Computational Geometry Lecture Point Location

INSTITUT FÜR THEORETISCHE INFORMATIK • FAKULTÄT FÜR INFORMATIK

Chih-Hung Liu • Tamara Mchledidze 20.06.2018

Motivation

Given a position $p=\left(p_{x}, p_{y}\right)$ in a map, determine in which country p lies.

Motivation

Given a position $p=\left(p_{x}, p_{y}\right)$ in a map, determine in which country p lies.

Motivation

Given a position $p=\left(p_{x}, p_{y}\right)$ in a map, determine in which country p lies.

more precisely:

Find a data structure for efficiently answering such point location queries.

Motivation

Given a position $p=\left(p_{x}, p_{y}\right)$ in a map, determine in which country p lies.

more precisely:

Find a data structure for efficiently answering such point location queries.

The map is modeled as a subdivision of the plane into disjoint polygons.

Problem Setting

Problem Setting

Goal:
Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Problem Setting

Goal:

Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Problem Setting

Goal:
Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Problem Setting

Goal:
Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Problem Setting

Goal:
Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Problem Setting

Goal:
Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Think for 2 minutes!

Problem Setting

Goal:
 Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs.

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.
Query:

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.
Query: - find correct slab

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.
Query: - find correct slab

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.
Query: . find correct slab

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.
Query: . find correct slab

Problem Setting

Goal: \quad Given subdivision \mathcal{S} of the plane with n segments,
construct data structure for fast point location queries.
Solution: Partition \mathcal{S} at points into vertical slabs.

Problem Setting

Goal: Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs.
Query: $\begin{aligned} & \text { - find correct slab } \\ & \text { search this slab }\end{aligned}$
$O(\log n)$ time
$\} \begin{aligned} & 2 \text { binary } \\ & \text { searches }\end{aligned}$

Problem Setting

Goal: Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs. $O(\log n)$ time
Query:

- find correct slab
- search this slab
$\} \begin{aligned} & 2 \text { binary } \\ & \text { searches }\end{aligned}$
But:

Problem Setting

Goal: Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs. $O(\log n)$ time
Query:

- find correct slab
- search this slab
$\} \begin{aligned} & 2 \text { binary } \\ & \text { searches }\end{aligned}$
But: Space?

Problem Setting

Goal: Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs.
$O(\log n)$ time
Query: $\begin{aligned} & \text { - find correct slab } \\ & \text { search this slab }\end{aligned}$
$\} \begin{aligned} & 2 \text { binary } \\ & \text { searches }\end{aligned}$
But: Space? $\Theta\left(n^{2}\right)$

Problem Setting

Goal: Given subdivision \mathcal{S} of the plane with n segments, construct data structure for fast point location queries.

Solution: Partition \mathcal{S} at points into vertical slabs.
$O(\log n)$ time
Query: - find correct slab

- search this slab

But: Space? $\Theta\left(n^{2}\right) \quad$ Question: lower bound example?

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Reducing the Complexity

Observation: Slab partition is a refinement \mathcal{S}^{\prime} of \mathcal{S} into (possibly degenerate) trapezoids.

Goal: Find a suitable refinement of \mathcal{S} with lower complexity!

Solution: Trapezoidal map $\mathcal{T}(\mathcal{S})$

Assumption: \mathcal{S} is in general position, i.e., no two segment endpoints have the same x-coordinate

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximal length contained in face boundary.

Observation: \mathcal{S} in general position \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:

- one or two vertical sides
- two non-vertical sides

Left side:

Complexity of the Trapezoidal Map

Obs.: A trapezoid Δ is uniquely defined by bot (Δ), $\operatorname{top}(\Delta)$, $\operatorname{leftp}(\Delta)$ and $\operatorname{rightp}(\Delta)$.

Complexity of the Trapezoidal Map

Obs.: A trapezoid Δ is uniquely defined by bot (Δ), top (Δ), $\operatorname{leftp}(\Delta)$ and $\operatorname{rightp}(\Delta)$.

Complexity of the Trapezoidal Map

Obs.: \quad A trapezoid Δ is uniquely defined by $\operatorname{bot}(\Delta), \operatorname{top}(\Delta)$, $\operatorname{leftp}(\Delta)$ and $\operatorname{rightp}(\Delta)$.

Lemma 1: The trapezoidal map $\mathcal{T}(\mathcal{S})$ of a set \mathcal{S} of n segments in general position contains at most vertices and at most trapezoids.

Complexity of the Trapezoidal Map

Obs.: \quad A trapezoid Δ is uniquely defined by $\operatorname{bot}(\Delta), \operatorname{top}(\Delta)$, $\operatorname{leftp}(\Delta)$ and $\operatorname{rightp}(\Delta)$.

Lemma 1: The trapezoidal map $\mathcal{T}(\mathcal{S})$ of a set \mathcal{S} of n segments in general position contains at most $6 n+4$ vertices and at most $3 n+1$ trapezoids.

Search Structure

Goal: Compute the trapzoidal map $\mathcal{T}(\mathcal{S})$ and simultaneously a data structure $\mathcal{D}(\mathcal{S})$ for point location in $\mathcal{T}(\mathcal{S})$.

$\mathcal{D}(\mathcal{S})$ is a DAG with:

(p) x-node for point p tests left/right of p
(S) y-node for segment s tests above/below s
Δ leaf node for trapezoid Δ

Incremental Algorithm

TrapezoidalMap (\mathcal{S})
Input: set $\mathcal{S}=\left\{s_{1}, \ldots, s_{n}\right\}$ of crossing-free segments Output: trapezoidal map $\mathcal{T}(\mathcal{S})$ and search structure $\mathcal{D}(\mathcal{S})$ initialize \mathcal{T} and \mathcal{D} for $R=\operatorname{BBox}(\mathcal{S})$

for $i \leftarrow 1$ to n do

$H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$
$\mathcal{T} \leftarrow \mathcal{T} \backslash H$
$\mathcal{T} \leftarrow \mathcal{T} \cup$ newly created trapezoids of s_{i}
$\mathcal{D} \leftarrow$ replace leaves for H by nodes and leaves for new trapezoids
return $(\mathcal{T}, \mathcal{D})$

Incremental Algorithm

TrapezoidalMap (\mathcal{S})
Input: set $\mathcal{S}=\left\{s_{1}, \ldots, s_{n}\right\}$ of crossing-free segments Output: trapezoidal map $\mathcal{T}(\mathcal{S})$ and search structure $\mathcal{D}(\mathcal{S})$ initialize \mathcal{T} and \mathcal{D} for $R=\operatorname{BBox}(\mathcal{S})$

```
for}i\leftarrow1\mathrm{ to }n\mathrm{ do
```

 \(H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}\)
 \(\mathcal{T} \leftarrow \mathcal{T} \backslash H\)
 \(\mathcal{T} \leftarrow \mathcal{T} \cup\) newly created trapezoids of \(s_{i}\)
 \(\mathcal{D} \leftarrow\) replace leaves for \(H\) by nodes and leaves for new trapezoids
 return \((\mathcal{T}, \mathcal{D})\)
 Problem: Size of \mathcal{D} and query time depend on insertion order

Incremental Algorithm

TrapezoidalMap (\mathcal{S})
Input: set $\mathcal{S}=\left\{s_{1}, \ldots, s_{n}\right\}$ of crossing-free segments Output: trapezoidal map $\mathcal{T}(\mathcal{S})$ and search structure $\mathcal{D}(\mathcal{S})$
initialize \mathcal{T} and \mathcal{D} for $R=\operatorname{BBox}(\mathcal{S})$
$\mathcal{S} \leftarrow$ RandomPermutation (\mathcal{S})
for $i \leftarrow 1$ to n do
$H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$
$\mathcal{T} \leftarrow \mathcal{T} \backslash H$
$\mathcal{T} \leftarrow \mathcal{T} \cup$ newly created trapezoids of s_{i}
$\mathcal{D} \leftarrow$ replace leaves for H by nodes and leaves for new trapezoids
return $(\mathcal{T}, \mathcal{D})$

Problem: Size of \mathcal{D} and query time depend on insertion order

Solution: Randomization!

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$
Step 1: $H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$
Step 1: $H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$
Step 1: $H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$
Step 1: $H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$
Task: How do you find the set H of trapezoids from left to right?

Randomized Incremental Algorithm

Invariant: \mathcal{T} is trapezoidal map for $\mathcal{S}_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$ and \mathcal{D} is corresponding search structure
Initialization: $\quad \mathcal{T}=\mathcal{T}(\emptyset)=R$ and $\mathcal{D}=(R, \emptyset)$
Step 1: $H \leftarrow\left\{\Delta \in \mathcal{T} \mid \Delta \cap s_{i} \neq \emptyset\right\}$
Task: How do you find the set H of trapezoids from left to right?
$\Delta_{0} \leftarrow$ FindTrapezoid $\left(p_{i}, \mathcal{D}\right) ; j \leftarrow 0$
 while right endpoint q_{i} right of $\operatorname{rightp}\left(\Delta_{j}\right)$ do if $\operatorname{rightp}\left(\Delta_{j}\right)$ above s_{i} then
$\Delta_{j+1} \leftarrow$ lower right neighbor of Δ_{j}
else
$\left\lfloor\Delta_{j+1} \leftarrow\right.$ upper right neighbor of Δ_{j}
$j \leftarrow j+1$
return $\Delta_{0}, \ldots, \Delta_{j}$

Updating $\mathcal{T}(\mathcal{S})$ and $\mathcal{D}(\mathcal{S})$

Step 2: Update \mathcal{T} and \mathcal{D}

- Case 1: $s_{i} \subset \Delta_{0}$

Updating $\mathcal{T}(\mathcal{S})$ and $\mathcal{D}(\mathcal{S})$

Karlsruhe Institute of Technology
Step 2: Update \mathcal{T} and \mathcal{D}

- Case 1: $s_{i} \subset \Delta_{0}$

Updating $\mathcal{T}(\mathcal{S})$ and $\mathcal{D}(\mathcal{S})$

Karlsruhe Institute of Technology
Step 2: Update \mathcal{T} and \mathcal{D}

- Case 1: $s_{i} \subset \Delta_{0}$
- Case 2: $\left|\mathcal{T} \cap s_{i}\right| \geq 2$

Updating $\mathcal{T}(\mathcal{S})$ and $\mathcal{D}(\mathcal{S})$

Step 2: Update \mathcal{T} and \mathcal{D}

- Case 1: $s_{i} \subset \Delta_{0}$
- Case 2: $\left|\mathcal{T} \cap s_{i}\right| \geq 2$

Updating $\mathcal{T}(\mathcal{S})$ and $\mathcal{D}(\mathcal{S})$

Step 2: Update \mathcal{T} and \mathcal{D}

- Case 1: $s_{i} \subset \Delta_{0}$
- Case 2: $\left|\mathcal{T} \cap s_{i}\right| \geq 2$

Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(\mathcal{S})$ and the search structure \mathcal{D} for a set \mathcal{S} of n segments in expected $O(n \log n)$ time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(\mathcal{S})$ and the search structure \mathcal{D} for a set \mathcal{S} of n segments in expected $O(n \log n)$ time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Observations:

- worst case: size of \mathcal{D} is quadratic and query time is linear
- hope: that happens rarely!
- consider expected time and size over all n ! permutations of \mathcal{S}
- the theorem holds independently of the input set \mathcal{S}

Analysis

Thm 1: The algorithm computes the trapezoidal map $\mathcal{T}(\mathcal{S})$ and the search structure \mathcal{D} for a set \mathcal{S} of n segments in expected $O(n \log n)$ time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Observations:

- worst case: size of \mathcal{D} is quadratic and query time is linear
- hope: that happens rarely!
- consider expected time and size over all n ! permutations of \mathcal{S}
- the theorem holds independently of the input set \mathcal{S}

Proof:

- define random variables and consider their expected values
- perform backward analysis
\rightarrow details on blackboard

Worst-Case Consideration

So far: expected query time for arbitrary point is $O(\log n)$
But: each permutation could have a very bad (worst case) query point

Worst-Case Consideration

So far: expected query time for arbitrary point is $O(\log n)$
But: each permutation could have a very bad (worst case) query point
Lemma 2: Let \mathcal{S} be a set of n crossing-free segments, let q be a query point and let $\lambda>0$. Then
$\operatorname{Pr}[$ search path for q longer than $3 \lambda \ln (n+1)$]
$\leq 1 /(n+1)^{\lambda \ln 1.25-1}$.
No proof. (or see Chapter 6.4)

Worst-Case Consideration

So far: expected query time for arbitrary point is $O(\log n)$
But: each permutation could have a very bad (worst case) query point
Lemma 2: Let \mathcal{S} be a set of n crossing-free segments, let q be a query point and let $\lambda>0$. Then
$\operatorname{Pr}[$ search path for q longer than $3 \lambda \ln (n+1)$] $\leq 1 /(n+1)^{\lambda \ln 1.25-1}$.
Lemma 3: Let \mathcal{S} be a set of n crossing-free segments and $\lambda>0$. Then
$\operatorname{Pr}[$ max. search path in \mathcal{D} longer than $3 \lambda \ln (n+1)$]
$\leq 2 /(n+1)^{\lambda \ln 1.25-3}$.

Worst-Case Consideration

So far: expected query time for arbitrary point is $O(\log n)$
But: each permutation could have a very bad (worst case) query point
Lemma 2: Let \mathcal{S} be a set of n crossing-free segments, let q be a query point and let $\lambda>0$. Then
$\operatorname{Pr}[$ search path for q longer than $3 \lambda \ln (n+1)$] $\leq 1 /(n+1)^{\lambda \ln 1.25-1}$.
Lemma 3: Let \mathcal{S} be a set of n crossing-free segments and $\lambda>0$. Then
$\operatorname{Pr}[$ max. search path in \mathcal{D} longer than $3 \lambda \ln (n+1)$] $\leq 2 /(n+1)^{\lambda \ln 1.25-3}$.
Thm 2: Let \mathcal{S} be a subdivision of the plane with n edges. There is a search structure for point location within \mathcal{S} that has $O(n)$ space and $O(\log n)$ query time.

Degenerate Inputs

Two assumptions:

- no two segment endpoints have the same x-coordinates
- always unique answers (left/right) on the search path

Degenerate Inputs

Two assumptions:

- no two segment endpoints have the same x-coordinates
- always unique answers (left/right) on the search path solution: symbolic shear transformation

$$
\varphi:(x, y) \mapsto(x+\varepsilon y, y)
$$

Degenerate Inputs

Two assumptions:

- no two segment endpoints have the same x-coordinates
- always unique answers (left/right) on the search path
solution: symbolic shear transformation

$$
\varphi:(x, y) \mapsto(x+\varepsilon y, y)
$$

Here $\varepsilon>0$ is chosen such that the x-order $<$ of the points does not change.

Degenerate Inputs

- Effect 1: lexicographic order
- Effect 2: affine map φ maintains point-line relations

Degenerate Inputs

- Effect 1: lexicographic order
- Effect 2: affine map φ maintains point-line relations
- Run algorithm for $\varphi \mathcal{S}=\{\varphi s \mid s \in \mathcal{S}\}$ and φp.

Degenerate Inputs

- Effect 1: lexicographic order
- Effect 2: affine map φ maintains point-line relations
- Run algorithm for $\varphi \mathcal{S}=\{\varphi s \mid s \in \mathcal{S}\}$ and φp.
- Two basic operations for constructing \mathcal{T} and \mathcal{D} : 1. is q left or right of the vertical line through p ?

2. is q above or below the segment s ?

Degenerate Inputs

- Effect 1: lexicographic order
- Effect 2: affine map φ maintains point-line relations
- Run algorithm for $\varphi \mathcal{S}=\{\varphi s \mid s \in \mathcal{S}\}$ and φp.
- Two basic operations for constructing \mathcal{T} and \mathcal{D} : 1. is q left or right of the vertical line through p ?

2. is q above or below the segment s ?

- Locating a point q in $\mathcal{T}(\mathcal{S})$ works by locating φq in $\mathcal{T}(\varphi \mathcal{S})$.
\rightarrow see Chapter 6.3 in [De Berg et al. 2008]

Discussion

Are there similar methods for higher dimensions?

Discussion

Are there similar methods for higher dimensions?

The currently best three-dimensional data structure uses $O(n \log n)$ space and $O\left(\log ^{2} n\right)$ query time [Snoeyink '04]. Whether linear space and $O(\log n)$ query time is possible is an open question. In even higher dimensions efficient methods are known only for special hyper plane subdivisions.

Discussion

Are there similar methods for higher dimensions?

The currently best three-dimensional data structure uses $O(n \log n)$ space and $O\left(\log ^{2} n\right)$ query time [Snoeyink '04]. Whether linear space and $O(\log n)$ query time is possible is an open question. In even higher dimensions efficient methods are known only for special hyper plane subdivisions.

Are there dynamic data structures that allow insertions and deletions?

Discussion

Are there similar methods for higher dimensions?

The currently best three-dimensional data structure uses $O(n \log n)$ space and $O\left(\log ^{2} n\right)$ query time [Snoeyink '04]. Whether linear space and $O(\log n)$ query time is possible is an open question. In even higher dimensions efficient methods are known only for special hyper plane subdivisions.

Are there dynamic data structures that allow insertions and deletions?

Dynamic data structures for point location are well known, see the survey by [Chiang, Tamassia '92]. A more recent example by [Arge et al. '06] needs $O(n)$ space, $O(\log n)$ query time and $O(\log n)$ update time (insertions).

