

Algorithmen für Routenplanung

3. Vorlesung, Sommersemester 2017 Moritz Baum I 10. Mai 2017

INSTITUT FÜR THEORETISCHE INFORMATIK · ALGORITHMIK · PROF. DR. DOROTHEA WAGNER

Kürzeste Wege in Straßennetzwerken

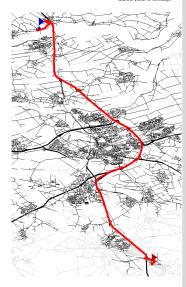
Beschleunigungstechniken

- A*
- ALT
- CALT

Beschleunigungstechniken

Beobachtung:

- Viele Anfragen in (statischem) Netzwerk
- "Unnötige" Berechnungen



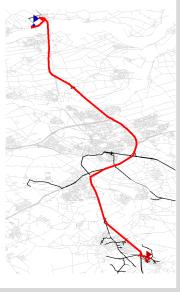
Beschleunigungstechniken

Beobachtung:

- Viele Anfragen in (statischem) Netzwerk
- "Unnötige" Berechnungen

Idee:

- Zwei Phasen
 - Offline: Generiere Zusatzinformation in Vorberechnung
 - Online: Beschleunige Anfrage mit dieser Information
- Drei Kriterien: Vorberechnungsplatz, Vorberechnungszeit, Beschleunigung



Ideensammlung

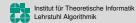
Wie Suche zielgerichtet machen?

Ideensammlung

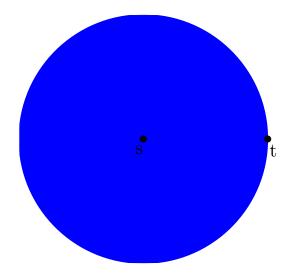
Wie Suche zielgerichtet machen?

- Reihenfolge in der Knoten besucht werden ändern
- Nichtbeachten von Kanten, die in die "falsche" Richtung führen

Jetzt: ersteres



Schematischer Suchraum



Schematischer Suchraum

ALT

Dijkstra's Algorithmus

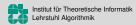
 benutzt d[v], um zu entscheiden, welcher Knoten als n\u00e4chstes abgearbeitet wird

A*

auch zielgerichtete Suche (goal-directed search) genannt

Idee:

- Benutze Potential $\pi_t: V \to \mathbb{R}$
- $\pi_t(v)$ ist ein Schätzwert für Entfernung d(v,t) zum Ziel t
- Benutze $d[v] + \pi_t(v)$ als Key in Q
- ⇒ Knoten mit geschätzt geringerer Entfernung zu t zuerst besucht



Pseudocode A*


```
A^*(G = (V, E), s, t)
1 d[s] = 0
2 Q.clear(), Q.add(s, \pi_t(s))
3 while !Q.empty() do
      u \leftarrow Q.deleteMin()
      break if u = t
      forall the edges e = (u, v) \in E do
          if d[u] + len(e) < d[v] then
               d[v] \leftarrow d[u] + \operatorname{len}(e)
               if v \in Q then Q.decreaseKey(v, \frac{d[v] + \pi_t(v)}{d[v]})
               else Q.insert(v, d[v] + \pi_t(v))
```

5

6

7

8

9 10

11

Frage

Können beliebige Potentialfunktionen benutzt werden?

- (Fast) beliebige Abarbeitungsreihenfolgen lassen sich erzeugen
- Dies kann offensichtlich zu falschen Ergebnissen führen. Warum sonst benutzen wir überhaupt Dijkstra und nicht Breitensuche?

Wie kommen wir also zu zulässigen Potentialfunktionen?

 \mathbf{A}^* auf Graph G = (V, E, len), Knoten $s, t \in V$, mit Potential π_t

A* auf Graph G = (V, E, len), Knoten $s, t \in V$, mit Potential π_t

Dijkstra auf $\overline{G} = (V, E, \overline{\text{len}})$ mit $\overline{\text{len}}(u, v) = \text{len}(u, v) - \pi_t(u) + \pi_t(v)$

A* auf Graph G = (V, E, len), Knoten $s, t \in V$, mit Potential π_t

Dijkstra auf $\overline{G} = (V, E, \overline{\text{len}})$ mit $\overline{\text{len}}(u, v) = \text{len}(u, v) - \pi_t(u) + \pi_t(v)$

Beweis: Folgt direkt aus Pseudocode

A* auf Graph G = (V, E, len), Knoten $s, t \in V$, mit Potential π_t

Dijkstra auf $\overline{G} = (V, E, \overline{\text{len}})$ mit $\overline{\text{len}}(u, v) = \text{len}(u, v) - \pi_t(u) + \pi_t(v)$

Beweis: Folgt direkt aus Pseudocode

Zulässiges Potential (feasible potential)

Eine Potentialfunktion $\pi_t: V \to \mathbb{R}$ heißt *zulässig*, falls len $(u, v) - \pi_t(u) + \pi_t(v) \ge 0$ für alle Kanten $(u, v) \in E$.

 \mathbf{A}^* auf Graph G = (V, E, len), Knoten $s, t \in V$, mit Potential π_t

Dijkstra auf $\overline{G} = (V, E, \overline{\text{len}})$ mit $\overline{\text{len}}(u, v) = \text{len}(u, v) - \pi_t(u) + \pi_t(v)$

Beweis: Folgt direkt aus Pseudocode

Zulässiges Potential (feasible potential)

Eine Potentialfunktion $\pi_t: V \to \mathbb{R}$ heißt *zulässig*, falls len $(u, v) - \pi_t(u) + \pi_t(v) \ge 0$ für alle Kanten $(u, v) \in E$.

Es gilt für jeden Pfad $P = (s = v_1, \dots, v_k = t)$

$$\overline{\text{len}}(P) = \sum_{i=1}^{k} \overline{\text{len}}(v_{i}, v_{i+1}) = \sum_{i=1}^{k} (\text{len}(v_{i}, v_{i+1}) - \pi_{t}(v_{i}) + \pi_{t}(v_{i+1}))$$

$$= \left(\sum_{i=1}^{k} \text{len}(v_{i}, v_{i+1})\right) - \pi_{t}(v_{1}) + \pi_{t}(v_{k})$$

$$= \text{len}(P) - \pi_{t}(s) + \pi_{t}(t).$$

Ein Beispiel - Euklidische Ebene

- Knoten sind Punkte in der (euklidischen) Ebene
- Kantenlängen sind euklidische Abstände (d.h. $len(u, v) = ||u v||_2$).
- $\pi_t(v) = \|v t\|_2$

Ein Beispiel - Euklidische Ebene

- Knoten sind Punkte in der (euklidischen) Ebene
- Kantenlängen sind euklidische Abstände (d.h. $len(u, v) = ||u v||_2$).
- $\pi_t(v) = ||v t||_2$

 π_t ist zulässiges Potential, denn

$$\mathsf{len}(u,v) - \pi_t(u) + \pi_t(v) = \|u - v\|_2 - \|u - t\|_2 + \|v - t\|_2 \ge 0$$

wegen Dreiecksungleichung (△-UGL)

$$||u-v||_2 + ||v-t||_2 \ge ||u-t||_2$$

Ein Beispiel II

Idee:

- Knoten besitzen Geokoordinaten
- Kanten besitzen Fahrtgeschwindigkeiten
- lacktriangle es gibt eine Maximalgeschwindigkeit $v_{ ext{max}}$ in G
- nimm $\|u-t\|_2/v_{\text{max}}$ als Potential

Ein Beispiel II

Idee:

- Knoten besitzen Geokoordinaten
- Kanten besitzen Fahrtgeschwindigkeiten
- lacktriangle es gibt eine Maximalgeschwindigkeit v_{\max} in G
- nimm $||u t||_2/v_{\text{max}}$ als Potential

Ist zulässiges Potential, denn

$$\operatorname{len}(u,v) - \pi_t(u) + \pi_t(v) = \frac{\|u - v\|_2}{v_{(u,v)}} - \frac{\|u - t\|_2}{v_{\max}} + \frac{\|v - t\|_2}{v_{\max}} \ge 0$$

Ein Beispiel II

Idee:

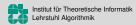
- Knoten besitzen Geokoordinaten
- Kanten besitzen Fahrtgeschwindigkeiten
- lacktriangle es gibt eine Maximalgeschwindigkeit v_{\max} in G
- nimm $||u t||_2/v_{\text{max}}$ als Potential

Ist zulässiges Potential, denn

$$\operatorname{len}(u,v) - \pi_t(u) + \pi_t(v) = \frac{\|u - v\|_2}{v_{(u,v)}} - \frac{\|u - t\|_2}{v_{\max}} + \frac{\|v - t\|_2}{v_{\max}} \ge 0$$

Probleme (bei Straßengraphen):

- Overhead zur Berechnung des Potentials $||u t||_2/v_{max}$
- Schlechte untere Schranke an die tatsächliche Reisezeit
- deswegen praktisch keine Beschleunigung in Transportnetzen



Zulässige Potentiale – Eigenschaften

- Intuition: $\pi_t(v)$ ist ein Schätzwert für d(v,t)
- Falls π_t zulässig und $\pi_t(t) = 0$, so ist das Potential $\pi_t(v)$ eine untere Schranke für d(v, t).
- Bessere untere Schranken ergeben kleinere Suchräume
- Ist π_t(v) = d(v,t) für alle v ∈ V, so werden nur Knoten auf kürzesten s-t-Wegen abgearbeitet.

Kombinierbarkeit von Potentialen

Kombinierbarkeit von Potentialen

Seien π_1 und π_2 zulässige Potentiale. Dann ist $p = \max\{\pi_1, \pi_2\}$ (komponentenweises Maximum) auch ein zulässiges Potential.

Kombinierbarkeit von Potentialen

Kombinierbarkeit von Potentialen

Seien π_1 und π_2 zulässige Potentiale. Dann ist $p = \max\{\pi_1, \pi_2\}$ (komponentenweises Maximum) auch ein zulässiges Potential.

Herleitung

$$len(u, v) - \pi_t^1(u) + \pi_t^1(v) \ge 0$$

 $len(u, v) - \pi_t^2(u) + \pi_t^2(v) \ge 0$

$$len(u, v) - \pi_t^1(u) + \max\{\pi_t^1(v), \pi_t^2(v)\} \geq 0$$

$$len(u, v) - \pi_t^2(u) + \max\{\pi_t^1(v), \pi_t^2(v)\} \geq 0$$

$$len(u, v) - max\{\pi_t^1(u), \pi_t^2(u)\} + max\{\pi_t^1(v), \pi_t^2(v)\} \ge 0$$

Dreiecksungleichung für Graphen

Für alle Knoten $s, u, t \in V$ gilt

$$d(s, u) + d(u, t) \ge d(s, t)$$

Beweis: d(s, t) laut Definition kürzeste-Weg-Distanz. Weg über u muss also mindestens genauso lang sein.

Der ALT-Algorithmus

- Der ALT-Algorithmus ist A* mit einer speziellen vorberechneten Potentialfunktion
- ALT steht f
 ür A*, landmarks, triangle-inequality

Vorberechnung

- Dazu wird eine kleine Menge L (≈ 16) an Knoten ausgewählt (Landmarken)
- Für jede Landmarke ℓ und jeden Knoten v ∈ V werden die Distanzen d(v, ℓ) und d(ℓ, v) vorberechnet (da Graph gerichtet)

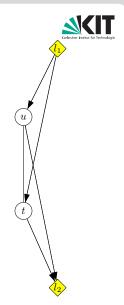
△-UGL

$$d(s,u) + d(u,t) \geq d(s,t)$$

also gilt im Beispiel für ℓ_1, ℓ_2 :

$$d(\ell_1, u) + d(u, t) \geq d(\ell_1, t)$$

$$d(u, t) + d(t, \ell_2) \geq d(u, \ell_2)$$



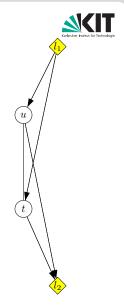
△-UGL

$$d(s, u) + d(u, t) \geq d(s, t)$$

also gilt im Beispiel für ℓ_1, ℓ_2 :

$$d(u,t) \geq d(\ell_1,t) - d(\ell_1,u)$$

$$d(u,t) \geq d(u,\ell_2) - d(t,\ell_2)$$



△-UGL

$$d(s, u) + d(u, t) \ge d(s, t)$$

also gilt im Beispiel für ℓ_1, ℓ_2 :

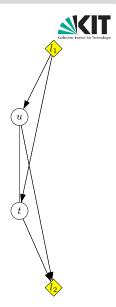
$$d(u,t) \geq d(\ell_1,t) - d(\ell_1,u)$$

$$d(u,t) \geq d(u,\ell_2) - d(t,\ell_2)$$

Benutze für alle Knoten $u, t, \ell \in V$ die Potentiale

$$\pi_t^+(u) = d(\ell, t) - d(\ell, u) \leq d(u, t)$$

$$\pi_t^-(u) = d(u, \ell) - d(t, \ell) \leq d(u, t)$$



Satz

Die Potentiale

$$\pi_t^{\ell+}(u) = d(\ell, t) - d(\ell, u)$$

$$\pi_t^{\ell-}(u) = d(u, \ell) - d(t, \ell)$$

sind zulässig für jede Landmarke $\ell \in L$.

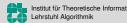
Beweis: Mit △-UGL für Graphen.

Korollar

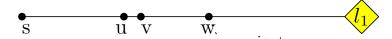
Für eine Menge L von Landmarken ist das Potential

$$\pi_t^L(u) = \max_{\ell \in L} \{ \max\{ \pi_t^{\ell+}(u), \pi_t^{\ell-}(u) \} \}$$

zulässig.



Eigenschaften Landmarken

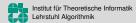


Was sind gute Landmarken?

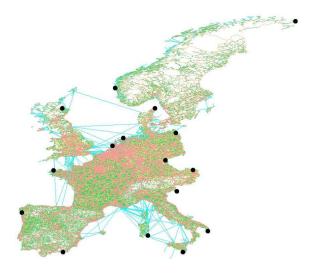
- $\bullet \ \pi_t^{\ell_1-}(u) = d(u,\ell_1) d(t,\ell_1), \ \pi_t^{\ell_1-}(v) = d(v,\ell_1) d(t,\ell_1)$
- also $len_{\pi}(u, v) = len(u, v) d(u, \ell_1) + d(v, \ell_1) = 0$
- ⇒ gemeinsame Kanten (kürzester Weg und Weg zur Landmarke) haben reduzierte Kosten von 0

Also:

- "gute" Landmarken überdecken viele Kanten für viele s, t-Paare
- trifft unter anderem zu, wenn "hinter" vielen Knoten
- am Rand des Graphen



Beispiel gute Landmarken



Berechnung Landmarken

mehrere Ansätze:

• brute force: teste alle Knotenteilmengen der Größe |L|:

$$\mathcal{O}(n^{|L|} \cdot \underbrace{n(m+n\log n)}_{\text{all pair shortest path}})$$

- + höchste Beschleunigung
- zu lange Vorberechnung

Berechnung Landmarken

mehrere Ansätze:

■ brute force: teste alle Knotenteilmengen der Größe |*L*|:

$$\mathcal{O}(n^{|L|} \cdot \underbrace{n(m + n \log n)}_{\text{all pair shortest path}})$$

- + höchste Beschleunigung
- zu lange Vorberechnung
- wähle zufällig
 - + schnellste Vorberechnung
 - schlechte Beschleunigung

Berechnung Landmarken

mehrere Ansätze:

■ brute force: teste alle Knotenteilmengen der Größe |*L*|:

$$\mathcal{O}(n^{|L|} \cdot \underbrace{n(m+n\log n)})$$

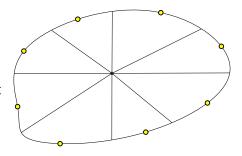
all pair shortest path

- + höchste Beschleunigung
- zu lange Vorberechnung
- wähle zufällig
 - + schnellste Vorberechnung
 - schlechte Beschleunigung
- mehrere Heuristiken, die versuchen den Rand zu finden
 - planar
 - farthest
 - avoid
 - lokale Optimierung (maxCover)

Planar-Landmarken

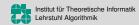
Vorgehen:

- suche Mittelpunkt c des Graphen
- teile Graphen in *k* Teile
- in jedem Teil wähle Knoten mit maximalen Abstand zu c als Landmarke



Anmerkungen:

- (benötigt planare Einbettung)
- liefert erstaunlich schlechte Ergebnisse



Farthest-Landmarken


```
Farthest-Landmarks(G,k)

1 L \leftarrow \emptyset

2 while |L| < k do

3 | if |L| = 0 then DIJKSTRA (G, RANDOMNODE)

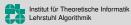
4 | else DIJKSTRA (G, L)

6 | u \leftarrow last settled node

8 | L \leftarrow L \cup \{u\}
```

Anmerkungen:

- Multi-Startknoten Dijkstra
- schlecht für kleine k
- erste Landmarke schlecht
- weitere Landmarken massiv abhängig von erster



Avoid-Landmarken

Idee:

 Identifiziere rekursiv Teile des Graphen, für die die bisherigen Landmarken L keine guten Schranken liefern

Vorgehen:

- Berechne kürzeste-Wege-Baum T_r von (zufälligem) Knoten r
- Für jeden Knoten u: $weight(u) := d(r, u) \pi_u^L(r)$ Je größer das Gewicht desto schlechter die aktuelle Abschätzung für u
- Betrachte Teilbaum T_u:

$$size(u) := \begin{cases} 0 & L \cap T_u \neq \emptyset \\ \sum_{v \in T_u} weight(v) & sonst \end{cases}$$

- Summe der Gewichte des Teilbaums von u
- Sei w := arg max_{u∈T_r} size(u)
 Teilbaum T_w hat (von r aus betrachtet) keine Landmarke "hinter" sich und in Summe die schlechteste Abschätzung
- \blacksquare Traversiere T_w , folge jeweils dem Kind maximaler Größe
- das erreichte Blatt wird zu L hinzugefügt



Optimierung von Landmarken

Problem:

- konstruktive Heuristik
- anfangs gewählte Landmarken eventuell suboptimal

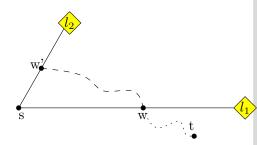
Idee:

- lokale Optimierung
- berechne mehr landmarken als nötig ($\approx 4k$)
- wähle beste durch Optimierungsfunktion, z.B.
 - 1 maximiere Anzahl überdeckter Kanten, d.h. $len(u, v) \pi(u) + \pi(v) = 0$
 - 2 maximiere $\pi(s)$ für 1 Mio. s-t Paare (simuliert Anfragen)
- Avoid + Funktion 1 wird maxCover genannt

Anfragen: Aktive Landmarken

Problem:

- Landmarken können Suche in die falsche Richtung ziehen
- Auswertung von vielen Landmarken erzeugt großen overhead



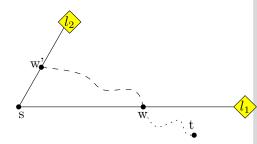
Lösung:

- wähle während Initialisierung eine Teilmenge von *L* als aktiv
- diese, für die $\pi_t^{\ell}(s)$ maximal sind
- Führe die Suche nur mit aktiven Landmarken aus

Anfragen: Aktive Landmarken

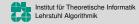
Problem:

- Landmarken können Suche in die falsche Richtung ziehen
- Auswertung von vielen Landmarken erzeugt großen overhead



Verbesserungen:

- Benutze Heuristik um w\u00e4hrend der Suche die Wahl der aktiven Landmarken anzupassen.
- Starte mit zwei Landmarken, füge während der Suche weitere hinzu.
- Schlechte Landmarken können auch wieder inaktiviert werden.



Der Suchraum von Dijkstra's Algorithmus

$$V(s,t) = \{v \in V \mid d(s,v) \leq d(s,t)\}$$

ist ein graphentheoretischer Kreis.

Der Suchraum von ALT ist (vgl. Pseudocode)

$$V^{L}(s,t) \subseteq \{v \in V \mid d(s,v) + \pi^{L}(v) \leq d(s,t)\}$$

mit Potentialen

$$\begin{array}{rcl} \pi_t^L(v) & = & \max_{\ell \in L} \{ \max\{\pi_t^{\ell+}(v), \pi_t^{\ell-}(v) \} \} \\ \\ \pi_t^{\ell+}(v) & = & d(\ell, t) - d(\ell, v) \\ \\ \pi_t^{\ell-}(v) & = & d(v, \ell) - d(t, \ell) \end{array}$$

Der Suchraum von ALT ist (vgl. Pseudocode)

$$V^{L}(s,t) \subseteq \{v \in V \mid d(s,v) + \pi^{L}(v) \leq d(s,t)\}$$

mit Potentialen

$$\begin{array}{rcl} \pi_t^L(v) & = & \max_{\ell \in L} \{ \max\{\pi_t^{\ell+}(v), \pi_t^{\ell-}(v) \} \} \\ \\ \pi_t^{\ell+}(v) & = & d(\ell, t) - d(\ell, v) \\ \\ \pi_t^{\ell-}(v) & = & d(v, \ell) - d(t, \ell) \end{array}$$

Wir betrachten jedes $\ell \in L$ einzeln, einsetzen oben:

$$V_{\ell^+}(s,t) = \{ v \in V \mid d(s,v) + \pi_t^{\ell^+}(v) \le d(s,t) \}$$

$$V_{\ell^{-}}(s,t) = \{ v \in V \mid d(s,v) + \pi_{t}^{\ell^{-}}(v) \leq d(s,t) \}$$

Der Suchraum von ALT ist (vgl. Pseudocode)

$$V^{L}(s,t) \subseteq \{v \in V \mid d(s,v) + \pi^{L}(v) \leq d(s,t)\}$$

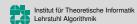
mit Potentialen

$$\begin{array}{rcl} \pi_t^L(v) & = & \max_{\ell \in L} \{ \max\{\pi_t^{\ell+}(v), \pi_t^{\ell-}(v) \} \} \\ \\ \pi_t^{\ell+}(v) & = & d(\ell, t) - d(\ell, v) \\ \\ \pi_t^{\ell-}(v) & = & d(v, \ell) - d(t, \ell) \end{array}$$

Wir betrachten jedes $\ell \in L$ einzeln, einsetzen oben:

$$V_{\ell^+}(s,t) = \{ v \in V \mid d(s,v) + d(\ell,t) - d(\ell,v) \le d(s,t) \}$$

$$V_{\ell^-}(s,t) = \{ v \in V \mid d(s,v) + d(v,\ell) - d(t,\ell) \le d(s,t) \}$$



Der Suchraum von ALT ist (vgl. Pseudocode)

$$V^{L}(s,t) \subseteq \{v \in V \mid d(s,v) + \pi^{L}(v) \leq d(s,t)\}$$

mit Potentialen

$$\begin{aligned} \pi_t^L(v) &= \max_{\ell \in L} \{ \max\{\pi_t^{\ell+}(v), \pi_t^{\ell-}(v) \} \} \\ \pi_t^{\ell+}(v) &= d(\ell, t) - d(\ell, v) \\ \pi_t^{\ell-}(v) &= d(v, \ell) - d(t, \ell) \end{aligned}$$

Wir betrachten jedes $\ell \in L$ einzeln, einsetzen oben:

$$V_{\ell^+}(s,t) = \{ v \in V \mid d(s,v) - d(\ell,v) \le d(s,t) - d(\ell,t) \}$$

$$V_{\ell^-}(s,t) = \{ v \in V \mid d(s,v) + d(v,\ell) \le d(s,t) + d(t,\ell) \}$$

$$V_{\ell^{-}}(s,t) = \{ v \in V \mid d(s,v) + d(v,\ell) \leq d(s,t) + d(t,\ell) \}$$

ist eine graphentheoretische Ellipse. (Mit Brennpunkten s und ℓ)

$$V_{\ell^{-}}(s,t) = \{ v \in V \mid d(s,v) + d(v,\ell) \leq d(s,t) + d(t,\ell) \}$$

ist eine graphentheoretische Ellipse. (Mit Brennpunkten s und ℓ)

$$V_{\ell^+}(s,t) = \{ v \in V \mid d(s,v) - d(\ell,v) \le d(s,t) - d(\ell,t) \}$$

ist eine graphentheoretische Hyperbel. (Mit Brennpunkten s und ℓ)

$$V_{\ell^{-}}(s,t) = \{ v \in V \mid d(s,v) + d(v,\ell) \le d(s,t) + d(t,\ell) \}$$

ist eine graphentheoretische Ellipse. (Mit Brennpunkten s und ℓ)

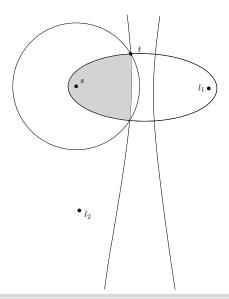
$$V_{\ell^+}(s,t) = \{ v \in V \mid d(s,v) - d(\ell,v) \le d(s,t) - d(\ell,t) \}$$

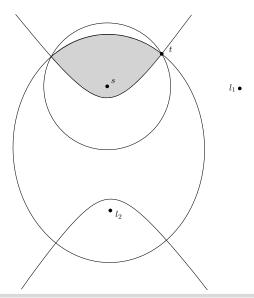
ist eine graphentheoretische Hyperbel. (Mit Brennpunkten s und ℓ)

Der Suchraum von ALT

$$V^{L}(s,t) \subseteq \{v \in V \mid d(s,v) + \pi^{L}(v) \leq d(s,t)\}$$

ist also die Schnittmenge aus den Ellipsen und Hyperbeln über alle Landmarken in L.

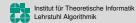






Zur Erinnerung Bidirektionaler Dijkstra:

- alternierende/parallele Vorwärts- und Rückwärtssuche
- Vorwärts- \overrightarrow{Q} und Rückwärtsqueue \overleftarrow{Q}
- lacktriangle Tentative Distanz μ
- Abbruchkriterium: $\mu \leq minKey(\overrightarrow{Q}) + minKey(\overleftarrow{Q})$?



Erster Ansatz:

lacksquare benutze Vorwärtspot. π_f und Rückwärtspot. π_b

$$\pi_{f}(u) = \max_{\ell \in L} \{ \max\{d(\ell, t) - d(\ell, u), d(u, \ell) - d(t, \ell)\} \}$$

$$\pi_{b}(u) = \max_{\ell \in L} \{ \max\{d(\ell, u) - d(\ell, s), d(s, \ell) - d(u, \ell)\} \}$$

Erster Ansatz:

• benutze Vorwärtspot. π_f und Rückwärtspot. π_b

$$\pi_{f}(u) = \max_{\ell \in L} \{ \max\{d(\ell, t) - d(\ell, u), d(u, \ell) - d(t, \ell)\} \}$$

$$\pi_{b}(u) = \max_{\ell \in L} \{ \max\{d(\ell, u) - d(\ell, s), d(s, \ell) - d(u, \ell)\} \}$$

Problem:

Erster Ansatz:

• benutze Vorwärtspot. π_f und Rückwärtspot. π_b

$$\pi_{f}(u) = \max_{\ell \in L} \{ \max\{d(\ell, t) - d(\ell, u), d(u, \ell) - d(t, \ell)\} \}$$

$$\pi_{b}(u) = \max_{\ell \in L} \{ \max\{d(\ell, u) - d(\ell, s), d(s, \ell) - d(u, \ell)\} \}$$

Problem:

- Suchen operieren auf unterschiedlichen Längenfunktionen
- ⇒ Abbruchkriterium Bidirektionaler Dijkstra funktioniert nicht mehr
 - konservatives Abbruchkriterium: stoppe erst, wenn $\min Key(\overrightarrow{Q}) > \mu$ oder $\min Key(\overleftarrow{Q}) > \mu$

Zweiter Ansatz:

- Wann operieren Suchen auf dem gleichen Graphen?
- wenn reduzierte Kosten gleich:

 \Rightarrow Also muss gelten: $\pi_b + \pi_f \equiv \text{const.}$

Idee:

• Kombiniere π_f und π_b zu $p_f + p_b \equiv 0$:

$$p_f = \frac{\pi_f - \pi_b}{2}$$
 $p_b = \frac{\pi_b - \pi_f}{2} = -p_f$

Somit

- wie bidirektionaler Dijkstra
- aber mit $d(s, u) + p_f(u)$ und $d(v, t) + p_b(v)$ als keys
- stoppe wenn $\textit{minKey}(\overrightarrow{Q}) + \textit{minKey}(\overleftarrow{Q}) > \mu_{p_f} = \mu + p_f(s) p_f(t)$
- dadurch bidirektional zielgerichtet

Experimente

Eingaben:

- Straßennetzwerke
 - Europa: 18 Mio. Knoten, 42 Mio. Kanten
 - USA: 22 Mio. Knoten, 56 Mio. Kanten

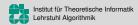
Evaluation:

- Vorberechnung in Minuten und zusätzliche Bytes pro Knoten
- durchschnittlicher Suchraum (# abgearbeitete Knoten) und Suchzeiten (in ms) von 10 000 Zufallsanfragen

Zufallsanfragen ALT

Vorberechnung: Bis 24 Landmarken maxCover, sonst avoid.

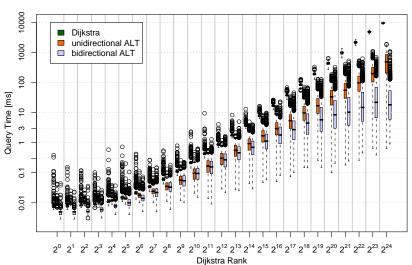
		PRE	PRO	QUERY	UNIDIR.		QUERY BIDIR.		
		time space		# settled	time	spd	# settled	time	spd
	algorithm	[min]	[B/n]	nodes	[ms]	up	nodes	[ms]	up
EUR	DIJKSTRA	0	0	9114385	5 591.6	1.0	4764110	2713.2	2.1
	ALT-4	12.1	32	1 289 070	469.1	11.9	355 442	254.1	22.0
	ALT-8	26.1	64	1 019 843	391.6	14.3	163 776	127.8	43.8
	ALT-16	85.1	128	815 639	327.6	17.1	74 669	53.6	104.3
	ALT-24	145.2	192	742 958	303.7	18.4	56 338	44.2	126.5
	ALT-32	27.1	256	683 566	301.4	18.6	40 945	29.4	190.2
	ALT-64	68.2	512	604 968	288.5	19.4	25 324	19.6	285.3
USA	DIJKSTRA	0	0	11 847 523	6 780.7	1.0	7 345 846	3 751.4	1.8
	ALT-8	44.5	64	922 897	329.8	20.6	328 140	219.6	30.9
	ALT-16	103.2	128	762390	308.6	22.0	180 804	129.3	52.4
	ALT-32	35.8	256	628 841	291.6	23.3	109 727	79.5	85.3
	ALT-64	92.9	512	520710	268.8	25.2	68 861	48.9	138.7

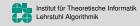


Beobachtungen

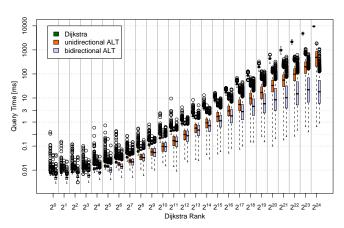
- bidirektionale Suche: Beschleunigung von 2
- unidirektionaler ALT: mehr als 16 Landmarken nicht sinnvoll
- bidirektionaler ALT: verdoppelung der Landmarken halbiert den Suchraum (ungefähr)
- lacktriangle 16 Landmarken: Beschleunigung pprox 100 für Europa
- lacksquare 64 Landmarken: Beschleunigung pprox 300 für Europa
- hoher Speicherverbrauch (Graph-DS: 424 MB, pro Landmarke: 144 MB, Europa)
- USA schlechter als Europa (Vermutung: schlechtere Hierarchie)

Dijkstra-Rank - Bidirektionale Suche





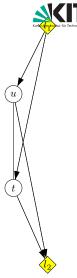
Dijkstra-Rank – Bidirektionale Suche



- Beschleunigung steigt mit Rang, gering für nahe Anfragen
- hohe Varianz, Ausreißer bis zu Faktor 100 langsamer als Median

Zusammenfassung ALT

- Zielgerichtet durch geänderte Reihenfolge, wie Knoten abgearbeitet werden
- lacktriangle wird erreicht durch hinzufügen eines Knotenpotentials π
- ▶ korrekt wenn len $(u, v) \pi(u) + \pi(v) \ge 0$ für alle Kanten
- Potentiale durch Landmarken
- kann bidirektional gemacht werden
- Beschleunigung von bis zu 300 gegenüber Dijkstra
- aber hoher Platzverbrauch (Reduktion später)
- hohe Varianz (manche Anfragen haben keine guten Landmarken)



CALT

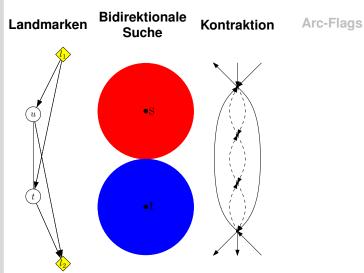
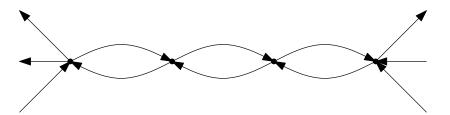
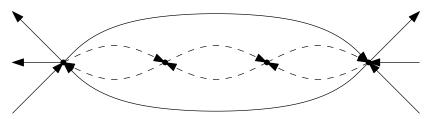


Table-Lookups

Wdh: Kontraktion



Wdh: Kontraktion



- Identifiziere "unwichtige" Knoten
- Menge "unwichtige" Knoten: Component, verbliebene: Core
- Füge Shortcuts zwischen Core-Knoten hinzu, um Distanz innerhalb Core zu erhalten
- Generelles Query-Framework: Betrachte ggfs. Component um s und t, nutze sonst nur Core und Shortcuts

Motivation:

- ALT ist robust gegenüber der Eingabe
- aber hoher Speicherverbrauch

Hauptidee:

berechne ALT nur auf kleinem Subgraphen

(Landmarken, bidirektionale Suche, Kontraktion)

Idee

begrenze Beschleunigungstechnik auf kleinen Subgraphen (Kern)

 $\mathbf{S} \bullet$

• t

Vorberechnung

- kontrahiere Graphen zu Kern
- Landmarken nur im Kern

(Landmarken, bidirektionale Suche, Kontraktion)

Idee

begrenze Beschleunigungstechnik auf kleinen Subgraphen (Kern)

Vorberechnung

- kontrahiere Graphen zu Kern
- Landmarken nur im Kern

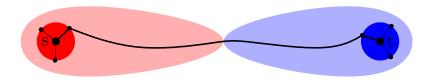
Anfrage

Initialphase: normaler Dijkstra

(Landmarken, bidirektionale Suche, Kontraktion)

Idee

begrenze Beschleunigungstechnik auf kleinen Subgraphen (Kern)



Vorberechnung

- kontrahiere Graphen zu Kern
- Landmarken nur im Kern

Anfrage

- Initialphase: normaler Dijkstra
- Im Kern: benutze Landmarken und Shortcuts(!)

Proxy Knoten

Problem:

- ALT braucht Potential von jedem Knoten zu t und s
- s und/oder t könnten außerhalb des Kerns liegen
- somit keine Abstandswerte von den Landmarken zu s und t

Proxy Knoten

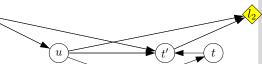
Problem:

- ALT braucht Potential von jedem Knoten zu t und s
- s und/oder t könnten außerhalb des Kerns liegen
- somit keine Abstandswerte von den Landmarken zu s und t

Lösung:

- bestimme Proxy-Knoten t' für t (s analog), t' im Kern
- neue Ungleichungen:

$$d(u,t) \geq d(u,l_2) - d(t',l_2) - d(t,t') d(u,t) \geq d(l_1,t') - d(l_1,u) - d(t,t')$$



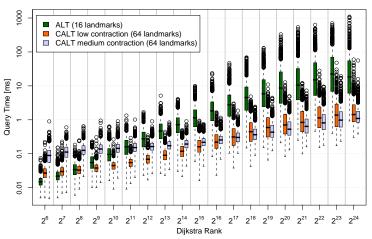
Einfluss Anzahl Landmarken

		no cont. ((c=0.0, h=0))	low cont. (<i>c</i> =1.0, <i>h</i> =20)				
	Prepro.		QUERY		Prepro.		QUERY		
	time space		#settled	time	time	space	#settled	time	
<i>L</i>	[min]	[B/n]	nodes	[ms]	[min]	[B/n]	nodes	[ms]	
8	26.1	64	163 776	127.8	7.1	10.9	12 529	10.25	
16	85.2	128	74 669	53.6	9.4	14.9	5 672	5.77	
32	27.1	256	40 945	29.4	6.8	23.0	3 268	2.97	
64	68.2	512	25 324	19.6	8.5	36.2	2 2 3 3	2.16	

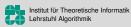
		med: <i>c</i> =	2.5, <i>h</i> =50		high: <i>c</i> =5.0, <i>h</i> =100				
	PREPRO.		QUERY		PREPRO.		QUERY		
	time	space	#settled	time	time	space	#settled	time	
L	[min]	[B/n]	nodes	[ms]	[min]	[B/n]	nodes	[ms]	
8	10.1	7.0	4 431	3.98	17.8	5.9	4 106	2.51	
16	11.0	8.2	2 456	2.33	18.3	6.5	3 500	2.23	
32	10.0	10.6	1 704	1.66	17.7	7.6	3 264	2.01	
64	10.5	15.4	1 394	1.34	18.0	9.8	3 1 2 6	1.67	

 $|L| \le$ 16: maxcover, $|L| \ge$ 32: avoid

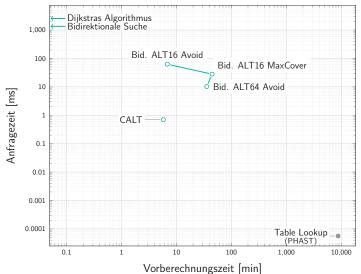
Dijkstra Rank ALT vs CALT



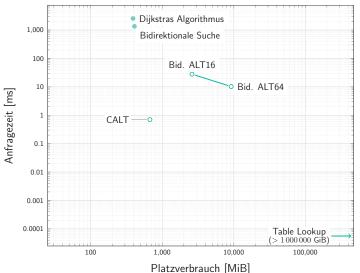
- Weit: CALT mehr als eine Größenordnung schneller als ALT, wobei kleinerer Kern ("medium contraction") besser
- Nah: je kleiner Kern, desto langsamer (da Initialphase unbeschl.)



Übersicht bisherige Techniken



Übersicht bisherige Techniken



Nächster Termin

Montag, 15.5.2016

Literatur I

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and Dorothea Wagner.

Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra's Algorithm.

ACM Journal of Experimental Algorithmics, 15(2.3):1–31, January 2010. Special Section devoted to WEA'08.

Andrew V. Goldberg and Chris Harrelson.

Computing the Shortest Path: A* Search Meets Graph Theory.

In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'05), pages 156–165. SIAM, 2005.

Andrew V. Goldberg and Renato F. Werneck.

Computing Point-to-Point Shortest Paths from External Memory.

In Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX'05), pages 26–40. SIAM, 2005.

