

Vleft <— BuildKdTree( Py, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)
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kd-Trees: Construction T

BuildKdTree( P, depth)

if |P| =1 then
return leaf with the point in P
else

P, Py if depth is even then
PY divide P vertically at

o b:x = Lmedian(P) In
Py (Points left to or on £) and
° ®, Po=P\ P
Pg else
divide P horizontally at

l:y= Ymedian(P) in
P; (Points below or on ¢) und
PR =P\ P

Vleft <— BuildKdTree( P, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)
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kd-Trees: Construction T

BuildKdTree( P, depth)

if |P| =1 then
return leaf with the point in P
else

P, Py if depth is even then
PY divide P vertically at

o b:x = Lmedian(P) In
Py (Points left to or on £) and
° ®, Po=P\ P
Pg else
divide P horizontally at

l:y= Ymedian(P) in
P; (Points below or on ¢) und
PR =P\ P

Vleft <— BuildKdTree( P, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)

Create node v, which stores /¢
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kd-Trees: Construction T

BuildKdTree( P, depth)

if |P| =1 then
return leaf with the point in P
else

P, Py if depth is even then
PY divide P vertically at

® b:x = Lmedian(P) In
Py (Points left to or on £) and
° ®, Po =P\ P
Pg else
divide P horizontally at

l:y= Ymedian(P) in
P; (Points below or on ¢) und
v P> =P\ P

@ Vleft <— BuildKdTree( Py, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)

Create node v, which stores /¢
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kd-Trees: Construction T

BuildKdTree(P, depth)

/ if |P| =1 then
return leaf with the point in P
else
P, Py if depth is even then
divide P vertically at
® b:x = Lmedian(P) In
Py (Points left to or on £) and
Py P2 = P \ P1
®, else
P3 ° divide P horizontally at
l:y= Ymedian(P) in
P; (Points below or on ¢) und
P> =P\ P

@ Vleft <— BuildKdTree( Py, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)

Create node v, which stores /¢
Make viefe und vyight children of v
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kd-Trees: Construction T

BuildKdTree( P, depth)
/ if |P| =1 then
return leaf with the point in P
else
P, Py if depth is even then
divide P vertically at
® b:x = Lmedian(P) In
Py (Points left to or on £) and
o Po =P\ P
®, else

P3 ° divide P horizontally at

l:y= Ymedian(P) in
P; (Points below or on ¢) und
v P> =P\ P

@ Vleft <— BuildKdTree( P, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)

@ @ Create node v, which stores ¢

Make viefe und vyight children of v
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kd-Trees: Construction T

BuildKdTree( P, depth)

/ if |P| =1 then
return leaf with the point in P
else
0 Py if depth is even then
> divide P vertically at
o b:x = Lmedian(P) In
Py (Points left to or on £) and
° P/ P, =P\ P,
Pg else
divide P horizontally at

l:y= Ymedian(P) in
P; (Points below or on ¢) und
v P> =P\ P

@ Vleft <— BuildKdTree( P, depth + 1)
Vright <— BuildKdTree( P2, depth + 1)
@ @ Create node v, which stores ¢

Make viert und vyighe children of v

| return v
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Analysis of kd-Tree Construction AT

tttttttttttttttttttttttttttttt

Lemma 1: A kd-tree for n points in R? can be constructed in
O(nlogn) time, using O(n) space.
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Analysis of kd-Tree Construction AT

tttttttttttttttttttttttttttttt

Lemma 1: A kd-tree for n points in R? can be constructed in
O(nlogn) time, using O(n) space.

Proof sketch:

a Determine median:
— make two lists sorted on x- and y-coordinates
— at each step, determine median and divide the lists
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Analysis of kd-

ree Construction

AT
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Lemma 1: A kd-tree for n points in R? can be constructed in
O(nlogn) time, using O(n) space.

Proof sketch:

a Determine median:
— make two lists sorted on x- and y-coordinates
— at each step, determine median and divide the lists

a We get the following recurrence:

T(n) =

\

<(0(1)
O(n) + 2T ([n/2])
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Analysis of kd-Tree Construction AT

tttttttttttttttttttttttttttttt

Lemma 1: A kd-tree for n points in R? can be constructed in
O(nlogn) time, using O(n) space.

Proof sketch:
a Determine median:
— make two lists sorted on x- and y-coordinates
— at each step, determine median and divide the lists

a We get the following recurrence:

JOQ) if n =1
O(n) +2T([n/2]) otherwise

\

T(n) =

= Solves to T'(n) = O(nlogn) (analogous to MergeSort)
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Analysis of kd-

ree Construction QAT

tttttttttttttttttttttttttttttt

Lemma 1: A kd-tree for n points in R? can be constructed in
O(nlogn) time, using O(n) space.

Proof sketch:

s Determine median:
— make two lists sorted on x- and y-coordinates

— at each step,

determine median and divide the lists

a We get the following recurrence:

T(n) =

= Solves to T'(n)

O(1) if n =1
O(n) +2T([n/2]) otherwise

\

= O(nlogn) (analogous to MergeSort)

= Linear space, since we are using a binary tree with n leaves.
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Range Queries in a kd-

P4 D5l P12¢
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e 119?10.
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Range Queries in a kd-Tree AT

tttttttttttttttttttttttttttttt

pay | P12 SearchKdTree(v, R)
. ° P13 if v leaf then
P2 p§p10 ‘ report point p in v when p € R
1|, e P9 * . else. |
P3 D6 if region(lc(v)) C R then
ReportSubtree(lc(v))
else

if region(lc(v))NR # () then
| SearchKdTree(Ic(v), R)

if region(rc(v)) C R then
| ReportSubtree(rc(v))
else
if region(rc(v))NR # () then
L SearchKdTree(rc(v), R)

p7|P8|(P9|P10
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Range Queries in a kd-Tree AT
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pay | P12 SearchKdTree(v, R)
. e P13 if v leaf then
P2 p§p10 ‘ report point p in v when p € R
1|, e P °l e else
P3 D6 Pi if region(lc(v)) C R then
ReportSubtree(lc(v))
else

if region(Ic(v))NR # () then
| SearchKdTree(Ic(v), R)

if region(rc(v)) C R then
| ReportSubtree(rc(v))
else
if region(rc(v))NR # () then
L SearchKdTree(rc(v), R)

p7|P8|(P9|P10
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P3 D6 if region(lc(v)) C R then
ReportSubtree(lc(v))
else

if region(lc(v))NR # () then
| SearchKdTree(Ic(v), R)

if region(rc(v)) C R then
| ReportSubtree(rc(v))
else
if region(rc(v))NR # () then
L SearchKdTree(rc(v), R)

p7|P8|(P9|P10

10 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



Range Queries in a kd-Tree AT

tttttttttttttttttttttttttttttt

pay | P12 SearchKdTree(v, R)
. ° P13 if v leaf then
P2 p§p10 ‘ report point p in v when p € R
1|, e P9 * . else. |
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pay | P12 SearchKdTree(v, R)
. ° P13 if v leaf then
P2 p§p10 ‘ report point p in v when p € R
1|, e pg * . else. |
P3 DG if region(lc(v)) C R then
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pay | P12 SearchKdTree(v, R)
. e P13 if v leaf then
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. ° P13 if v leaf then
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Range Queries in a kd-Tree AT
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pay o | P12 SearchKdTree(v, R)
. ° P13 if v leaf then
P2 p§p10 ‘ report point p in v when p € R
p1 | s pg' . else. |
P3 DG if region(lc(v)) C R then
ReportSubtree(lc(v))
else

if region(lc(v))NR # () then
| SearchKdTree(Ic(v), R)
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p7|P8|(P9|P10
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Analysis of Queries in kd-Trees AT

tttttttttttttttttttttttttttttt

Lemma 2: A range query with an axis-aligned rectangle R in a
kd-tree on n points may use O(/n + k) time,
where k is the number of reported points.
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Analysis of Queries in kd-

rees QAT

tttttttttttttttttttttttttttttt

Lemma 2: A range query with an axis-aligned rectangle R in a
kd-tree on n points may use O(/n + k) time,
where k is the number of reported points.

Proof sketch:

= Calls to ReportSubtree take O(k) time in total
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Analysis of Queries in kd-Trees AT

tttttttttttttttttttttttttttttt

Lemma 2: A range query with an axis-aligned rectangle R in a
kd-tree on n points may use O(/n + k) time,
where k is the number of reported points.

Proof sketch:
= Calls to ReportSubtree take O(k) time in total

= Still missing:
Number of remaining nodes visited
— Exercise
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Orthogonal Range Queries for d = 2 QAT

tttttttttttttttttttttttttttttt

Given: Set P of n points in R?

Goal: A data structure to efficiently answer range queries of
the form R = [z, 2’| X [y, /]

Ideas for generalizing the 1d case?

Solutions:

m one search tree, alternate search for x and y coordinates

— kd-Tree \/

m primary search tree on z-coordinates,
several secondary search trees on y-coordinates

— Range Tree

Temporary assumption: general position, that is no two
points have the same x- or y-coordinates
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Range Trees AT

stitute of Technology

Idea: Use 1-dimensional search trees on two levels:
m a 1d search tree T, on z-coordinates

P(v)
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Range

rees A\‘(".

stitute of Technology

Idea: Use 1-dimensional search trees on two levels:

m a 1d search tree T, on z-coordinates

= in each node v of T, a 1d search tree T),(v) stores

the canonical subset P(v) on y-coordinates

P(v)
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Range Trees AT

tttttttttttttttttttttttttttttt

Idea: Use 1-dimensional search trees on two levels:
m a 1d search tree T, on z-coordinates

= in each node v of T, a 1d search tree T),(v) stores
the canonical subset P(v) on y-coordinates

= compute the points by xz-query in T, and
subsequent y-queries in the auxiliary structures T,
for the subtrees in T,

1%

P(v)
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Range Trees: Construction AT

tttttttttttttttttttttttttttttt

BuildRangeTree(P)

if |P| =1 then
| Create leaf v for the point in P
else

Split P at Zmedian into P = {p € P | pz < Tmedian}, Po = P\ P;
Vieft < BuildRangeTree( ;)

Uright <— BuildRangeTree( )

Create node v with pivot Zmedian and children viese and vyight

T}, (v) < binary search tree for P w.r.t y-coordinates
return v
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Range Trees: Construction AT

tttttttttttttttttttttttttttttt

BuildRangeTree(P)

if |P| =1 then
| Create leaf v for the point in P
else

Split P at Zmedian into P = {p € P | pz < Tmedian}, Po = P\ P;
Vieft < BuildRangeTree( ;)

Uright <— BuildRangeTree( )

Create node v with pivot Zmedian and children viese and vyight

T}, (v) < binary search tree for P w.r.t y-coordinates
return v

Problem: How much space and runtime does BuildRangeTree use?
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Range Trees: Construction AT

tttttttttttttttttttttttttttttt

BuildRangeTree(P)

if |P| =1 then
| Create leaf v for the point in P
else

Split P at Zmedian into P = {p € P | pz < Tmedian}, Po = P\ P;
Vieft < BuildRangeTree( ;)

Uright <— BuildRangeTree( )

Create node v with pivot Zmedian and children viese and vyight

T}, (v) < binary search tree for P w.r.t y-coordinates
return v

Problem: How much space and runtime does BuildRangeTree use?

Lemma 3: A Range Tree for n points in R? uses O(nlogn)
space and can be constructed in O(nlogn) time.

14 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



Range Queries in a Range Tree AT

tttttttttttttttttttttttttttttt

Reminder:
1dRangeQuery(T, x, x’)

vsplit <— FindSplitNode(T', x, z’)

if vspiit IS leaf then report vgpie

else

UV < |C(Usplit)

while v not leaf do

if £ <z, then
ReportSubtree(rc(v))
v <+ lc(v)

else v < rc(v)

report v
// analogous for x’ and rc(vgpiit)
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Range Queries in a Range Tree AT

tttttttttttttttttttttttttttttt

Reminder:

1dRangeQuery(F ;) 2dRangeQuery(7T, |z, z’] x |y, 1y'])
vsplit <— FindSplitNode(T', x, z’)
if vspiit IS leaf then report vgpie
else
UV < IC(’UspIit)
while v not leaf do
if £ <z, then
RepertSubtree(te(T)] 1dRangeQuery (T, (rc(v)),y, ')
v <+ lc(v)
else v < rc(v)

report v
// analogous for x’ and rc(vgpiit)
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Range Queries in a Range Tree AT

tttttttttttttttttttttttttttttt

Reminder:

1dRangeQuerytr;T,;r ) 2dRangeQuery(T, [z, 2’| X |y,y'])
vsplit <— FindSplitNode(T', x, z’)
if vspiit IS leaf then report vgpie
else
UV < IC(’UspIit)
while v not leaf do
if £ <z, then
RepertSubtree(te(T)] 1dRangeQuery (T, (rc(v)),y, ')
v <+ lc(v)
else v < rc(v)

report v
// analogous for x’ and rc(vgpiit)

Lemma 4: A range query in a Range Tree takes O(log2 n + k)
time, where k is the number of reported points.
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Range Queries with Fractional Cascading QAT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, '] is always the same!
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Range Queries with Fractional Cascading QAT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, '] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time
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Range Queries with Fractional Cascading

AT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, '] is always the same!

ldea:

O(1 + k,) time
Example: Two sets B C A C R in sorted arrays

Al 310109

23

30

37

59

62

70

30

100

105

19

30

62

70

30

100
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Range Queries with Fractional Cascading

AT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, y’] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time

Example: Two sets B C A C R in sorted arrays

Al 3 11019

el 30 | 37 | 59

62

70

30

100

105

B 10

70

30

100

Search interval [20,65]
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Range Queries with Fractional Cascading

AT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, y’] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time

Example: Two sets B C A C R in sorted arrays

Al 310109

Can we do better than two binary searches?

el 30 | 37 | 59

62

70

30

100

105

B 10

70

30

100

Search interval [20,65]
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Range Queries with Fractional Cascading

AT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, '] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time

Example: Two sets B C A C R in sorted arrays

Al 310109

23

30

37

59

62

70

30

100

105

link a € A
JL with smallest

- b>ainB

19

30

62

70

30

100
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Range Queries with Fractional Cascading

AT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, y’] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time

Example: Two sets B C A C R in sorted arrays

B 10

A 3 110 | 19 30 (37 | 59 | 62 70 | 80| 100 | 105
link a € A
JL with smallest
-~ b>ain B
19 30 62 70 80 100

Search interval [20,65]
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Range Queries with Fractional Cascading QAT

tttttttttttttttttttttttttttttt

Observation: Range queries in a Range Tree perform O(logn)
1d queries, each taking O(logn + k,,) time.
The query interval [y, y’] is always the same!

Idea: Use this property to accelerate the 1d queries to
O(1 + k,) time

Example: Two sets B C A C R in sorted arrays

Al 310 59 | 62 | 70 | 80 | 100 | 105
link a € A
JL with smallest
-~ b>ain B
B 10 62 | 70 | 80 | 100

Search interval [20,65] Pointer yields starting point for second
search in O(1) time
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Speed-up with Fractional Cascading AT

stitute of Technology

= In Range Trees we have P(lc(v)) C P(v) and P(rc(v)) C P(v) as the
canonical sets.

(8 (52)
(5) 15) 33 58)
2) (1) @ 17 @ @) B &)

8]
(2,19) (7.10) (12.3) (17.62) (21.49) (41.95) (58.59) (93.70)
(5,80) (8.37) (15,99) (33,30) (52,23) (67.89)
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Speed-up with Fractional Cascading AT

tttttttttttttttttttttttttttttt

= In Range Trees we have P(lc(v)) C P(v) and P(rc(v)) C P(v) as the
canonical sets.

= Define for each array element A(v)|i] two pointers into the arrays
A(lc(v)) and A(rc(v))
— Layered Range Tree

. S e e T

Wy
(8] (52 ’3,:\"10'1?‘?7‘?2‘?0‘9?‘ ’?3'?0‘4?\‘?9 70]89[ 9|

O

R

G () (@ A G G) B @) (197 [0

123[30[49]95] 15'9|7'o|a?9\

R v

2][5][7][8][12/[15] 19
(2,19) (7.10) (12.3) (17.62) (21.49) (41.95) (58.59) (93.70)
(5,80) (8.37) (15,99) (33,30) (52,23) (67.89)
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Speed-up with Fractional Cascading AT
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= In Range Trees we have P(lc(v)) C P(v) and P(rc(v)) C P(v) as the
canonical sets.

= Define for each array element A(v)|i] two pointers into the arrays
A(lc(v)) and A(rc(v))
— Layered Range Tree

= In the split node a binary search takes O(logn) time,
then it takes O(1) time to follow the pointers in the children

T, & R L e e
B g e

O

R

G () @ B @) @ E @) [ 1\f§7
10
Ty

123[30[49]95] 15'9|7'o|a?9\

R v

2][5][7][8][12/[15] 19
(2,19) (7.10) (12.3) (17.62) (21.49) (41.95) (58.59) (93.70)
(5,80) (8.37) (15,99) (33,30) (52,23) (67.89)
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Speed-up with Fractional Cascading AT

tttttttttttttttttttttttttttttt

= In Range Trees we have P(lc(v)) C P(v) and P(rc(v)) C P(v) as the
canonical sets.

= Define for each array element A(v)|i] two pointers into the arrays
A(lc(v)) and A(rc(v))
— Layered Range Tree

= In the split node a binary search takes O(logn) time,
then it takes O(1) time to follow the pointers in the children

Theorem 2: A Layered Range Tree on n points in R? can be
constructed in O(nlogn) time and space. Range queries
take O(logn + k) time, where k is the number of reported

points.
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Arbitrary Point Sets AT

e Institute of Technology

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

p = (Dx,Py)
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

p = (Pz,py) = D= ((p2|py), (Py|P2))
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

p = (pzpy) = D= ((D2Ipy), (PylP2)) —¢
unique coord.
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

P = (Pz:py) = D= ((Palpy), Pylpz)) —

Rectangle R = [z, 2'] x [y, /] unique coord.
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

P = (Pz:py) = D= ((Palpy), Pylpz)) —

Rectangle R = [z, 2'] x [y, /] unique coord.

'
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

P = (Pz:py) = D= ((Palpy), Pylpz)) —

Rectangle R = [z, 2'] x [y, /] unique coord.

'

R = [(z| = 00), (/| + 00)] x [(y| = 00), (/| + o0)]
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Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

P = (Pz:py) = D= ((Palpy), Pylpz)) —

Rectangle R = [z, 2'] x [y, /] unique coord.

'

R = [(z| = 00), (/| + 00)] x [(y| = 00), (/| + o0)]

Then:

18 Dr. Tamara Mchedlidze - Dr. Darren Strash - Computational Geometry Lecture Range Searching



Arbitrary Point Sets AT

tttttttttttttttttttttttttttttt

So far: Points in general position, where no two points have
the same z- or y-coordinate

Idea: Instead of R, use pairs of numbers (a|b) with total
order <+ lexicographic order

P = (Pz:py) = D= ((Palpy), Pylpz)) —

Rectangle R = [z, 2'] x [y, /] unique coord.

'

R = [(z| = 00), (/| + 00)] x [(y| = 00), (/| + o0)]

Then: pe R @ﬁER
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Summary A\‘(".

Given: Set P of n points in R?

Construct: Data structures with efficient range queries of the
form R = |x,2'| X |y, ']

— We have seen two alternatives

kd-Tree Range Tree

Preprocessing
Space

Query time
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Summary QAT

Given: Set P of n points in R?

Construct: Data structures with efficient range queries of the
form R = |x,2'| X |y, ']

— We have seen two alternatives

kd-Tree Range Tree
Preprocessing| O(nlogn) O(nlogn)
Space | O(n) O(nlogn)

Query time | O(y/n + k) O(log® n + k)
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Summary QAT

Given: Set P of n points in R?

Construct: Data structures with efficient range queries of the
form R = |x,2'| X |y, ']

— We have seen two alternatives

kd-Tree Range Tree
Preprocessing| O(nlogn) O(nlogn)
Space | O(n) O(nlogn)

Query time | O(y/n + k) O(logxn + k)
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Summary QAT

Given: Set P of n points in R?

Construct: Data structures with efficient range queries of the
form R = |x,2'| X |y, ']

— We have seen two alternatives

kd-Tree Range Tree
Preprocessing| O(nlogn) O(nlogn)
Space O(nlogn)
Query time | O(y/n + k) \ |
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Discussion AT

Karlsruhe Institute of Technology

How can the data structures generalize to d-dimensions?
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Discussion ﬂ(“'

stitute of Technology

How can the data structures generalize to d-dimensions?

» kd-Trees function analogously and by dividing the points alternately
on d coordinates. Space is still O(n), construction O(nlogn) and the
query time is O(n!= 4 + k).
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Discussion T

tttttttttttttttttttttttttttttt

How can the data structures generalize to d-dimensions?

» kd-Trees function analogously and by dividing the points alternately
on d coordinates. Space is still O(n), construction O(nlogn) and the
query time is O(n!= 4 + k).

= Range Trees can be built recursively: the auxiliary search tree on the
first coordinate is a (d — 1)-dimensional Range Tree. The construction
and space takes O(nlog? ! n) time; a query takes O(log® n + k)
time, and with fractional cascading, O(log® ' n + k) time.
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Discussion AT

tttttttttttttttttttttttttttttt

How can the data structures generalize to d-dimensions?

» kd-Trees function analogously and by dividing the points alternately
on d coordinates. Space is still O(n), construction O(nlogn) and the
query time is O(n!= 4 + k).

= Range Trees can be built recursively: the auxiliary search tree on the
first coordinate is a (d — 1)-dimensional Range Tree. The construction
and space takes O(nlog? ! n) time; a query takes O(log® n + k)
time, and with fractional cascading, O(log® ' n + k) time.

Is it possible to query for other objects (e.g., polygons) with these
data structures?
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Discussion

tttttttttttttttttttttttttttttt

How can the data structures generalize to d-dimensions?

» kd-Trees function analogously and by dividing the points alternately
on d coordinates. Space is still O(n), construction O(nlogn) and the
query time is O(n!= 4 + k).

= Range Trees can be built recursively: the auxiliary search tree on the
first coordinate is a (d — 1)-dimensional Range Tree. The construction

and space takes O(nlog? ! n) time; a query takes O(log® n + k)
time, and with fractional cascading, O(log® ' n + k) time.

Is it possible to query for other objects (e.g., polygons) with these
data structures?

Yes, we can transform any polygon into a point in 4d space (exercise) or
we can use windowing queries (comes in a later lecture).
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Dynamic Range Queries AUT

stitute of Technology

Question: Can we adapt these data structures for dynamic
point sets?

= Inserting points
= Removing points
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Dynamic Range Queries AUT

tttttttttttttttttttttttttttttt

Question: Can we adapt these data structures for dynamic
point sets?

= Inserting points
= Removing points

1) Divided kd-trees [van Kreveld, Overmars '91]
support updates in O(logn) time, but the query time is
O(v/nlogn + k)
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Dynamic Range Queries AUT

tttttttttttttttttttttttttttttt

Question: Can we adapt these data structures for dynamic
point sets?

= Inserting points
= Removing points

1) Divided kd-trees [van Kreveld, Overmars '91]
support updates in O(logn) time, but the query time is
O(v/nlogn + k)

2) Augmented dynamic range trees [Mehlhorn, Naher '90]
support updates in O(lognloglogn) time and queries in
O(lognloglogn + k) time
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