

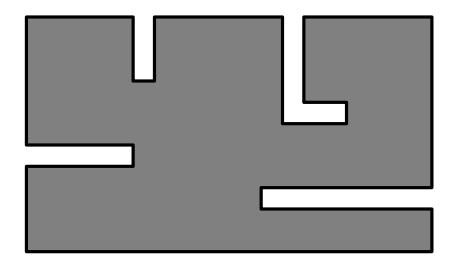
Computational Geometry · **Lecture** Polygon Triangulation

INSTITUTE FOR THEORETICAL INFORMATICS · FACULTY OF INFORMATICS

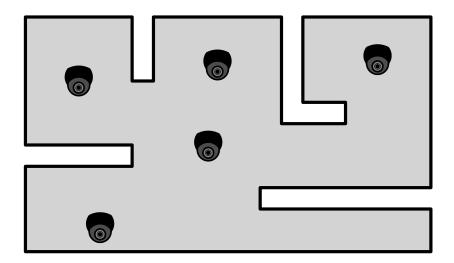
Tamara Mchedlidze 3.5.2018

 $1 \quad {\sf Dr. \ Tamara \ Mchedlidze} \cdot {\sf Dr. \ Darren \ Strash} \cdot {\sf Computational \ Geometry \ Lecture}$

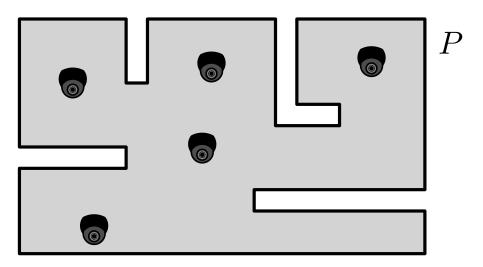
Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.

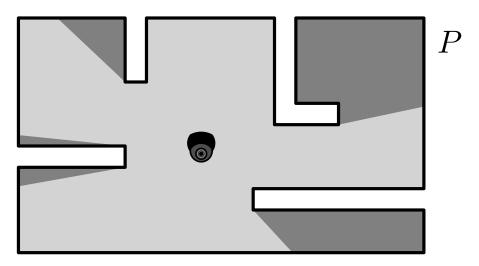


Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Assumption: Art gallery is a *simple* polygon P with n corners (no self-intersections, no holes)

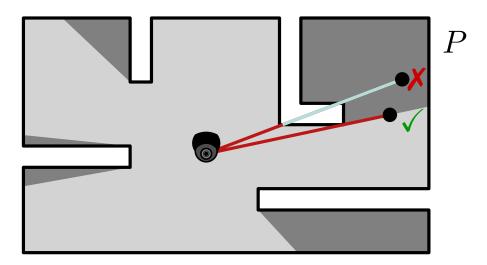
Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Assumption: Art gallery is a *simple* polygon P with n corners (no self-intersections, no holes)

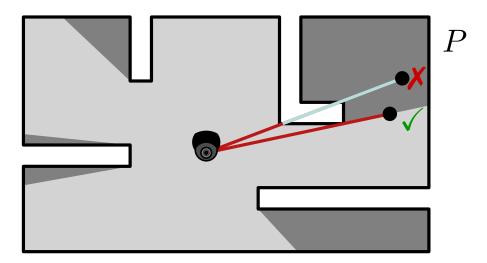
Observation: each camera observes a star-shaped region

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



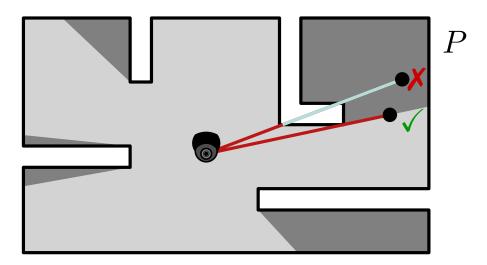
Assumption:Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)Observation:each camera observes a star-shaped regionDefinition:Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Assumption:Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)Observation:each camera observes a star-shaped regionDefinition:Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$ Goal:Use as few cameras as possible!

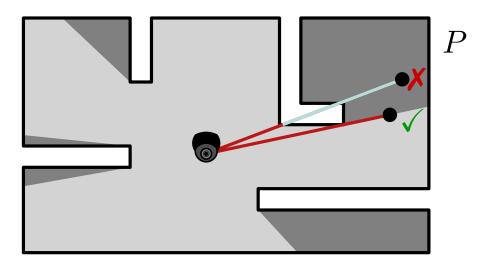
Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



Assumption:Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)Observation:each camera observes a star-shaped regionDefinition:Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$ Goal:Use as few cameras as possible!

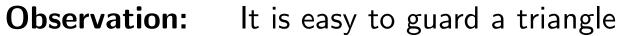
 \rightarrow The number depends on the number of corners n and on the shape of P

Task: Install a number of cameras in an art gallery so that every part of the galery is visible to at least one of them.



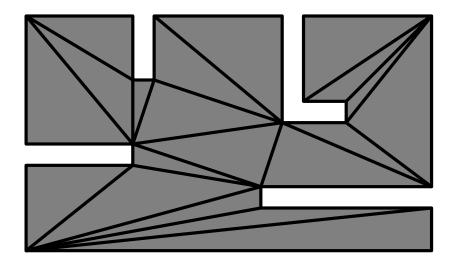
Assumption:Art gallery is a simple polygon P with n corners
(no self-intersections, no holes)Observation:each camera observes a star-shaped regionDefinition:Point $p \in P$ is visible from $c \in P$ if $\overline{cp} \in P$ Goal:Use as few cameras as possible!

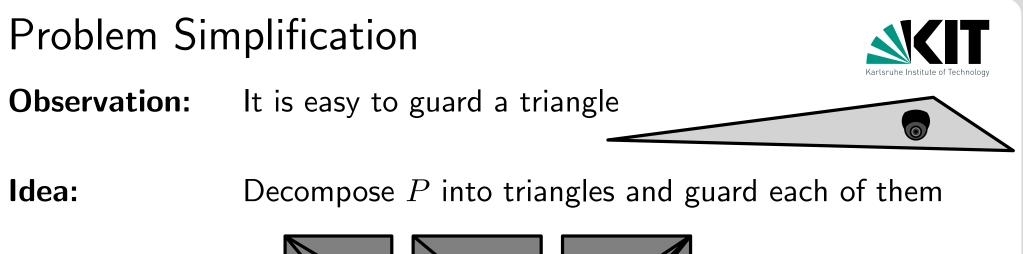
ightarrow The number depends on the number of corners n and on the shape of P

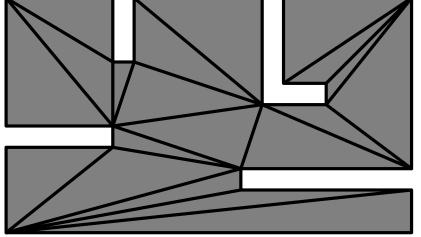


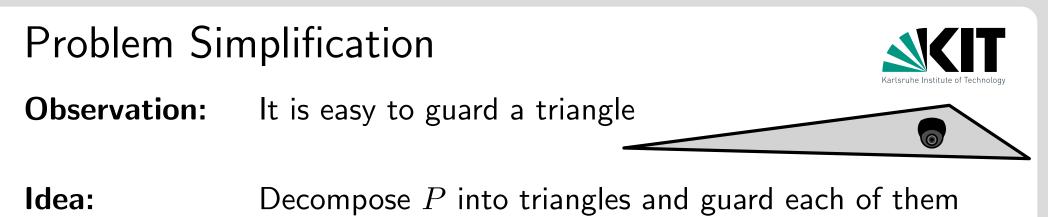
Observation: It is easy to guard a triangle

Idea: Decompose P into triangles and guard each of them

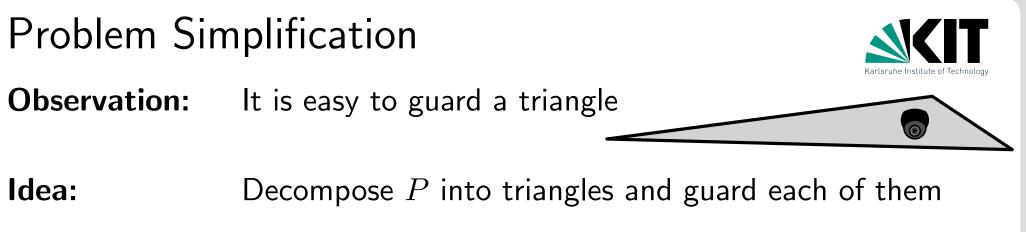


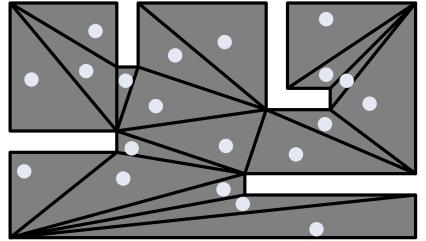




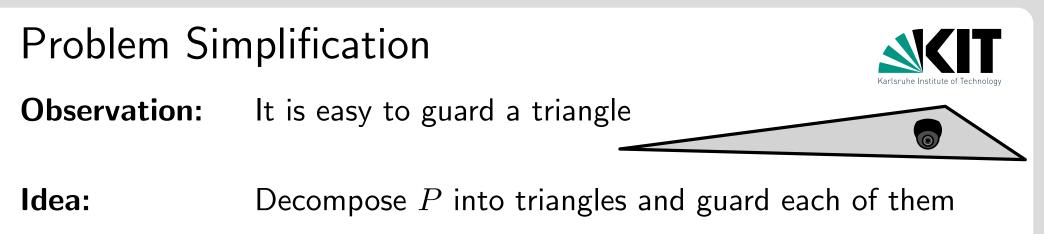


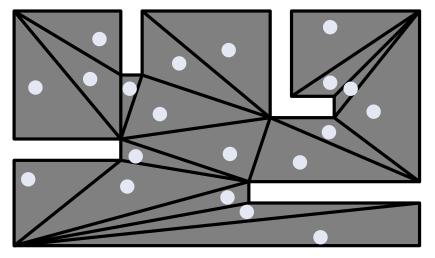
The proof implies a recursive $O(n^2)$ -Algorithm!





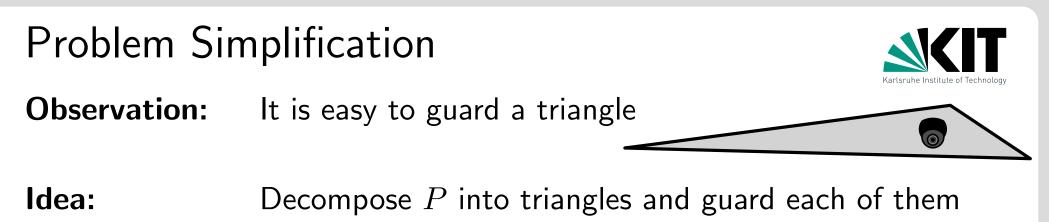
• P could be guarded by n-2 cameras placed in the triangles

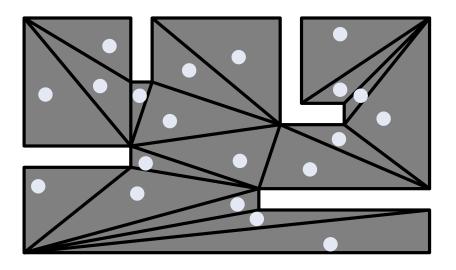




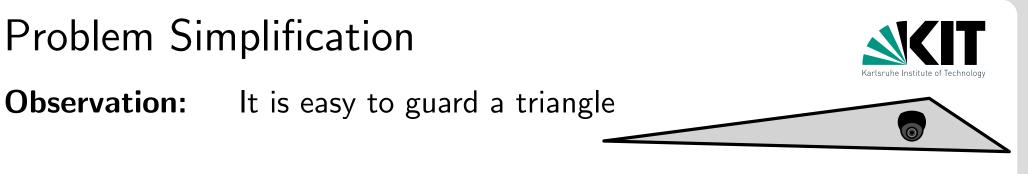
• P could be guarded by n-2 cameras placed in the triangles

Can we do better?

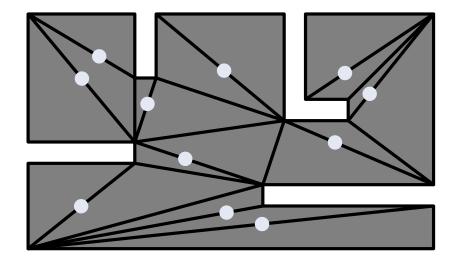




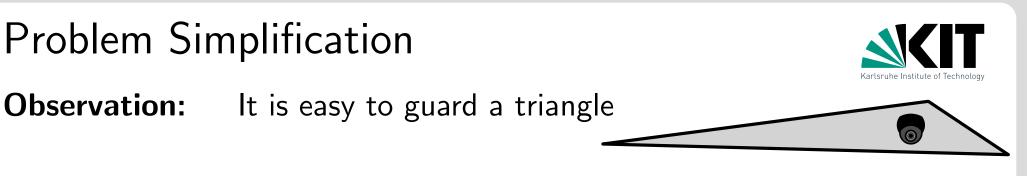
- P could be guarded by n-2 cameras placed in the triangles
- P can be guarded by $\approx n/2$ cameras placed on the diagonals



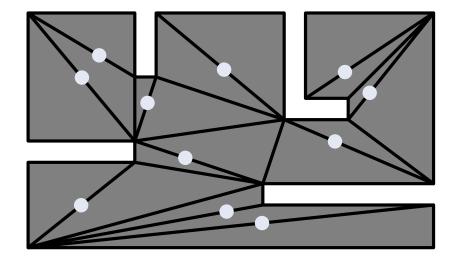
Idea: Decompose P into triangles and guard each of them



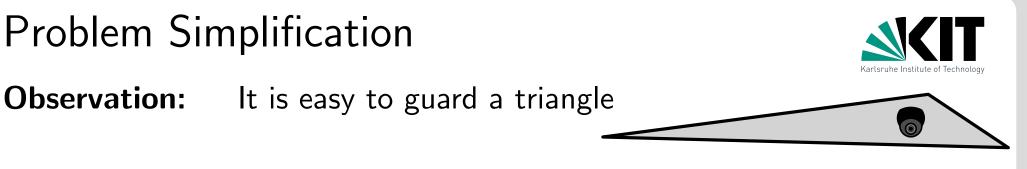
- P could be guarded by n-2 cameras placed in the triangles
- P can be guarded by $\approx n/2$ cameras placed on the diagonals



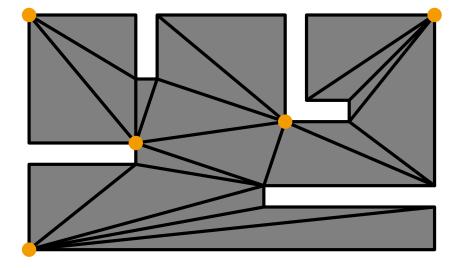
Idea: Decompose P into triangles and guard each of them



- P could be guarded by n-2 cameras placed in the triangles
- ${}^{\bullet}$ P can be guarded by $\approx n/2$ cameras placed on the diagonals
- $\bullet~P$ can be observed by even smaller number of cameras placed on the corners



Idea: Decompose P into triangles and guard each of them



- P could be guarded by n-2 cameras placed in the triangles
- ${}^{\bullet}$ P can be guarded by $\approx n/2$ cameras placed on the diagonals
- ${\ensuremath{\,^\circ}}\ P$ can be observed by even smaller number of cameras placed on the corners

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

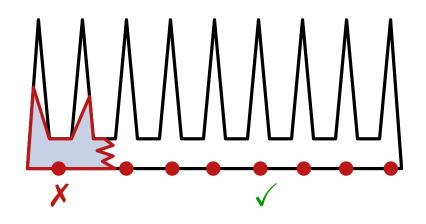
• Find a simple polygon with n corners that requires $\approx n/3$ cameras!

Discuss it with your neighbour for 2 minutes

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

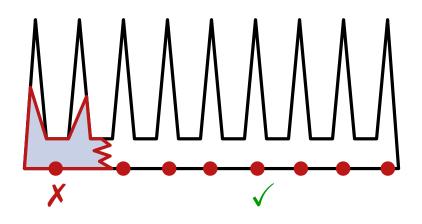
• Find a simple polygon with n corners that requires $\approx n/3$ cameras!



Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

• Find a simple polygon with n corners that requires $\approx n/3$ cameras!

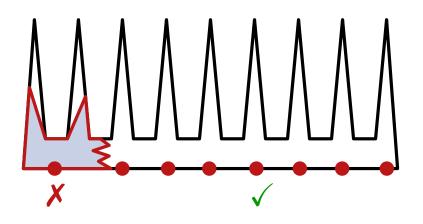


• Sufficiency on the board

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

• Find a simple polygon with n corners that requires $\approx n/3$ cameras!

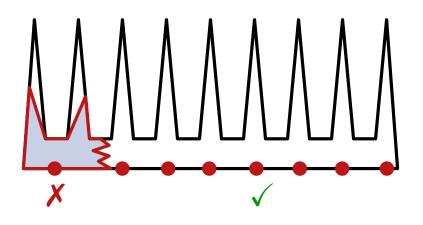


- Sufficiency on the board
- **Conclusion:** Given a triangulation, the $\lfloor n/3 \rfloor$ cameras that guard the polygon can be placed in O(n) time.

Theorem 2: For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient to guard it.

Proof:

• Find a simple polygon with n corners that requires $\approx n/3$ cameras!

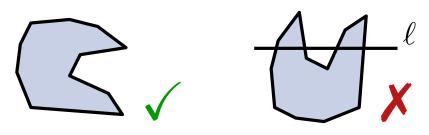


• Sufficiency on the board

Conclusion: Given a triangulation, the $\lfloor n/3 \rfloor$ cameras that guard the polygon can be placed in O(n) time. **Can we do better than** $O(n^2)$ **described before?**

3-step process:

- Step 1: Decompose P into y-monotone polygons
 - **Definition:** A polygon is *y*-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.

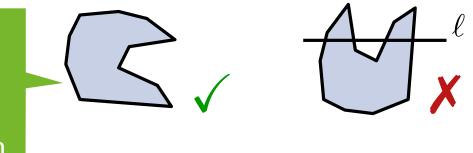


3-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is *y*-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.

The two paths from the topmost to the bottomost point bounding the polygon, never go upward

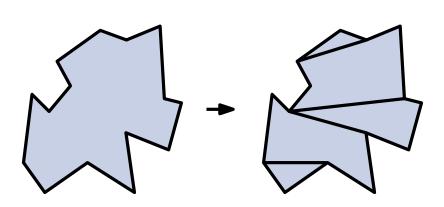


3-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is *y*-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.

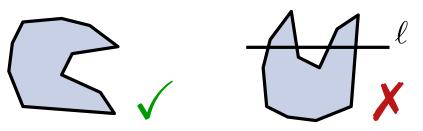
The two paths from the topmost to the bottomost point bounding the polygon, never go upward



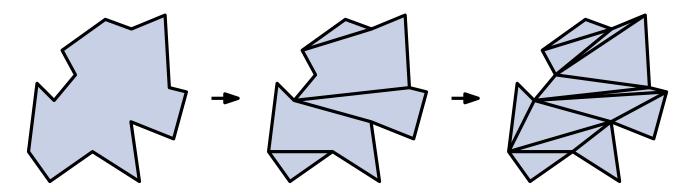
3-step process:

• Step 1: Decompose P into y-monotone polygons

Definition: A polygon is *y*-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.



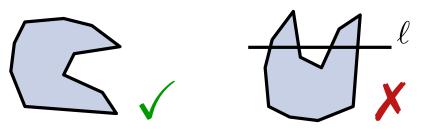
• Step 2: Triangulate the resulting y-monotone polygons



3-step process:

• Step 1: Decompose P into y-monotone polygons

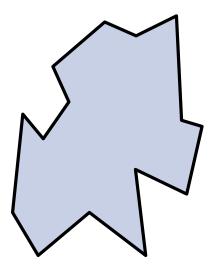
Definition: A polygon is *y*-monotone, if for any horizontal line ℓ , the interection $\ell \cap P$ is connected.



- Step 2: Triangulate the resulting y-monotone polygons
- Step 3: use DFS to color the vertices of the polygon

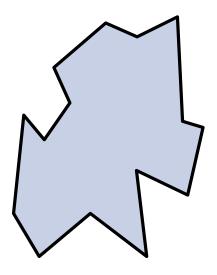


Idea: Five different types of vertices



Idea: Five different types of vertices

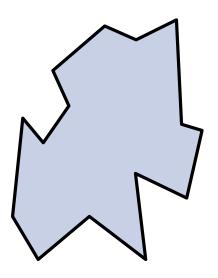
- Turn vertices:



Karlsruhe Institute of Technology

Idea: Five different types of vertices

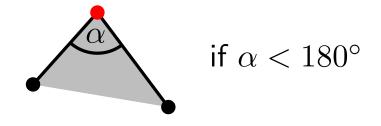
- Turn vertices: vertical change in direction

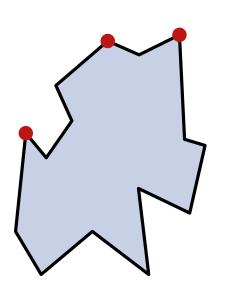


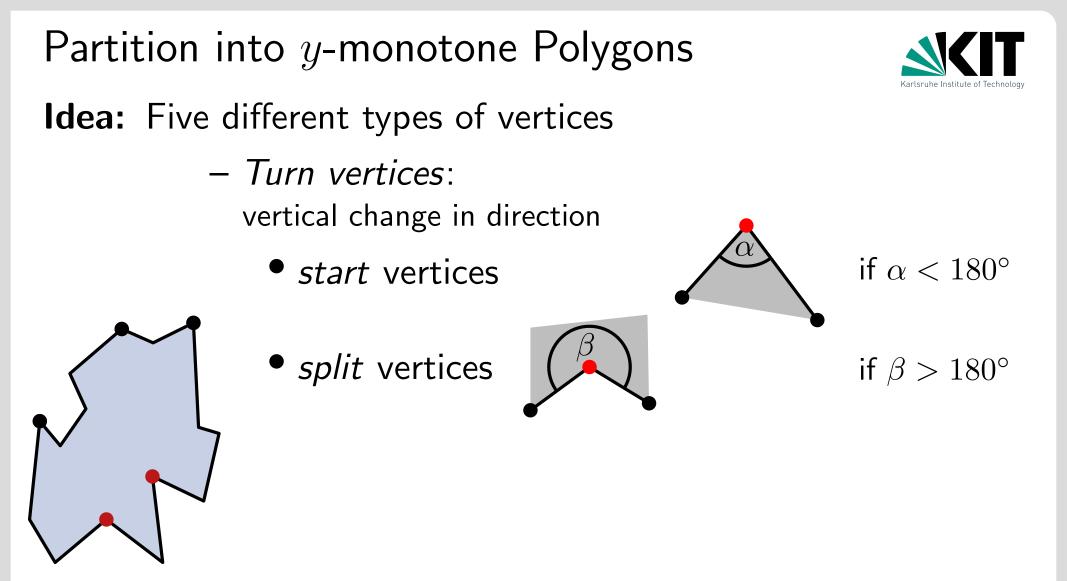
Idea: Five different types of vertices

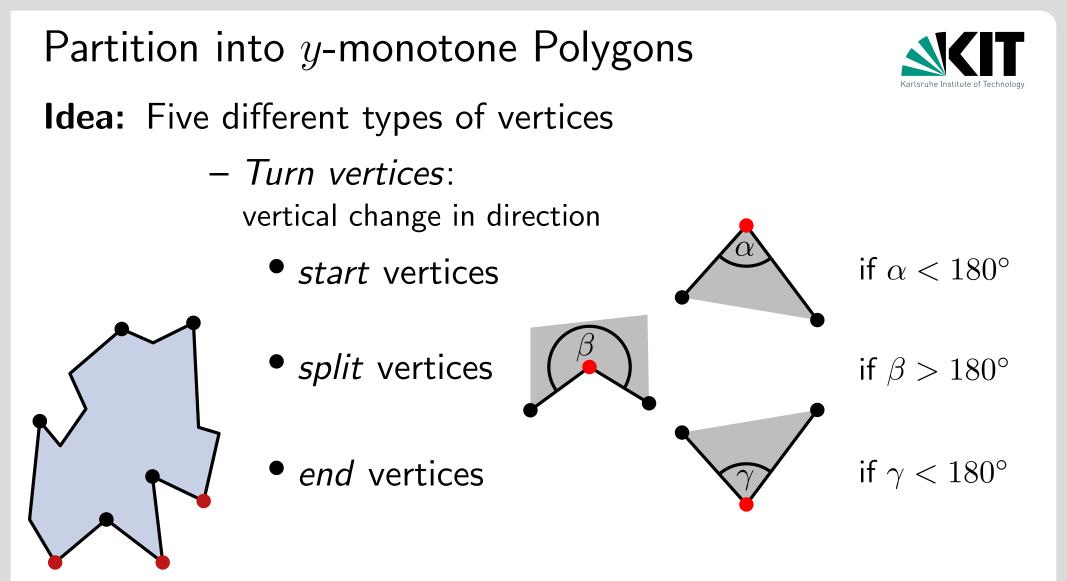
- Turn vertices: vertical change in direction

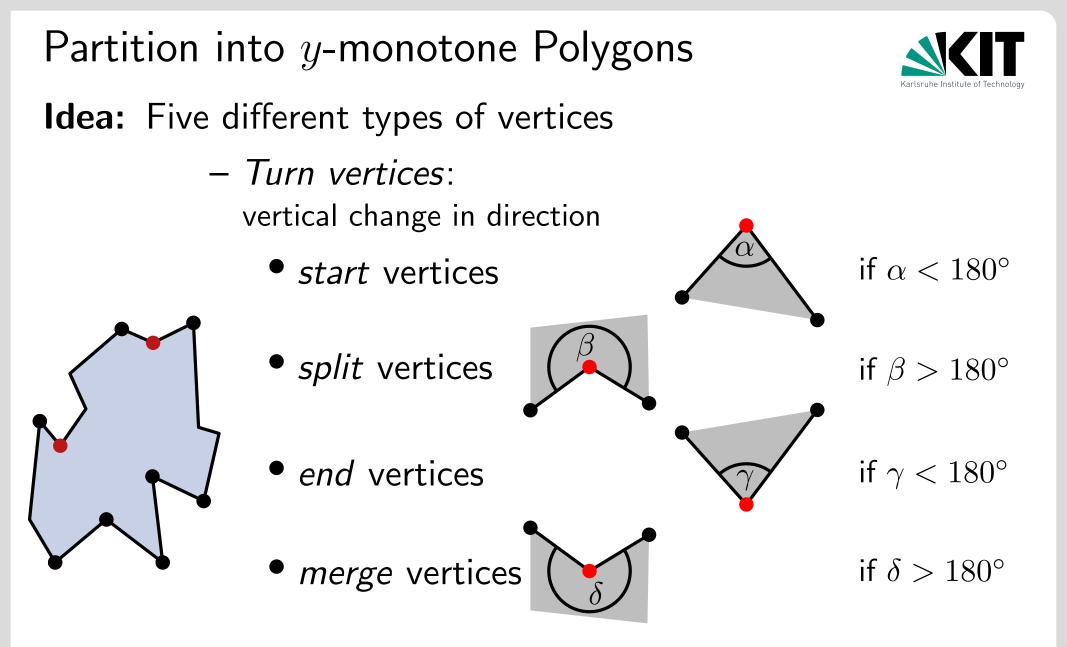
• *start* vertices

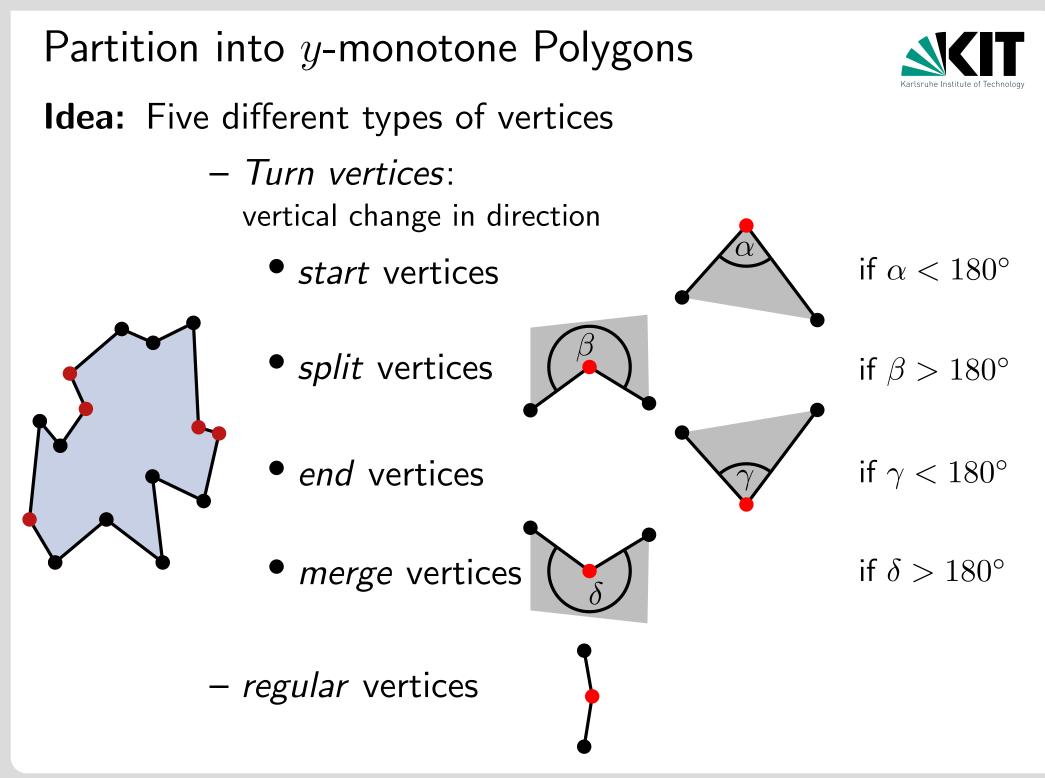












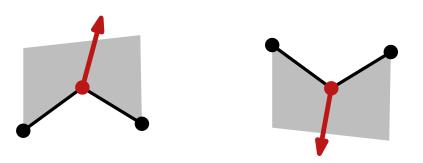
Lemma 1: A polygon is *y*-monotone if it has no split vertices or merge vertices.

Characterization

Lemma 1: A polygon is *y*-monotone if it has no split vertices or merge vertices.

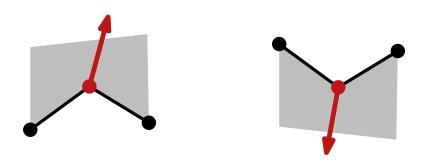
Proof: On the blackboard

- **Lemma 1:** A polygon is *y*-monotone if it has no split vertices or merge vertices.
- **Proof:** On the blackboard
 - \Rightarrow We need to eliminate all split and merge vertices by using diagonals



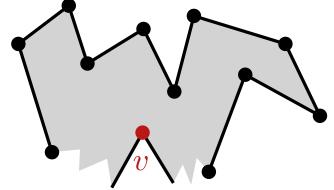
Lemma 1: A polygon is *y*-monotone if it has no split vertices or merge vertices.

- **Proof:** On the blackboard
 - \Rightarrow We need to eliminate all split and merge vertices by using diagonals



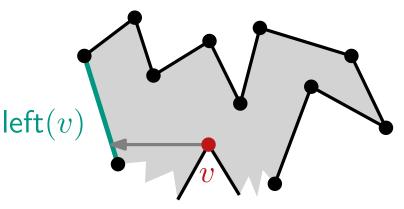
Observation: The diagonals should neither cross the edges of P nor the other diagonals

1) Diagonals for the split vertices



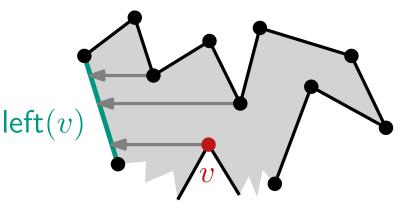
1) Diagonals for the split vertices

• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



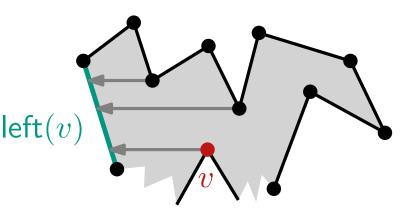
1) Diagonals for the split vertices

• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



1) Diagonals for the split vertices

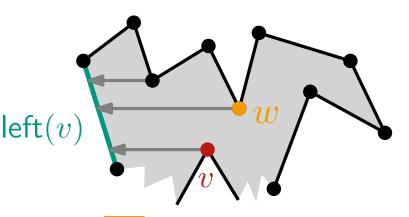
• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



• connect split vertex v to the nearest vertex w above v, such that ${\rm left}(w) = {\rm left}(v)$

1) Diagonals for the split vertices

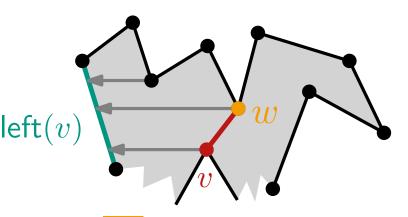
• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



• connect split vertex v to the nearest vertex w above v, such that left(w) = left(v)

1) Diagonals for the split vertices

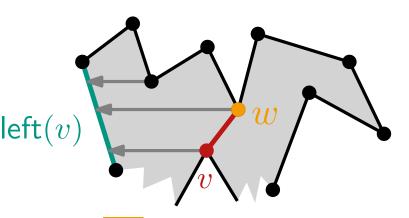
• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ



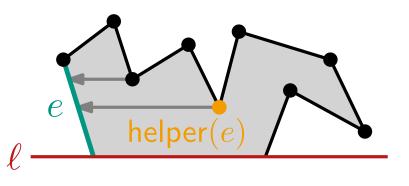
• connect split vertex v to the nearest vertex w above v, such that left(w) = left(v)

1) Diagonals for the split vertices

• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ

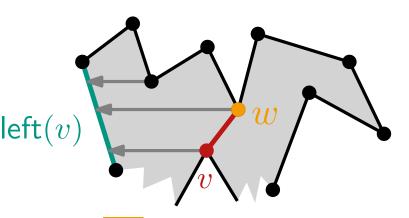


- connect split vertex v to the nearest vertex w above v, such that left(w) = left(v)
- for each edge e save the botommost vertex w such that left(w) = e; notation helper(e) := w

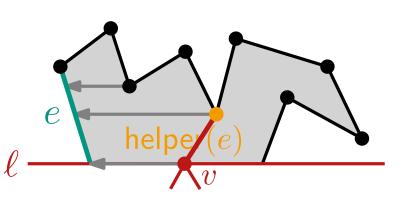


1) Diagonals for the split vertices

• compute for each vertex v its left adjacent edge left(v) with respect to the horizontal sweep line ℓ

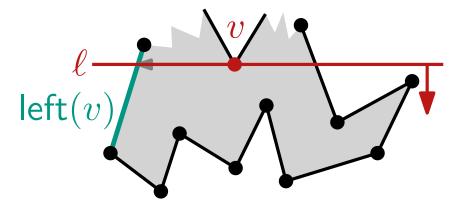


- connect split vertex v to the nearest vertex w above v, such that left(w) = left(v)
- for each edge e save the botommost vertex w such that left(w) = e; notation helper(e) := w
- when ℓ passes through a split vertex v, we connect v with helper(left(v))



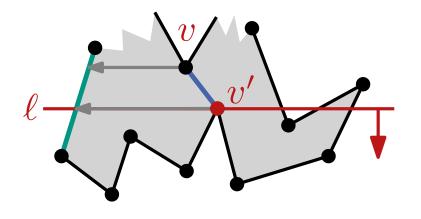
2) Diagonals for merge vertices

• when the vertex v is reached, we set helper(left(v)) = v



2) Diagonals for merge vertices

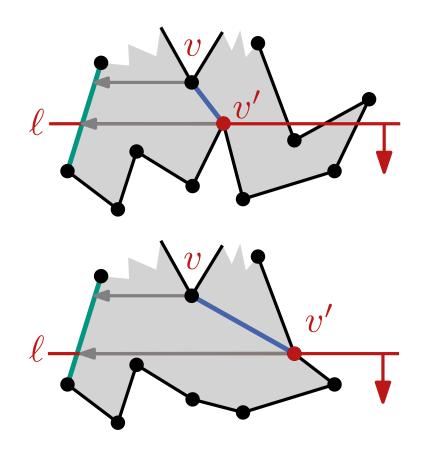
- when the vertex v is reached, we set helper(left(v)) = v
- when we reach a split vertex v'such that left(v') = left(v) the diagonal (v, v') is introduced



2) Diagonals for merge vertices

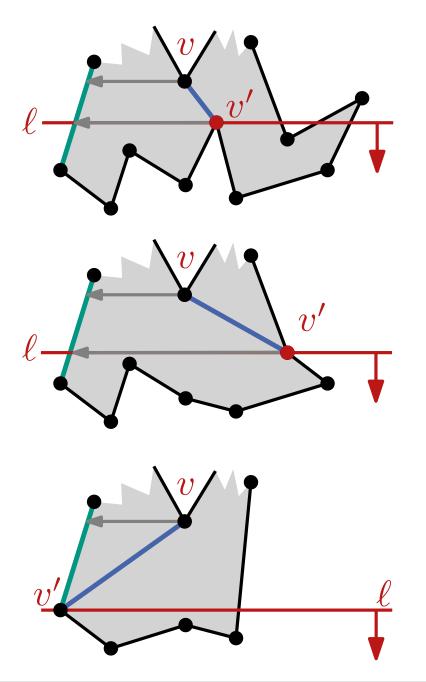
- when the vertex v is reached, we set helper(left(v)) = v
- when we reach a split vertex v'such that left(v') = left(v) the diagonal (v, v') is introduced
- in case we reach a regular vertex v'such that helper(left(v')) is v the diagonal (v, v') is introduced

9



2) Diagonals for merge vertices

- when the vertex v is reached, we set helper(left(v)) = v
- when we reach a split vertex v'such that left(v') = left(v) the diagonal (v, v') is introduced
- in case we reach a regular vertex v'such that helper(left(v')) is v the diagonal (v, v') is introduced
- if the end of v' of left(v) is reached, then the diagonal (v, v') is introduced



MakeMonotone(Polygon P)

- $\mathcal{D} \leftarrow \mathsf{doubly-connected} \ \mathsf{edge} \ \mathsf{list} \ \mathsf{for} \ (V(P), E(P))$
- $\mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary search tree for sweep-line status)}$

while $\mathcal{Q} \neq \emptyset$ do

- $v \leftarrow \mathcal{Q}.\mathsf{nextVertex}()$
- $\mathcal{Q}.\mathsf{deleteVertex}(v)$
- handleVertex(v)

return \mathcal{D}

MakeMonotone(Polygon P)

 $\begin{array}{l} \mathcal{D} \leftarrow \text{doubly-connected edge list for } (V(P), E(P)) \\ \mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary search tree for sweep-line status)} \\ \textbf{while } \mathcal{Q} \neq \emptyset \text{ do} \\ \mid v \leftarrow \mathcal{Q}.\text{nextVertex()} \\ \mathcal{Q}.\text{deleteVertex}(v) \\ \text{handleVertex}(v) \end{array}$

return ${\cal D}$

handleStartVertex(vertex v)

 $\mathcal{T} \gets \mathsf{add} \text{ the left edge } e \\ \mathsf{helper}(e) \gets v \\ \end{cases}$

10 Dr. Tamara Mchedlidze Dr. Darren Strash Computational Geometry Lecture

 $v = \mathsf{helper}(e)$

Algorithm MakeMonotone(P)

MakeMonotone(Polygon P)

 $\mathcal{D} \leftarrow \text{doubly-connected edge list for } (V(P), E(P))$ $\mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary search tree for sweep-line status)}$ while $\mathcal{Q} \neq \emptyset$ do $| v \leftarrow \mathcal{Q}.\text{nextVertex}() - \text{helper}(e)$

- \mathcal{Q} .deleteVertex(v)
- handleVertex(v)

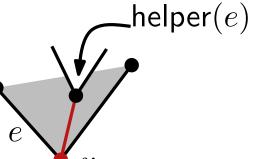
return \mathcal{D}

handleStartVertex(vertex v)

 $\mathcal{T} \gets \text{add the left edge } e \\ \mathsf{helper}(e) \gets v \\ \end{cases}$

handleEndVertex(vertex v) $e \leftarrow \text{left edge}$ if isMergeVertex(helper(e)) then $\mid \mathcal{D} \leftarrow \text{add edge (helper(<math>e$), v)

remove e from ${\cal T}$



MakeMonotone(Polygon P)

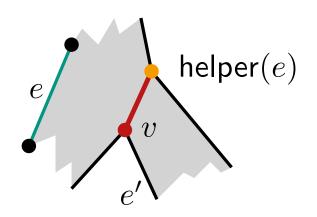
 $\begin{array}{l} \mathcal{D} \leftarrow \text{doubly-connected edge list for } (V(P), E(P)) \\ \mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary search tree for sweep-line status)} \\ \textbf{while } \mathcal{Q} \neq \emptyset \text{ do} \\ \mid v \leftarrow \mathcal{Q}.\text{nextVertex()} \\ \mathcal{Q}.\text{deleteVertex}(v) \end{array}$

handleVertex(v)

return ${\cal D}$

handleSplitVertex(vertex v)

 $\begin{array}{l} e \leftarrow \mathsf{Edge to the left of } v \text{ in } \mathcal{T} \\ \mathcal{D} \leftarrow \mathsf{add edge } (\mathsf{helper}(e), v) \\ \mathsf{helper}(e) \leftarrow v \\ \mathcal{T} \leftarrow \mathsf{add the right edge } e' \text{ of } v \\ \mathsf{helper}(e') \leftarrow v \end{array}$



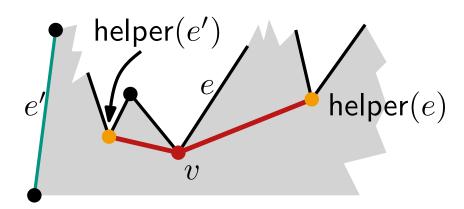
MakeMonotone(Polygon P)

 $\begin{array}{l} \mathcal{D} \leftarrow \text{doubly-connected edge list for } (V(P), E(P)) \\ \mathcal{Q} \leftarrow \text{priority queue for } V(P) \text{ sorted lexicographically; } \mathcal{T} \leftarrow \emptyset \text{ (binary search tree for sweep-line status)} \\ \text{while } \mathcal{Q} \neq \emptyset \text{ do} \end{array}$

 $v \leftarrow Q$.nextVertex() Q.deleteVertex(v)

_ handleVertex(v)

return \mathcal{D}



handleMergeVertex(vertex v)

 $\begin{array}{l} e \leftarrow \mathsf{right} \ \mathsf{edge} \\ \mathbf{if} \ \mathsf{isMergeVertex}(\mathsf{helper}(e)) \ \mathbf{then} \\ \ \ \ \mathcal{D} \leftarrow \mathsf{add} \ \mathsf{edge} \ (\mathsf{helper}(e), v) \\ \mathsf{remove} \ e \ \mathsf{from} \ \mathcal{T} \\ e' \leftarrow \mathsf{edge} \ \mathsf{to} \ \mathsf{the} \ \mathsf{left} \ \mathsf{of} \ v \ \mathsf{in} \ \mathcal{T} \\ \mathbf{if} \ \mathsf{isMergeVertex}(\mathsf{helper}(e')) \ \mathbf{then} \\ \ \ \ \ \mathcal{D} \leftarrow \mathsf{add} \ \mathsf{edge} \ (\mathsf{helper}(e')) \ \mathbf{then} \\ \ \ \ \mathcal{D} \leftarrow \mathsf{add} \ \mathsf{edge} \ (\mathsf{helper}(e'), v) \\ \mathsf{helper}(e') \leftarrow v \end{array}$

MakeMonotone(Polygon P)

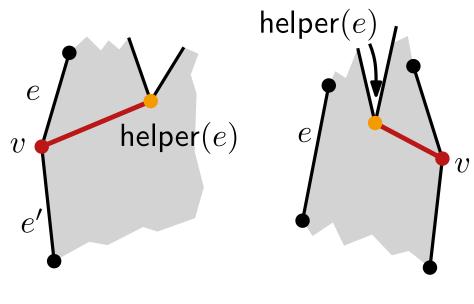
 $\mathcal{D} \leftarrow \mathsf{doubly-connected} \ \mathsf{edge} \ \mathsf{list} \ \mathsf{for} \ (V(P), E(P))$

 $\mathcal{Q} \leftarrow$ priority queue for V(P) sorted lexicographically; $\mathcal{T} \leftarrow \emptyset$ (binary search tree for sweep-line status)

while $\mathcal{Q} \neq \emptyset$ do

 $v \leftarrow Q.nextVertex()$ Q.deleteVertex(v)handleVertex(v)

return \mathcal{D}



handleRegularVertex(vertex v)

remove e from \mathcal{T} $\mathcal{T} \leftarrow \mathsf{add} \ e'; \ \mathsf{helper}(e') \leftarrow v$

else

```
\begin{array}{l} e \leftarrow \text{edge to the left of } v \\ \text{add } e \text{ to } \mathcal{T} \\ \text{if isMergeVertex(helper(e)) then} \\ \ \ \ \ \mathcal{D} \leftarrow \text{add (helper(e), } v) \\ \text{helper}(e) \leftarrow v \end{array}
```

Analysis

Lemma 2: The algorithm MakeMonotone computes a set of crossing-free diagonals of P, which partitions P into y-monotone polygons.

Analysis

Lemma 2: The algorithm MakeMonotone computes a set of crossing-free diagonals of P, which partitions P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

Analysis

Lemma 2: The algorithm MakeMonotone computes a set of crossing-free diagonals of P, which partitions P into y-monotone polygons.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

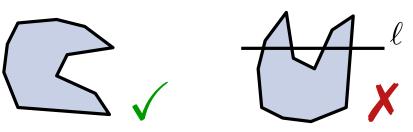
- Construct priority queue Q:
- Initialize sweep-line status \mathcal{T} :
- Handle a single event:
 - Q.deleteMax:
 - Find, remove, add element in \mathcal{T} :
 - Add diagonals to \mathcal{D} :
- Space: obviously O(n)

Proof of Art-Gallery-Theorem: Overview

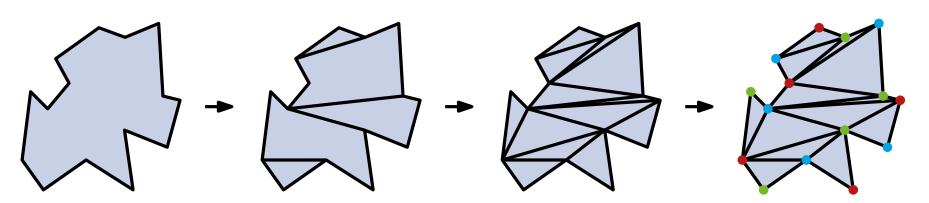
Three-step procedure:

• Step 1: Decompose *P* in *y*-monotone polygons

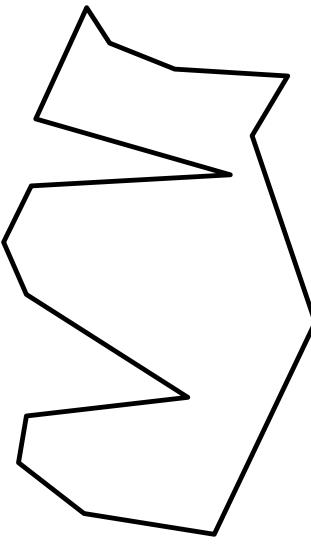
Definition: A polygon P is y-monotone, if for each horizontal line ℓ the intersection $\ell \cap P$ is connected.



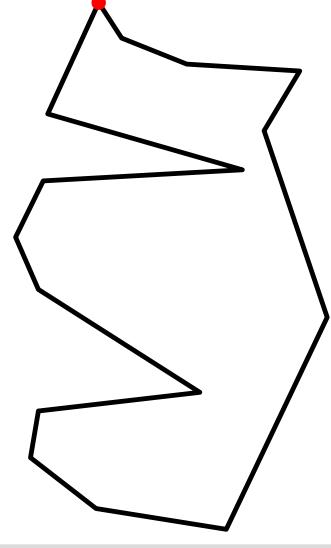
- Step 2: Triangulate *y*-monotone polygons **ToDo!**
- Step 3: use DFS to color the triangulated polygon



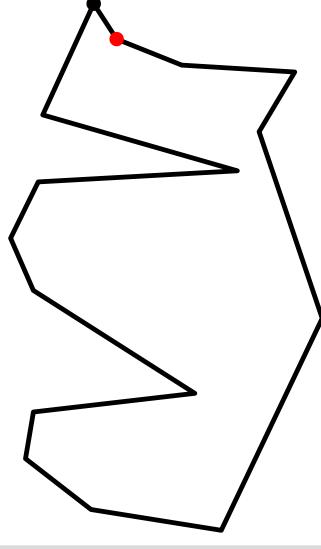
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



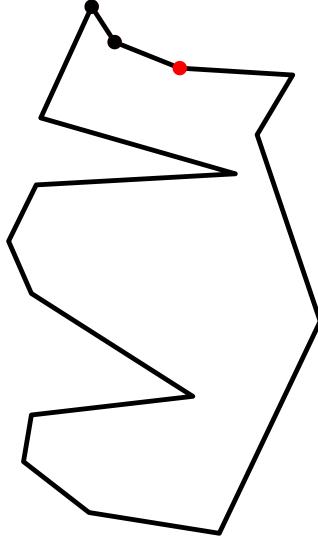
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



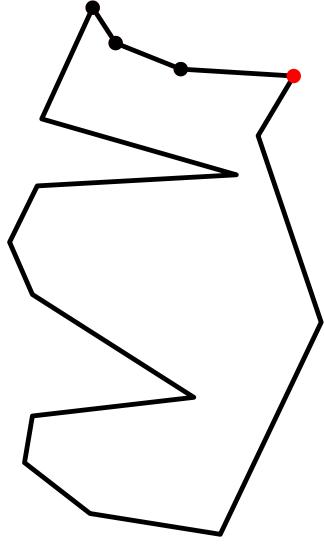
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



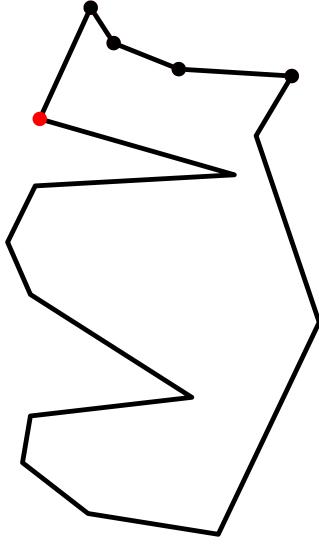
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



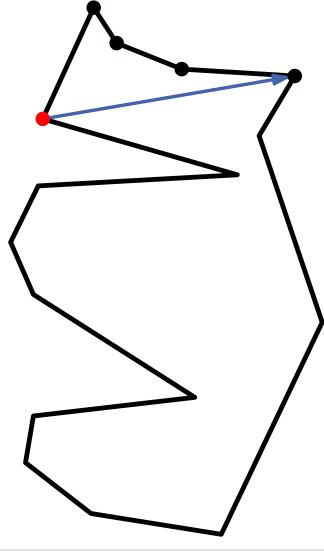
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



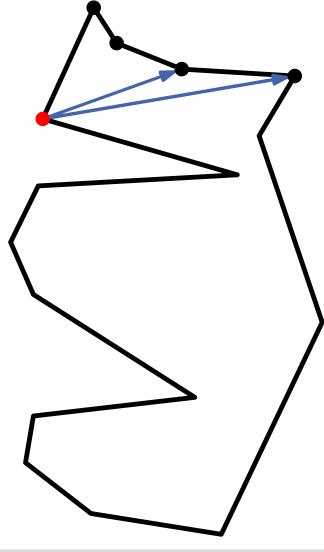
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



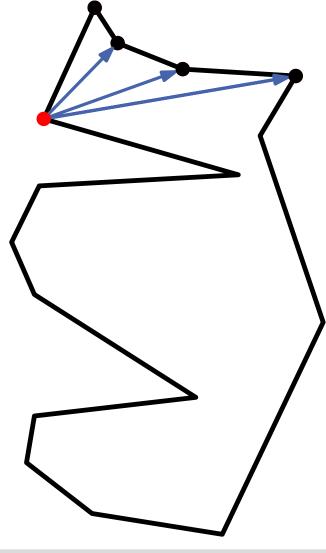
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



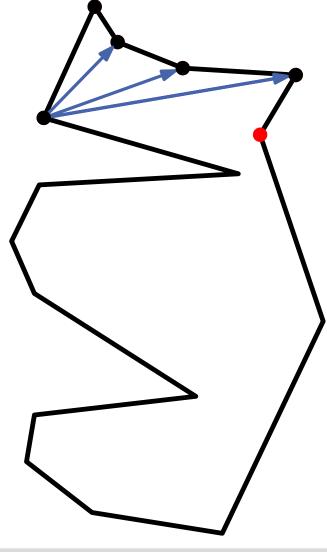
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



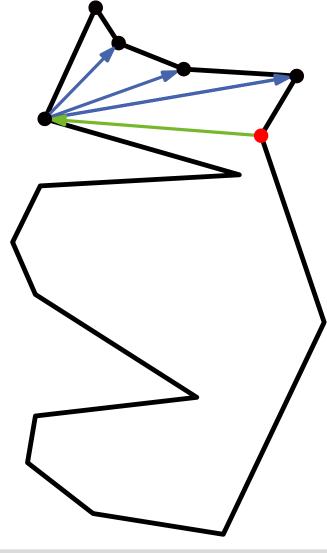
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



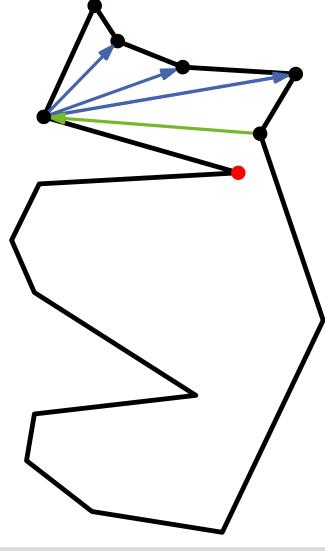
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



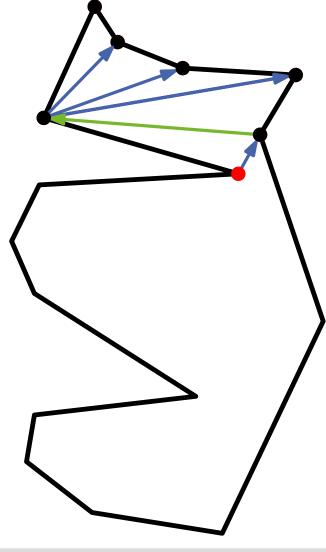
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



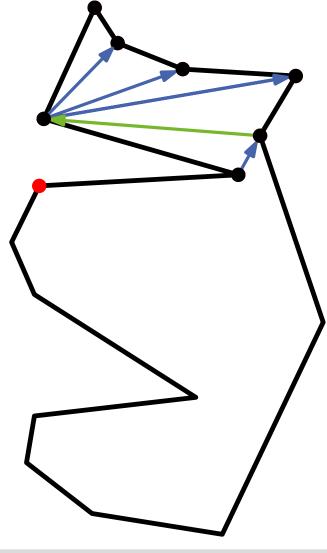
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



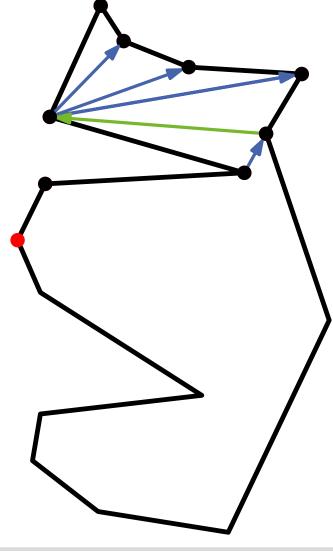
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



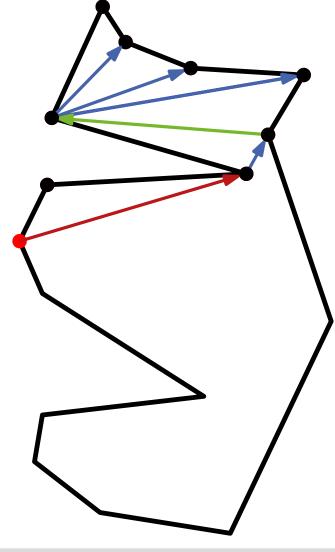
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



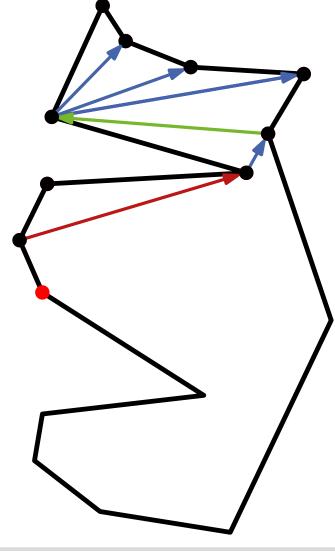
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



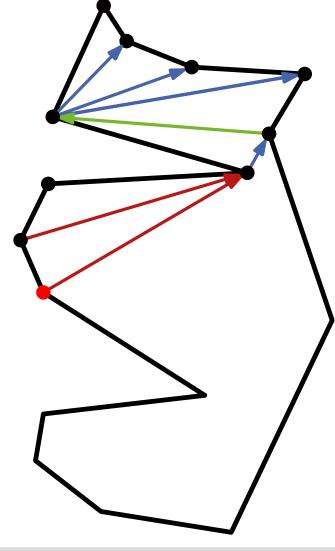
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



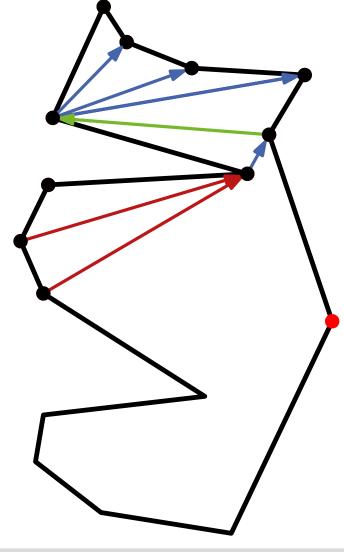
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



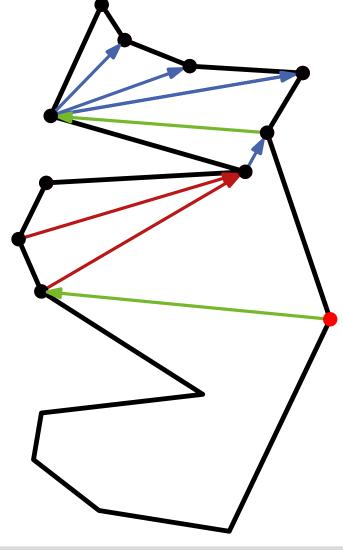
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



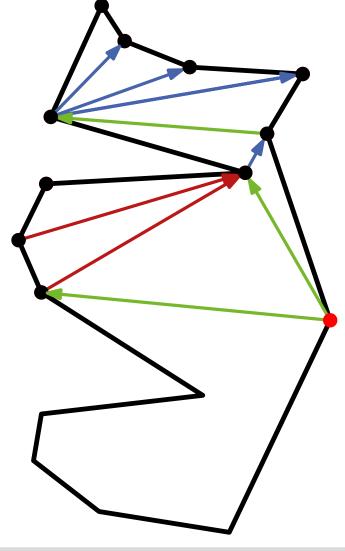
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



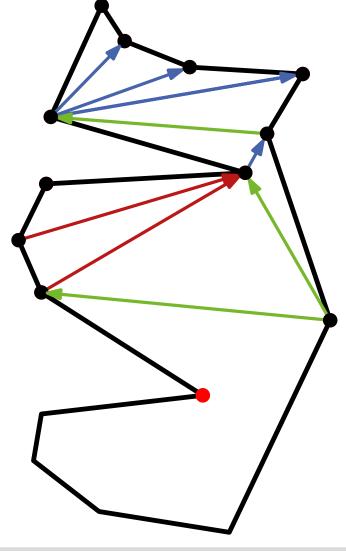
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



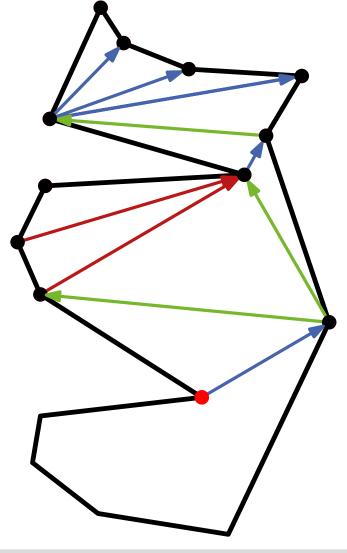
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



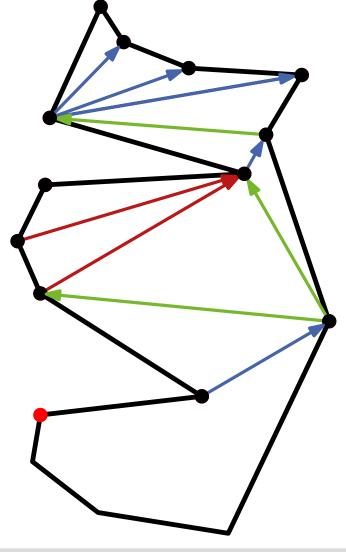
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



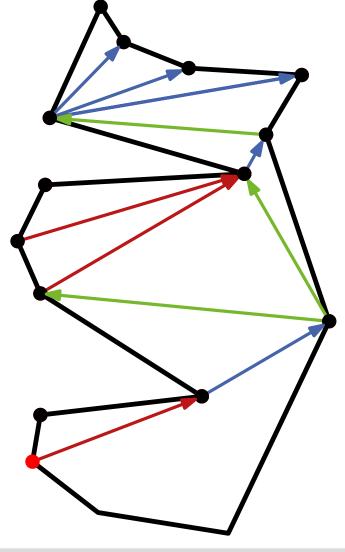
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



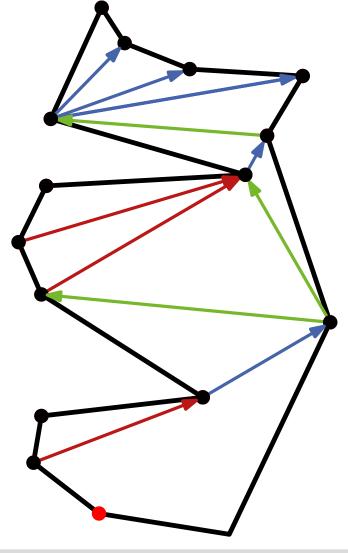
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



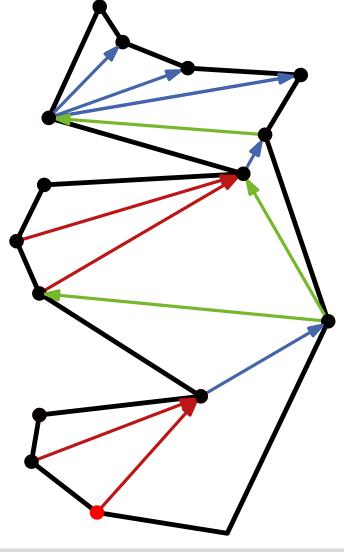
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



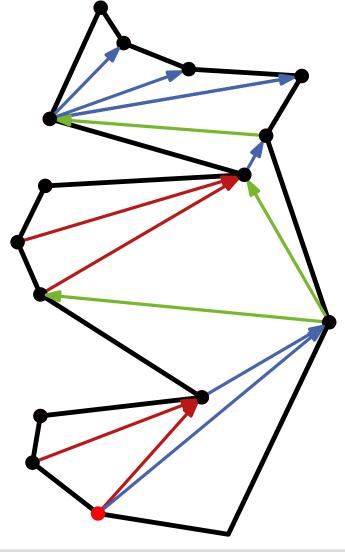
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



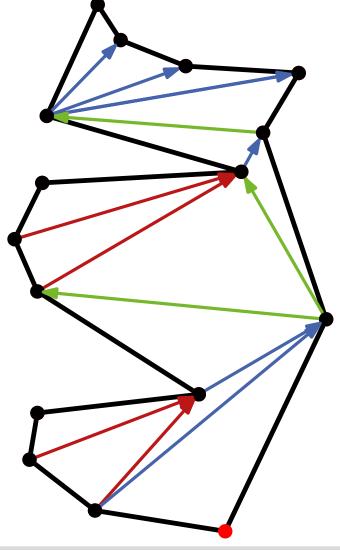
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

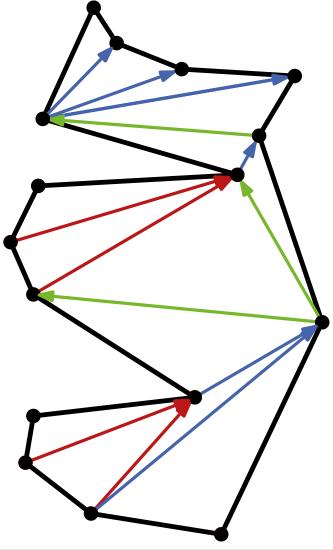


Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates



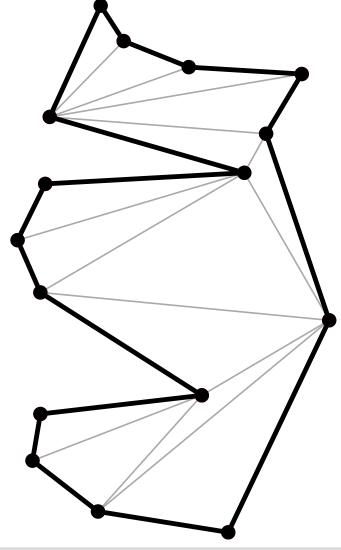
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



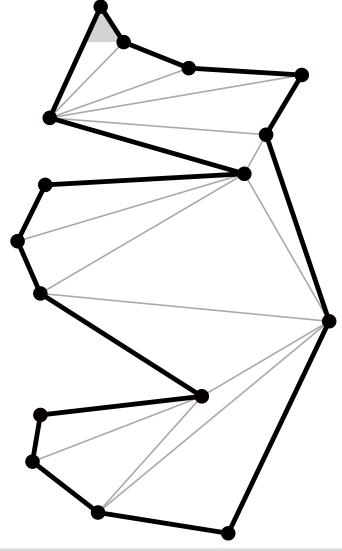
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



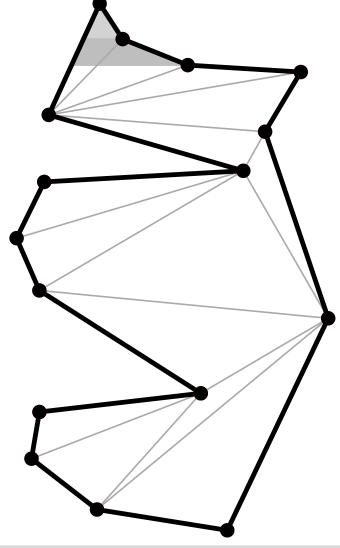
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



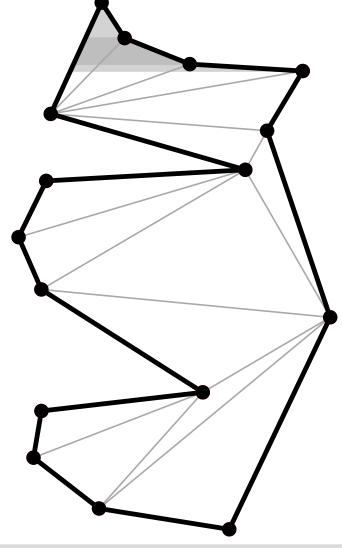
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



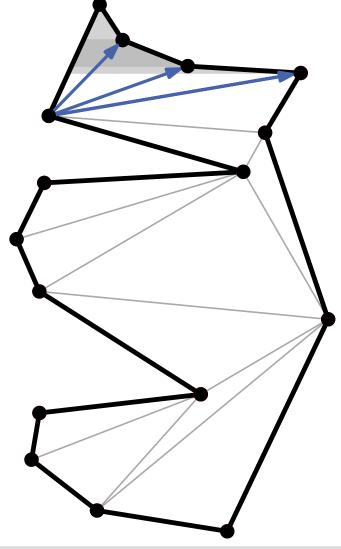
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



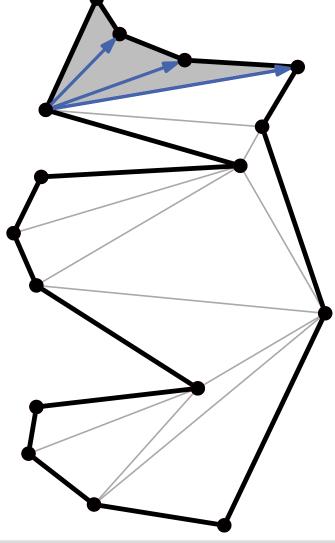
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



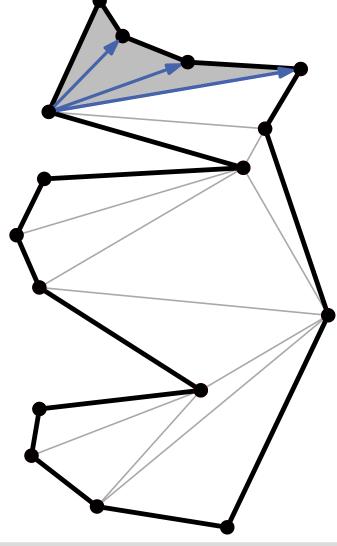
Invariant?

The already visited but not triangulated polygon has the shape of a *funnel*

(trichter).

Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates

Approach: Greedy, top down traversal of both sides



Invariant?

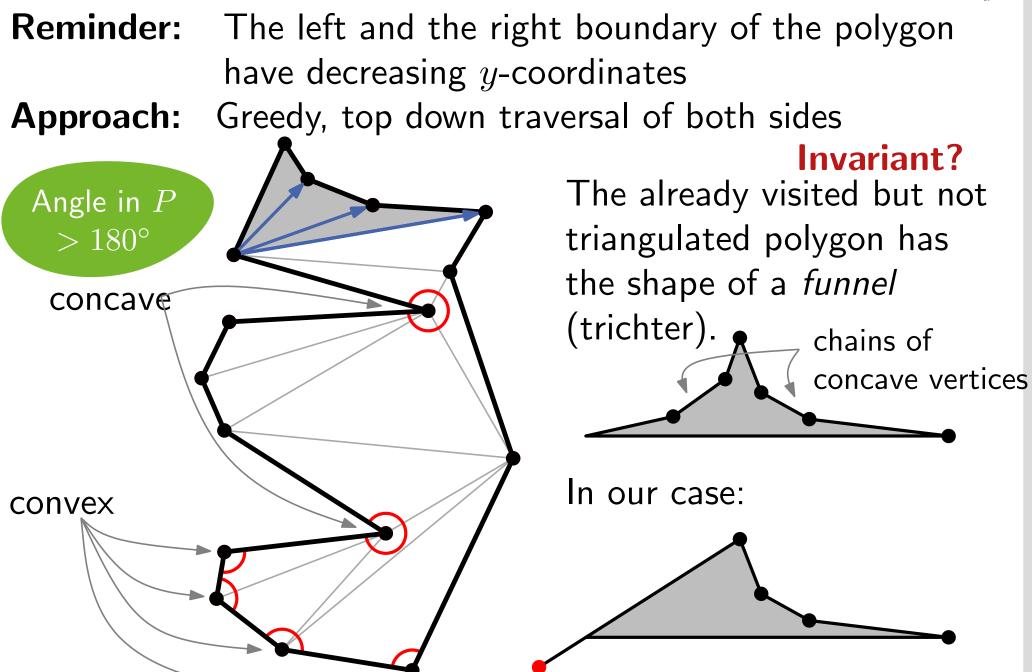
The already visited but not triangulated polygon has the shape of a *funnel* (trichter).

chains of

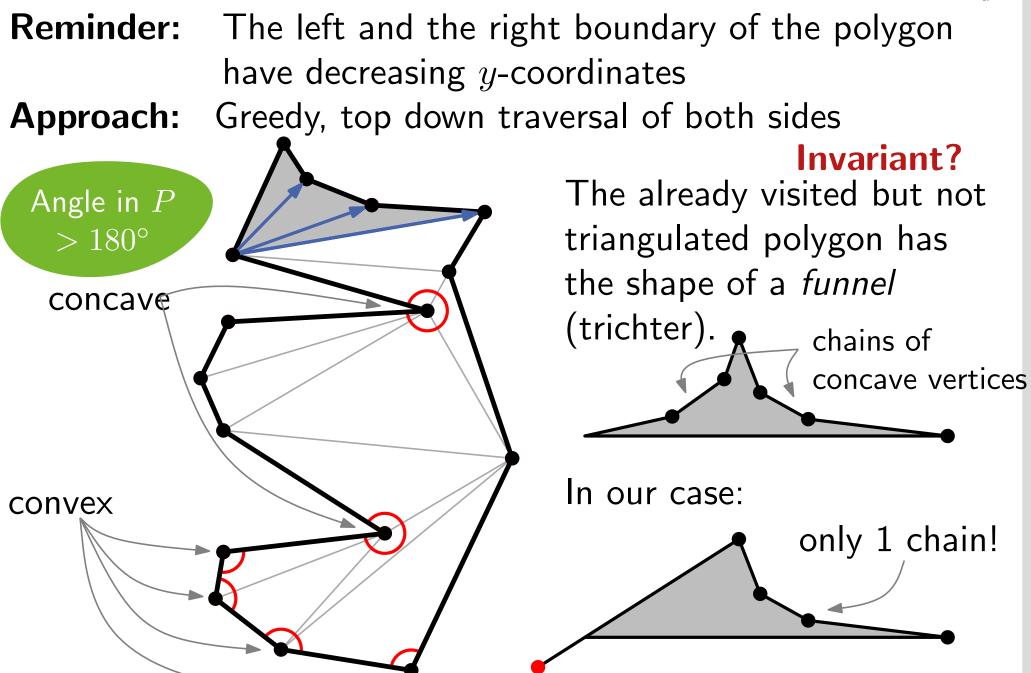
concave vertices

Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates Greedy, top down traversal of both sides **Approach**: Invariant? The already visited but not Angle in Ptriangulated polygon has $> 180^{\circ}$ the shape of a *funnel* concave (trichter). chains of concave vertices

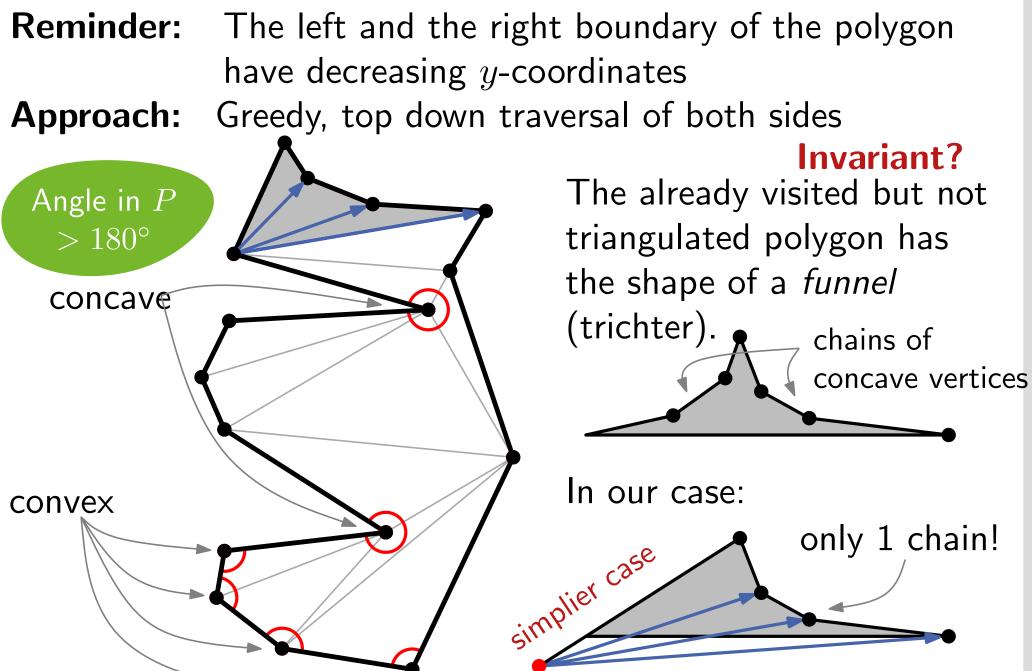
Reminder: The left and the right boundary of the polygon have decreasing *y*-coordinates Greedy, top down traversal of both sides **Approach**: Invariant? The already visited but not Angle in Ptriangulated polygon has $> 180^{\circ}$ the shape of a *funnel* concave (trichter). chains of concave vertices convex



13 Dr. Tamara Mchedlidze- Dr. Darren Strash- Computational Geometry Lecture



13 Dr. Tamara Mchedlidze- Dr. Darren Strash- Computational Geometry Lecture



13 Dr. Tamara Mchedlidze- Dr. Darren Strash- Computational Geometry Lecture

Algorithm TriangulateMonotonePolygon

TriangulateMonotonePolygon(Polygon P as doubly-connected list of edges)

Merge vertices on left and right chains into desc. seq. $\rightarrow u_1, \ldots, u_n$


```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)
for j \leftarrow 3 to n-1 do
if u_j and S.\text{top}() from different paths then
while not S.\text{empty}() do
v \leftarrow S.\text{pop}()
if not S.\text{empty}() then draw (u_j, v)
S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n

Stack S \leftarrow \emptyset; S.\text{push}(u_1); S.\text{push}(u_2)

for j \leftarrow 3 to n-1 do

if u_j and S.\text{top}() from different paths then

while not S.\text{empty}() do

v \leftarrow S.\text{pop}()

if not S.\text{empty}() then draw (u_j, v)

S.\text{push}(u_{j-1}); S.\text{push}(u_j)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u ,
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_i, v)
        S.push(u_{j-1}); S.push(u_j)
                                                            u
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
            v \leftarrow S.pop()
                                                                               S.top()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_j sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
                                                                             S.top(
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                 u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{i-1}); S.push(u_i)
                                                            u .
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
             v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
```

TriangulateMonotonePolygon(Polygon P as doubly-connected list of edges)

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
            v \leftarrow S.pop()
                                                                                u_{i-}
            if not S.empty() then draw (u_j, v)
        S.push(u_{j-1}); S.push(u_i)
                                                           u
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
            v \leftarrow S.pop()
            draw diagonal (u_i, v)
        S.push(v); S.push(u_i)
Connect u_n to all the vertices in S (except for the first and the last)
```

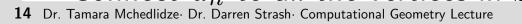
Polygon Triangulation

14 Dr. Tamara Mchedlidze Dr. Darren Strash Computational Geometry Lecture

TriangulateMonotonePolygon(Polygon P as doubly-connected list of edges)

```
Merge vertices on left and right chains into desc. seq. \rightarrow u_1, \ldots, u_n
Stack S \leftarrow \emptyset; S.push(u_1); S.push(u_2)
for j \leftarrow 3 to n-1 do
    if u_i and S.top() from different paths then
        while not S.empty() do
           v \leftarrow S.pop()
if not S.empty() then draw (u_j, v)
                                                            Task:
                                                            What is the running
        S.push(u_{i-1}); S.push(u_i)
                                                            time?
    else
        v \leftarrow S.pop()
        while not S.empty() and u_i sees S.top() do
            v \leftarrow S.pop()
         draw diagonal (u_j, v)
        S.push(v); S.push(u_i)
Connect u_n to all the vertices in S (except for the first and the last)
```

Polygon Triangulation



Summary

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Summary

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

Summary

 \downarrow

Theorem 4: A y-monotone polygon with n vertices can be triangulated in O(n) time.

Theorem 3: A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n \log n)$ time and O(n) space.

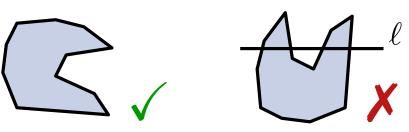
Theorem 5: A simple polygon with n vertices can be triangulated in $O(n \log n)$ time and O(n) space.

Proof of Art-Gallery-Theorem: Overview

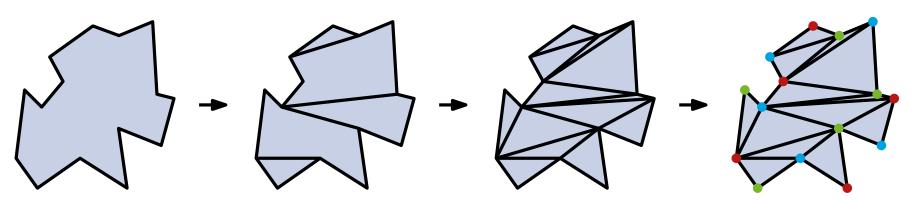
Three-step procedure:

• Step 1: Decompose *P* in *y*-monotone polygons

Definition: A polygon P is y-monotone, if for each horizontal line ℓ the intersection $\ell \cap P$ is connected.



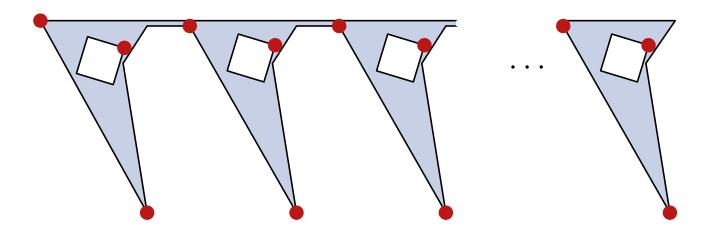
- Step 2: Triangulate *y*-monotone polygons
- Step 3: use DFS to color the triangulated polygon



Can the triangulation algorithm be expanded to work with polygons with holes?

Can the triangulation algorithm be expanded to work with polygons with holes?

- Triangulation: yes
- But are \[n/3] cameras still sufficient to guard it? No, a generalization of Art-Gallery-Theorems says that \[(n+h)/3] cameras are sometimes necessary, and always sufficient, where h is the number of holes. [Hoffmann et al., 1991]



Can the triangulation algorithm be expanded to work with polygons with holes?

- Triangulation: yes
- But are $\lfloor n/3 \rfloor$ cameras still sufficient to guard it? No, a generalization of Art-Gallery-Theorems says that $\lfloor (n+h)/3 \rfloor$ cameras are sometimes necessary, and always sufficient, where h is the number of holes. [Hoffmann et al., 1991]

Can we solve the triangulation problem faster for simple polygons?

Can the triangulation algorithm be expanded to work with polygons with holes?

- Triangulation: yes
- But are $\lfloor n/3 \rfloor$ cameras still sufficient to guard it? No, a generalization of Art-Gallery-Theorems says that $\lfloor (n+h)/3 \rfloor$ cameras are sometimes necessary, and always sufficient, where h is the number of holes. [Hoffmann et al., 1991]

Can we solve the triangulation problem faster for simple polygons?

Yes. The question whether it is possible was open for more than a decade. In the end of 80's a faster randomized algorithm was given, and in 1990 Chazelle presented a deterministic linear-time algorithm (complicated).