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Preface

Digital humanities is an area of research at the intersection of computing and the disciplines
of the humanities, e.g., history, philosophy, linguistics, literature, art, archaeology, music,
as well as cultural and social sciences. Multiple computer science fields have developed
computational methods that are successfully used in the humanities sciences. The goal of
the seminar Algorithmic Methods in the Humanities was to get a glimpse on the algorithms
that lie at the core of these computational methods. In particular the seminar considered
the topics of Visualization in the Humanities, Analysis of Textual Variation, Topic Labeling
and Topic Recognition. The seminar is the part of the Master’s program on Informatics at
KIT. It is an interdisciplinary seminar supervised by Institute of Theoretical Informatics
and Institute of Philosophy and was intended to the students from both Institutes. The aim
of the seminar was to involve the students in the scientific research. They learned how to
conduct literature research, identify, classify existing approaches and critically evaluate the
literature. They practiced in devising a presentation in the context of a scientific topic in a
way suitable for the audience. Finally they produced an extended written summary of the
methods that they had identified; and tried to do it in a structured way, complying with
the standards of scientific survey papers. This booklet is the collection of these summaries.
The seminar took place in the summer semester 2016 and had 10 participants. The booklet
contains the summaries of 7 participants from the Institute of Theoretical Informatics.
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2 Visualizations for Distant Reading – Map Representations of
Relational Data Sets

Sophie v. Schmettow

Abstract
In an age of big data and an abundance of electronic textual information one question is of
central importance: How to make huge quantities of information visually accessible while pre-
serving as much content and its underlying structural relationships as possible? How to do so
in an intuitive and even aesthetic way? This paper presents two applications designed to help
digital humanities scholars navigating through various types of large textual databases. First,
the Trading Consequences project which is concerned with worldwide commodity trading in the
19th century. Second, the Herodotus Space-Text-Imaging Archive, which supports an advanced
way of studying one of the world’s first historical narratives. Furthermore, two approaches to
data visualization are examined; on the one hand, proportional symbol maps used to display
statistical data linked to geographic locations and on the other hand, pseudo-geographic map
representations of graphs which use fictional countries to communicate proximity information in
an explicit manner.

2.1 Introduction
In recent decades, numbers and figures have pervaded more and more scientific disciplines.
As of late, the literary sciences seem to have been spared but this has changed with the
digitalization of whole libraries and full-text archives. Traditionally, literary scholars have
studied texts by Close Reading, defined as “A thorough interpretation of a text passage
by the determination of central themes and the analysis of their development” [6].
Franco Moretti is a professor of literature at Stanford University. In his book Graphs, Maps,
Trees: Abstract Models for Literary History [9] he points out an obvious problem in this
approach: “Knowing 200 novels is already difficult. Twenty thousand? How can we do
it, what does ‘knowledge’ mean, in this new scenario?” In the scope of this endeavor he
coined the term Distant Reading, referring to the process of reviewing large quantities of
text, dissolving the actual phrase structure and extracting important meta-aspects of texts.
According to [6] it is used to “Generating an abstract view by shifting from observing textual
content to visualizing global features of a single or of multiple text(s).” A recent article in the
Sunday paper Welt am Sonntag [11] discusses the works of Moretti in the Stanford Literary
Lab, Martin Grandjean at the University of Lausanne and Andrzej Kulig of the Institute
of Nuclear Physics of the Polish Academy of Sciences. The article calls Distant Reading
“The latest drug of literary science.” It further declares that, given that in the 19th century
in Britain alone about 50,000 novels have been published, literary science practically only
covers a very restricted part of its subject. Thus, a more wholesome literary science indeed
calls for supplementation by automated quantitative analyses. In order to work with the
mined data, a clearly structured and preferably aesthetically pleasing visual representation is
essential. As the article also states, numbers quickly grow very big – Shakespeare’s work alone
features 1,200 characters and more than 880,000 words of dialogue. Accordingly, creating
representations that are as readable as possible without unnecessarily reducing the data’s
complexity or creating a misleading picture is a major challenge. Cutting-edge methods
include graphs, timelines, taxonomies and maps. The latter are an especially intuitive way
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to represent relational data, since most people are familiar with maps and enjoy meticulously
studying them.
Traditional cartography deals with representing real-world geographic locations as accurately
as possible. However, maps are a powerful means to display additional spacial information
as well. For instance, choropleth maps make use of color schemes to visualize statistical
data such as population densities etc., area cartograms depict area as proportional to some
external size rather than the actual area, and Dorling cartograms are composed of discs
with size proportional to the dimension of interest. Maps are frequently used to represent
imagined places as well. Most major fantasy works feature elaborate maps of the fictional
worlds they create.
Figure 1 shows online cartoonist xkcd’s approach to using cartograms as a means to visualize
the extent of social activities throughout various popular internet communities: size represents
the degree of daily socializing and proximity indicates a somewhat arbitrary metric of similarity
[10]. As indicated by two maps superimposed on the top left, online communities make up a
relatively small part of overall human communication, as the online-community “country” is
surrounded by the much larger “continents” E-Mail, SMS, and Cell phones which, again, are
part of the huge landmass of Spoken Language.
The Facebook Region, being the most spacious “country” includes numerous interesting
geographical features such as the Plains of Awkwardly Public Family Interactions or the
Privacy Controls surrounded by a lava pool – a subtle critique referring to how difficult it
is to change your account’s privacy settings. Another big “country” is YouTube with the
picturesque Viral Shores and the HTML5 swamps, subtly alluding to YouTube’s ragged
HTML5 support (at the time the comic was created). Other large “land masses” include
Twitter Land and Skype Land as well as the QQ Region. Tencent QQ is a frequently used
Chinese instant messaging program. The large “country” has a famous “landmark”, the
Great Firewall, which addresses internet censorship in China. In a nutshell, this map of
an imaginary world is used to convey information on multiple levels in an accessible and
humorous manner. This paper reviews state-of-the-art distant reading techniques based on
maps. First, two real-world applications ([5], [1])that enable distant reading of certain text
corpora are presented, both of which make use of geographic maps. Among others, they
employ a popular type of representation called Proportional Symbol Maps. This technique
will be detailed with regard to algorithmic problems that arise, as well as approaches to
solving them (as devised in [2]). The third section contrasts these actual geographic map
representations with pseudo-geographic ones ([3]) and examines how geography can be used
as a metaphor to depict relational data sets, as in the comic described above. The paper
concludes with a discussion.

2.2 Maps & Timelines: Querying along Temporal, Spatial and
Conceptual Dimensions

In this section, two map-based tools for digital humanities scholars are presented, which are
especially useful since they allow the user to shift interactively between distant and close
reading. Once distant reading techniques have helped the user to locate the exact passages
of interest he can “ zoom in” and read the desired parts.
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Figure 1 xkcd’s Map of Online Communities.

2.2.1 Trading Consequences

The Trading Consequences project [5] is an interdisciplinary cooperation between historians,
computational linguists and data visualization specialists. It aims to shed light on worldwide
commodity1 trading in the 19th century. Environmental historians are enabled to explore the
overall prevalence and importance of goods as well as geographic and temporal contexts in
which they were to be encountered. Furthermore, they may navigate through large corpora
of historical documents to locate the exact spots where their commodities of interest are
mentioned. As the authors put it, they want to “bring[...] the archives alive in ways that the
authors of original documents would have never imagined.” The aims are to “support[...] vi-
sual querying along spatial, temporal, and conceptual dimensions” as well as to “highlight[...]
trends within a range of document data, for instance, relations between different commodity
types.”[5]

1 raw materials, natural resources, and processed goods
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The web-based interface2 provides three interlinked visualizations. Users can either search for
a location or a specific commodity. Figure 2 shows the results of an inquiry about “Gold”. A
proportional symbol map helps to explore geospatial references to commodities related3

to “Gold”. A vertical tag cloud shows the 50 goods that co-occurred most frequently with
“Gold” (with font size encoding the number of concomitant mentions). To the right, there
is a ranked list of documents in which “Gold” was mentioned. A bar chart illustrates
the temporal distribution of these documents within the corpus. The user is granted direct
access to the documents when clicking on a certain document, with the commodity of interest
being highlighted. Thereby, distant reading is combined with close reading.
Users may also explore a heatmap (Figure 3a) that illustrates the geospatial context of
“Gold” trade (or any other commodity in the database) or examine a location cloud which
maps location mentions across time (for a selected commodity, Figure 3b).

Figure 2 Inquiry about the commodity “Gold” in the Trading Consequences search interface.

(a) (b)

Figure 3 Different visualization techniques. The geographic distribution of “Gold” trade is
indicated by a heatmap (a) and its temporal distribution is shown in a location cloud (b).

2 http://tcqdev.edina.ac.uk/vis/tradConVis/
3 with “related” meaning that commodities were mentioned on the same page of a document
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2.2.2 The Herodotus Encoded Space-Text-Imaging Archive (HESTIA)

The Herodotus Encoded Space-Text-Imaging Archive (HESTIA4) is a 2010 project [1] funded
by the Arts and Humanities Research Council of the United Kingdom. Primary objective was
to revive the magnum opus of Herodotus of Helicarnassus, one of the world’s first historians.
In his Histories, written in 440 BC, he pursues a complex question: Why did the Greeks
(Herodotus’ people) come into conflict with the Persians? In answering this question he
travels all around the known world of the time. In the end, the work comprised nine books
and covered a period of 220 years, describing the unraveling of history from 700 to 479 BC
leading up to the Persian Wars.
Herodotus’ world is often depicted in a similar fashion to that shown in Figure 4. While there

Figure 4 Atlas of Ancient and Classical Geography.

is nothing wrong with such a static depiction, the authors of [1] attempted to turn the world
of fifth century BC readily accessible for modern-day users, enabling them to investigate
the cultural geography of the ancient world through Herodotus’s eyes. The Perseus online
library5 provides a digital text of the Histories with the place names mentioned in the
narrative already annotated. This was fed into modern web mapping devices such as
Google Earth. Deploying the latest satellite imaging openly available from NASA, humanities
scholars, students, and researchers can surf the world and zoom in on any place to query
what Herodotus has to say about it. For example, one might go to Babylon and explore
his thoughts on Babylonian temple prostitution (Figure 5), creating a feeling of temporal
proximity.
HESTIA provides a variety of tools, some of which integrate close and distant reading.
Figure 6 shows a platform called HestiaVis6 were text and maps can be read alongside each
other. The data can be subdivided into three categories: settlements, territories, and natural
features of the environment, which can be depicted individually.
One more central objective of HESTIA was the construction of network maps to capture
relations between places in order to challenge a polar worldview – East vs. West, Greece vs.
Persia. These networks illustrate an interlinked world and reveal the complex connections
that Herodotus draws. Figure 7 contrasts the timeline view with a network view for the
place Delphi. Furthermore, the data set can be used to generate maps in GIS (Geographic
Information System). Figure 8 shows an illustration that visualizes the number of references
to settlements mentioned in the Histories. It was composed in QuantumGIS 7.

4 Incidentally, Hestia is also a Goddess in ancient Greek religion, daughter of Cronus and Rhea and sister
of Zeus.

5 http://www.perseus.tufts.edu
6 http://www2.open.ac.uk/openlearn/hestia/index.html#index
7 http://www.qgis.org/
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(a) (b)

Figure 5 HESTIA in Google Earth. A bird’s eye view is given in (a), then the user can shift
from distant to close reading (b).

Figure 6 Combining Close & Distant Reading, Temporal and Spatial Dimensions.

Figure 7 Timeline view vs. network view in HestiaVis.

2.2.3 Algorithmic Problems with Proportional Symbol Maps

The two projects that were introduced in the previous passages provide real-world tools that
are actually employed by humanities scholars. In these applications, several algorithmic
problems arise: graph drawing problems (Figure 7), geovisualization problems (Figure 5),
and placing labels to minimize overlapping (among others).
Barker et al. [1] focus heavily on the computer-based technology that was necessary to
extract spatial data from the Histories, in which ways the resulted database can be queried
and how humanities scholars can benefit from it. Klein et al. [7] mention the problem of
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Figure 8 A proportional symbol map visualizing the number of references of settlements mentioned
in the Histories.

overlapping location labels: Figure 9 shows all location mentions associated with the label
blubber8. Heavy cluttering makes it impossible to decipher any general trends, rendering
the representation useless. This is addressed solely by limiting the amount of information
displayed (i.e. only top 50 hits on map, or only decades with most mentions on timeline).
However, one may algorithmically optimize visualization techniques in order to get the most

Figure 9 Cluttering labels.

out of the data. This section shall focus on how to do so in the case of proportional symbol
maps. Proportional symbol maps are a type of thematic maps that is well-established when
it comes to the visualization of quantitative data associated with specific locations. They use
simple symbols (in our case discs) placed on various locations of interest on a map and scaled
proportional to the data value found at the respective location. This is to say, the larger the
symbol, the more of the metric in question exists at that place. Thus, its spatial distribution
can be examined. The map generated with the HESTIA data set in QuantumGIS (Figure 8)
is an example of such a map. The message is put across by means of the symbol areas
or rather the ratio between symbol areas. Three types of symbol scaling are considered
in [2]. In mathematical scaling areas are directly related to the data. Perceptual scaling

8 fish fat, apparently a very important good
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takes into account that humans are not proficient at estimating relative sizes (large ones are
often underestimated). Thus, area differences are deliberately exaggerated to smother these
perceptual pitfalls. In range grading data are subdivided into classes, where symbols of one
class have the same area.
The problem of finding the ideal size for the symbols on a map has already been studied
extensively: a map should not appear too crowded; however, if the symbols are scattered too
scarcely spacial patterns are not easily detected.9 Applying range grading or even logarithmic
scaling prevents disks connected to high prevalence of the metric in question from overlapping
smaller ones, but also makes the map much less easily accessible. Hence, mathematical
scaling and perceptual scaling are preferable but one has to determine the right degree of
overlapping. User studies have shown that the degree of overlap in a map using opaque
symbols is – unsurprisingly – strongly correlated with the error of estimation of respective
sizes.10 Transparent symbols might seem like a simple work-around but users tend to prefer
opaque symbols, since the contrast to the underlying geographical map is more sharp.11

PSM are frequently used in both projects. However, optimization with respect to the results
stated above is called for: In Trading Consequences, the symbols are not scaled directly
proportional to the external size in question (Figure 2). Thus, the distribution is not visible
at first glance. Instead, the reader has to study the numbers by which the disks are labeled
which is pretty cumbersome. The map shown in Figure 8 is rather crowded.
In order to talk about PSM a few definitions and notations have to be introduced: We denote
by A the arrangement formed by the disk boundaries of a set S of n disks D1, ..., Dn in the
plane. A vertex v is formed by the intersection of the boundaries of two disks. We denote
by D a drawing of S, which is a subset of arcs and vertices of A drawn on top of the filled
interiors of the disks in S. Figure 10 shows an arrangement of a set of disks along with one
unsuitable and a preferable drawing of this same set. But what makes a good drawing? It
should enable the viewer to see at least some part of all symbols and to judge their sizes as
correctly as possible! As already mentioned, empirical studies have shown that the accuracy
with which the size of a disk can be judged is proportional to the portion of its boundary
that is visible. This is illustrated in Figure 11a. Accordingly, two quality criteria can be
defined.

(a) (b) (c)

Figure 10 An arrangement A of disks (a); a bad drawing (b) and a good drawing (c) D of A.

1. MaxMin: Find a drawing that maximizes the minimum visible boundary length of each
symbol.

2. MaxTotal: Find a drawing that maximizes the total visible boundary length over all

9 Terry Slocum, Robert McMaster, Fritz Kessler, and Hugh Howard. Thematic Cartography and
Geographic Visualization. Prentice Hall, 2nd edition, 2003 (as cited in [2]).

10 ibid.
11Trevor Griffin. The importance of visual contrast for graduated circles. Cartography, 19(1):21–30, 1990
(as cited in [2]).
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(a) (b) (c)

Figure 11 Quality criteria for PSM. Visible perimeter is more central to correct judgment than
visible area as illustrated by (a). Disks stacked according to the Max-Min criterion are shown in
(b) and a stacking of the same disks according to the Max-Total criterion is shown in (c).

symbols.
Figure 11b and Figure 11c show two drawings of the same arrangement implementing the
different criteria. Two kinds of models are considered in order to implement these criteria:
First, physically realizable drawings, which are – to put it simple – drawings that could
be reproduced with coins, and second, stacking drawings, which are a subset of the set
of physically realizable drawings restricted by demanding that there exists a total order on
the disks (the so-called stacking order). Figure 12 contrasts various models. Figure 12a
shows a non-physically realizable drawing characterized by some – as the authors of [2]
call it – “Escher-like” qualities. Such a layout is obviously not desirable in a proportional
symbol map since it could easily generate confusion as to where the disks’ boundaries are in
a more complex arrangement. Figure 12b and Figure 12c show a physically realizable and
a stacking drawing. In order to grasp the difference, one may imagine trying to reproduce
these images with coins. For the physically realizable drawing in Figure 12b one could – for
instance – start with the topmost coin and proceed clockwise. The last coin would then have
to be slipped under the starting coin. By contrast, when creating the stacking drawing in
Figure 12c one can find a stacking order where no such slipping operation is necessary. Or –
to put it differently – if the drawing was made up of coins, one could find a way to remove
them one by one without having to move any other coin still on the stack.

(a) (b) (c)

Figure 12 A drawing that is not physically realizable (a), a physically realizable drawing (b),
and a stacking drawing (c).

With the help of definitions and concepts introduced above, the algorithmic problem posed
by a PSM can now be formally defined:

I Definition 1 (Proportional Symbol Map). Given a set of points P = {p1, ..., pn} ⊂ R2 and
a set of corresponding values W = {w1, ..., wn} ⊂ R+ (as well as meaning attached to these
values), find the order of disks Di defined by (pi, wi) – center pi and area wi – s. t. a
physically realizable drawing or a stacking drawing that either satisfies MaxMin or MaxTotal
is produced.
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It can be shown, that this problem is NP-hard for physically realizable drawings, meaning
that it is computationally infeasible. Thus, one concentrates on a MaxMin Stacking Model.
It can be proven that such a model can be computed in polynomial time for any set of general
pseudo-disks (convex symbols, i.e. a set of symbols s.t. the boundaries of any two symbols
intersect in at most two points) [2]:

I Theorem 2. Given n disks in the plane, a stacking order maximizing the boundary length
of the disk that is least visible can be computed in O(n2 logn) time.

The basic idea of a greedy algorithm to achieve this (given in Algorithm 1) is as follows:
For each disk in the set you determine how much boundary would be visible if it were the
bottommost disk (vis(Dj)). Then you place the disk with the maximum value at the bottom
and recurse over the n− 1 remaining disks.

Input : A set of general pseudo-disks D = {D1, ..., Dn} ⊂ R2

Output : A permutation π of {1, ..., n} such that the proportional symbol map with
stacking order Dπ(1) < ... < Dπ(n) maximizes the minimum visible borders
of D

initialize S ← D

for i = 1, ..., n do
forall Dj ∈ S do

vis(Dj)← vis. boundary of Dj if π(i) = j;
end
Dk ← arg maxDj∈S vis(Dj);
π(i)← k;
S ← S \ {Dk};

end
return π

Algorithm 1 : Stacking general pseudo-disks in near-quadratic time

The algorithm computes an optimal stacking: LetA be the stacking produced by the algorithm
and A [i] be the ith disk of that stacking. A can be compared to any optimal solution O0.
Let i be the smallest value s.t. A [i] 6= O0 [i]. O1 is obtained by moving A [i] in O to index
i. Analogously, stackings O2, ...,Om with Om = A and min− vis(Ok) ≥ min− vis(Ok−1)
can be iteratively constructed. Running time can be proven by maintaining a special data
structure called a segment tree for each disk, where the disk boundary is considered to
be a linear interval from its topmost point in clockwise direction. Intersections with other
disks induce elementary intervals, which are stored in the leaves of the balanced binary tree.
Internal nodes correspond to the union of their child intervals. Additionally, visibility can
be stored for each node, where the visibility of the root node corresponds to the visible
boundary of the respective disk if it were the bottommost disk.
Three much simpler heuristics to determine a stacking order, which arguably do not perform
much worse, are mentioned in [2]. In the drawing shown in Figure 13b the disk with the
leftmost center is put first and the remaining disks are drawn recursively on top. In Figure 13c
this is done with respect to the left extreme instead of the center. In Figure 13d disks are
drawn from bottom to top in order of decreasing radius which produces a unique stacking
order given that the radii are distinct. The drawing in Figure 13a was produced using the
algorithm outlined above. Since the heuristics require only sorting they can be calculated in
linear time. Especially large-to-small still produces acceptable results.
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(a) (b) (c) (d)

Figure 13 The max-min algorithm (a) as opposed to three different heuristics, left-to-right by
center (b), left-to-right by leftmost (c), and large-to-small (d).

2.3 Geography as a Metaphor: A Visit to BookLand and other Curious
Places

Not only statistical data that are linked to actual places in the world but any set of relational
data can be visualized as a map. Relational data sets, in turn, can be described by a graph.
A graph is a mathematical object that represents relationships between a set of items. More
specifically, it is an ordered pair G = (V,E), with V being a set of vertices and E a set of
corresponding edges. Most commonly, vertices are drawn as points and edges are drawn
as lines in two- or three-dimensional depictions. Since graphs, represented in this way, as
well as charts and tables usually demand substantial effort to grasp, the authors of [3]
propose a more intuitive and enjoyable approach to display big relational data sets: the use
of 2D geography-like maps. This does not yield accurate but very intuitive and readable
visualizations which comes naturally, since most people are familiar with maps. It also makes
sense because the visualization of data-points usually requires dimensionality reduction to
2D anyway, which is why high-dimensional data are often visualized as points in 2D space.
Embedding algorithms such as the so-called force-directed algorithms12 are used to create 2D
drawings of graphs. They display underlying proximity information by tendentiously putting
similar items closer together. (The vertices can be imagined as arranging like magnets with
varying degrees of magnetic attraction or repulsion.) To perform a structural analysis one
may also employ clustering algorithms such as k-means. Thus, it stands to reason to define
clusters explicitly in the visualization as „national borders” and coloring the regions. The
authors want to „borrow map-related cognitive concepts: [...] items within a country are
similar to each other; areas separated by a mountain range are difficult to connect; islands
might have atypical qualities, etc.”
Figure 14a shows a simple example of a GMap visualizing relationships between colors. The
input to the algorithm is the DOT file shown in Figure 14b.13

The Mapping algorithm (given in Algorithm 2) is rather straight forward:

12 See for example Thomas Fruchterman and Edward Reingold. Graph drawing by force-directed placement.
Software: Practice and experience, 21(11):1129–1164, 1991 (as cited in [3]).

13This example along with some others can be found at http://gmap.cs.arizona.edu/. Users can also
paste their own DOT files and generate map representations.
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(a) (b)

Figure 14 “ColorLand” (a) is produced by the input shown in (b).

Input : graph G = (V,E) with |V | = n, |E| = m extracted from a relational data set
Output : map representation of G such that relations in G are displayed as good as

possible
step 1: embed graph in plane (e.g. force directed algorithms...)
step 2: clustering analysis (e.g. k-means...)
step 3: compute Voronoi diagram of the vertices

Algorithm 2 : GMap Algorithm

The set of vertices V corresponds to objects in the data, e.g. books. The set of edges E
corresponds to relationships between pairs of objects, e.g. the similarity between two novels.
Figure 15 summarizes the algorithm. In the first step, the graph has to be drawn or embedded.

(a) (b) (c)

Figure 15 The mapping algorithm consists of three basic steps: (a) Step 1: Embedding the
graph. (b) Step 2: Clustering analysis. (c) Step 3: Voronoi decomposition of the vertices.

Note that the graph as a data structure is not equal to the depictions commonly associated
with it (as shown in Figure 15a). Embedding algorithms usually aim at minimizing the number
of crossing edges and making their lengths more or less equal, which is desirable in terms
of aesthetics and readability. Possible algorithms are for example the previously mentioned
force-directed methods, principal component analysis14 or multidimensional scaling15. In the

14 See for example Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002 (as cited in [3]).
15 See for example Joseph Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis. Psychometrika, 29(1):1–27, 1964 (as cited in [3]).
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next step, a clustering analysis is performed in order to determine groups of vertices that
will eventually make up the “countries”. Again, there are some well-established algorithms
to do so, such as k-means16. However, an embedding algorithm may not be combined with
every other clustering algorithm, since some graph-drawing algorithms do not necessarily
put vertices of the same cluster geometrically close together. The last step, in which the
Voronoi decomposition of the vertices is computed, yields the actual maps. The Voronoi
decomposition of a set of points subdivides the plain into regions (so-called “cells”) such that
for each point, the corresponding cell comprises all points that lie closer to that point than
to any other point of the set.
Figure 16 shows different approaches to doing so. As can be seen in Figure 16a the node

(a) (b) (c) (d)

Figure 16 Approaches to compute Voronoi decomposition. (a) Naive approach. (b) Some
improvement. (c) Final method. (d) Result after combining.

labels vary in font size. This is because the underlying graph is vertex-weighted and edge-
weighted. Vertex weights reflect some measure of importance and edge weights correspond
to some notion of distance between pairs of vertices or rather the real-world objects they
represent. Labels are sized according to the vertex weights. Figure 16a shows the result of
a naive approach: computing the Voronoi decomposition together with the four points of
the bounding box of the labels. (In each of the images, the cells of the auxiliary points are
not shown.) As can be seen, this results in very pointy outer boundaries with sharp corners.
A more natural appearance can be generated by distributing random points sufficiently
distant to the actual vertices and then performing the Voronoi decomposition. As depicted
in Figure 16b this leads to more rounded boundaries. Still some issues have to be solved:
First, the inner boundaries are completely straight. Second, the uniform size of the cells is
inadequate as larger label should have a larger area. This can be solved as illustrated in
Figure 16c: Along the bounding box of each label auxiliary points are generated and then
randomly perturbed. In contrast to the cells of the outer auxiliary points the cells of these
points are drawn as well. Then, cells that belong to the same vertex are merged, leading
to the result in Figure 16d. In a final step that is not shown here this is repeated for cells
belonging to vertices of the same cluster, generating complex countries. Afterwards, more
“geographical features”, such as rivers, lakes, mountain ranges etc., can be added to the map
in places where there is considerable space between neighboring labels to further emphasize
the distance and solidify the geography metaphor. These are also formed by placing random
points in such areas. The algorithm’s time complexity is O(|V | log |V |). Obviously, the aim

16 See for example Stuart Lloyd. Least squares quantization in PCM. IEEE transactions on information
theory, 28(2):129–137, 1982 (as cited in [3]).
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here is to create a practical display rather than visualizing a relational data set in a strict
graph theoretical way. As a compromise, the actual edges can be superimposed on the map.
This may look like the map of “BookLand” shown in Figure 17. The underlying relational
data set was obtained with a breadth-first traversal of Amazon’s “Customers Who Bought
This Item Also Bought” links, using George Orwell’s “1984” as source node. Each book is
connected to the source node by a path of length 9 at max. Merging nodes which represent
the same book (with a different publisher or a different binding etc.) reduces the number
of vertices to up to 4%. The graph in this case consists of 913 vertices and 3410 edges,
with an approximate average degree of 8. “1984” is located in the country “Americana”,
which is mainly inhabited by American authors. To the North there is a country called
“Russiana”, populated by Russian literature. Here, classic novels by Dostoyevski and Tolstoy.
To the West there is “Skakespearea”, which is dominated by Shakespearean tragedies but
also contains other literary pieces such as “One Thousand and One Arabian Nights”. Other
interesting countries include “Victoriana”, featuring British literature such as the novels
by Jane Austen and the Brontë sisters.17 As highlighted in Figure 17 “1984” appears a
second time titled “Nineteen Eighty-Four”. Ideally, vertices that represent the same book (i.e.
different editions, publishers, bindings etc.) should be merged. At this point, the algorithm
calls for refinement.

2.3.1 Assigning Colors to the Map

A common problem in traditional cartography is how to assign colors to the countries on
the map. Obviously, the same color should not be assigned to neighboring countries. A
well-known theorem in the field is the Four Color Theorem18.

I Theorem 3 (Four Color Theorem). Only four colors are needed to color any map so that
no neighboring countries share the same color, given that each country forms a contiguous
region.

In the case of GMaps, the constraint stated here is not fulfilled since exclaves exist. These
exclaves should be given the same color as their respective parent country. Thus, many
more colors may be required. In order to assign colors to the GMaps, the inventors used
five distinct base colors which are easy to differentiate and blending between them. Thus a
linear and discrete color space C is obtained. Consecutive colors in this array are similar
due to the blending. Thus, applying such pairs on neighboring countries on the map should
be avoided to maximize readability. In order to solve this, one can define the country graph
Gc = {Vc, Ec}. It does not equal the underlying graph that is being visualized by the
map. Instead, its vertices represent countries that are connected by an edge if they share a
non-trivial boundary. Furthermore, a function c : Vc → C that assigns a color to a vertex, as
well as a color distance function d : C × C → R are required. Let wij ≥ 0 be the weights19

associated with edges {i, j} ∈ Ec.

17An interactive version of a similar map can be explored at http://yifanhu.net/BookMap/index.html,
where the reader can query about their favorite books and easily find similar ones as the map features
links to Amazon.

18 See for example Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The Four-Colour
Theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997.

19Weights correspond to the inverse of the distance between two countries. Thus, the closer two countries
are, the more dissimilar the assigned colors will be, which makes the countries easy to distinguish.
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Figure 17 “BookLand”

Then, the coloring problem can be formulated as an optimization problem: Define the
color function c such that the vector of color distances along the edges

v(c) = {wijd(c(i), c(j))|{i, j} ∈ Ec} (1)

is maximized with respect to a cost function. One such cost function that can be considered
here is 2-norm, i.e. the weighted sum of squared distances between colors of neighboring
countries:

maxc∈C{
∑

{i,j}∈Ec

wijd(c(i), c(j))2} (2)

The coloring problem can be modeled as a vertex labeling problem if C = {1, 2, ..., |Vc|} and
the color function c is a permutation maximizing the labeling differences. Plugging this in
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Equation 2 yields

max{
∑

{i,j}∈Ec

wij(ci, cj)2} (3)

with c being a permutation vector of {1, 2, ...|Vc|} and ci its i-th element. This can be
approximated by continuous constrained optimization problem:

max{
∑

{i,j}∈Ec

wij(ci, cj)2}, s.t.
∑

k∈Vc

ck = 1 (4)

where c ∈ R|Vc|, that is the permutation vector is now a vector of decimal numbers with the
entries adding up to one. This problem is solved when c is the eigenvector corresponding to
the largest eigenvalue of the weighted Laplacian (the difference between the degree matrix
and the adjacency matrix) of the country graph. After solving Equation 4 the ordering of
that eigenvector is an approximate solution for Equation 3. The authors call this algorithm
SPECTRAL20. The coloring results can be refined by iteratively swapping pairs of vertices
such that the coloring scheme is improved according to the cost function in a greedy manner.
However, this has a high computational complexity since all O(|Vc|2) pairs have to be
considered. Figure 18 shows different coloring schemes. The RANDOM coloring produces
some undesirable pairings such as in vertices 1 and 3. One possible application for the GMap

(a) (b) (c)

Figure 18 Different coloring schemes. (a) RANDOM. (b) SPECTRAL. (c) SPECTRAL +
GREEDY.

representation is to create a recommendation system for movies or books as the authors
propose in [4]. In many online streaming services it seems not very obvious to the user
why an item is recommended to them on the basis of their previous viewing behavior. By
contrast, if you could study a map of “MovieLand”, clusters and neighborhoods in the Movie
database would be revealed. Chris Volinsky, one of the authors of [4] participated in a 2007
contest held by the widely popular platform Netflix [12]21. They offered one million dollars
to the research team that could make their recommendation system CineMatch 10% more
accurate. It may not sound like much but it turns out that this is a very twisted challenge
due to manifold idiosyncrasies in individual viewing behavior. For instance, very polarizing
films, which are either loved or hated by most people, present a problem. Additionally, it is

20 Spectral graph theory investigates the properties of a graph in terms of eigenvalues and eigenvectors of
matrices associated with it, such as the adjacency matrix etc.

21 http://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html?pagewanted=all&_r=
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difficult to predict a user’s preference for sequels. It is widely agreed upon that the first part
of the Matrix trilogy was a stroke of creative genius while the two sequels fail to live up to
its example. Volinsky actually ended up in the winning team two years later, when his team
– in coalition with three other teams – managed to improve the accuracy by 10.05% [8]22.
Anyhow, Figure 19 shows how a GMap can be used to beautifully display a landscape of
TV shows. Color coding can be personalized: warm colors represent areas of high interest
while less relevant shows appear in cooler colors. The alert observer may have noticed that
very different areas are highlighted. The reason is that data are based on households rather
than individuals. For instance, children living in a household naturally will prefer cartoons
and the like while adults may follow the daily news or talk shows. A representation like this
makes it very intuitive and enjoyable to identify shows that suit one’s taste.

Figure 19 Personalized recommendation heat map.

2.4 Conclusion & Discussion
“To read or not to read, that is the question.” asks the previously mentioned newspaper
article [11] provocatively, referring to Moretti’s work in the Stanford Literary Lab where
he performs network analyses of Shakespearean tragedies. Even hidebound traditionalists
have to admit that a holistic study of literature is simply impossible without automation.
Visualization techniques for distant reading are vital to cope with the horrendous amounts of
textual data. However, it is not trivial to communicate large quantities of data in an efficient
and readable way.
In this paper, two applications, which use proportional symbol maps and other visualization
techniques, were reviewed. Proportional symbol maps are an effective way to depict spacial
statistical data. However, some problems remain to be solved, such as developing a good
heuristic for physically realizable drawings that solves Max-Min or Max-Total. In general, if
the amount of data to be displayed becomes too large one has to employ workarounds such

22 http://bits.blogs.nytimes.com/2009/06/26/and-the-winner-of-the-1-million-netflix-prize-probably-is/
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as superimposing a small section of special interest on the map.
Furthermore, it was examined how pseudo-geographic maps can be used as a powerful method
to disclose structural relationships within datasets that can be stored as graphs. When
using GMaps – or any other 2D representation of high-dimensional data – one has to accept
some degree of distortion of the underlying information. Nonetheless they display clustering
information intuitively and beautifully and allow interactive navigation through large data
sets. However, the algorithm may be refined such that multiple vertices representing the
same real-world entity are eliminated.
Irrefutably, the presented visualization techniques are a valuable addition to traditional
humanities and allow to an overview of large amounts of data much more quickly than
formerly possible.
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3 Estimating Similarity of Notions using Google

Longfei Mao

Abstract
Words and phrases are the basic tools in human communication. Each word and phrase has
special meaning for the human being. But for machines, especially for the computer, they are
just constant permutations of letters without meaning, needless to say the relationship between
them. However, meaning of words could be of great use, such as a semantic search. In this paper,
two algorithms to calculate the similarity of given words are introduced. The first algorithm,
named as Normalized Google Distance (NGD for short), is all based on the information distance
and Kolmogorov complexity. The occurrence rate of each word is a very important parameter
in this algorithm, and the world-wide-web and Google are used to estimate it. Theoretically the
methods should be also functional when other search engines and databases are used. Possible
applications are given, such as hierarchical clustering, classification and language translation.
As millions of independent users enter textual information every day, the stability of the NGD
algorithm is not very good. In the end, the Google Core Distance (GCD for short) is given as
an improvement. As the information distance is calculated in a more directly way, the result of
GCD algorithm is more stable and faster than the NGD algorithm.

3.1 Introduction
The world of human beings is constructed of objects, abstract objects and specific objects.
We are living in this kind of world. It is easy to for us to get used to them and use them.
But for the machines, especially the computers, these objects are unfamiliar. The world of
computers is constructed of numbers. The computers cannot handle the real objects directly,
or even understand them directly. As a result, handling the objects’ information directly is a
very difficult job for the computer. Except some kinds of specialized sensors, most of these
jobs need to be done manually. However, the amount of objects increases explosively, and
there is too much information from them. It becomes more and more impossible to handle
all of them manually, and methods to handle them automatically are required[23, 25]. In
this paper several methods will be given, making it possible for computers to handle the
relationships of objects in human’s world sketchily.

3.1.1 Basic Assumptions

For artificial intelligence questions, we usually start from human behavior, and this algorithm
is not an exception. Humans can handle the objects in their society. For the computers, their
“society” is the database. But unfortunately at present we cannot construct a kind of data
structure, which is able to represent the whole object, neither abstract nor concrete. The
meaning space of an object is so wide, that even for humans it is not possible to describe all
its characters. As a result, objects are usually classified, remaining the similarity, losing small
differences. A very widely used tool to do this job is the language. To make use of this tool,
a basic assumption should be satisfied: All the objects have their own names, and all the
characters of the objects can be represented by their names[39, 14]. There are objects which
cannot be named literally, such as “home”. This kind of situation will not be considered in
this work[2, 31, 8].
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Millions of web users have created billions of web pages with trillions of characters
making the world-wide-web a perfect literal database which simulates the human’s literary
words. Although on average the quality of contents from world-wide-web is not high, and
there are possibly self-made “new” words, the sheer mass of information about almost every
conceivable topic makes it likely that extremes cancel each other and the majority or average
is meaningful in a low-quality approximate sense. Using this, a general method to tap the
amorphous low-grade knowledge could be given. What is more, this database is available
for all the users, whose search engine has the aggregate page-count function, like Google,
which means that the scale of the databa is probably big enough to represent all the human’s
literary words [13].

3.2 Similarity Distance Implementation
3.2.1 Similarity of Numbers

In general, the input of the algorithms could be any word from human’s dictionary. But
for the beginning, let us start from a simple simple situations, in which all the inputs are
numbers.

As said before, for most artificial intelligence problems, we usually start from the human
behavior, which is of great reference value. If someone is required to compare some numbers
(such as 10, 99, 100) to find out which two of them are more similar, 99 and 100 must be the
answer[37]. Because the only character of the number is the value of it, and the difference
value of 99 and 100 is much smaller than any other combination in this case. Sometimes the
difference values could be equal (such as 49 and 50 vs. 99 and 100), and for this situation, 99
and 100 will be chosen, because the difference value is 1% of the bigger element (100), but
for the other pair, the difference value is 2% of the bigger element (50).

this way to compare numbers can be formulized and expressed by the following formula:

N(x, y) = D(x,y)
max(x,y)

D(x, y) = |x− y|

N(x, y) stands for the similarity of two numbers (positive, all the numbers considered in this
case should be positive), the value of it is between 0 (equal) and 1 (totally different), the
smaller the value of N(x, y) is, the less difference there will be, and the more similar these
two numbers are. D(x, y) is the difference value of the two numbers, which is one of the most
important parameters in this formula. With this formula, as long as two positive numbers
are given, a definite parameter could be calculated. This parameter is so effective, that only
with this parameter the similarity of these two numbers could be known.

3.2.2 Modeling

In previous section, a basic formula for determining similarity of numbers was explained ,
which can directly calculate the similarity of two numbers. Along this way, it is easy to come
up with an idea, that if we could correspond each object to a number that represents it in
some sence, then adapting the formula for numbers, the similarity of numbers could also be
computed. According to the basic assumptions, all of the objects are thought to have their
own literal names, and this literal names can express all the information about the objects.
So in the following research, the literal names of the objects will be talked about, which are
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terms in the database (world-wide-web). And our objective can be explained more detailed:
find out a way to make determined relationships between terms and some certain numbers,
and find out a formula to compute the similarities of the numbers in order to find the most
similar pairs. Or it can be describe the process more vividly: All the web pages are points
in a high dimensional space, and the searched terms are sets of the points. The objective is
to find out a way to classify the web pages into sets from the space, and then compute the
distance between certain sets. In this case, a short distance equals to a high similarity of
searched objects[16, 21].

At this point, we encounter a problem. At present there is no efficient way to transform
terms into numbers without any information loss. For example, if we use ASCII code, the
term “red” will become “0111 0010 0110 0101 0110 0100”. However, in this case most of the
information is lost, only the English spelling of the term is reserved. We cannot know the
RGB value of this color is (255, 0, 0). For the term "rot"(“red” in German) the value will
be “0110 1100 1101 0011 0010 1000 1100”, and it is hard to say the similarity of these two
binary numbers is high. What is in need is a way to transform terms into numbers with as
little information lost as possible.

At present there is no algorithm to make a lossless transform, we need to find out a new
way to substitute this process as much as possible. The basic idea introduced by Rudi L.
Cilibrasi and Paul M.B. Vit´anyi is to use Google semantics. The Google semantic of a term
is a set of all the web pages returned by a Google query. According to the assumptions, the
Google semantic is able to explain all the meanings the given term, as long as the database
is big enough[14]. Thanks to the great scale of the web pages in world-wide-web, from which
almost all the usages of the terms and the frequencies of the usages can be extracted, all the
webpages, where the given term is contained, can be thought as an information pool about
the terms in question. However, as the Google semantic is just a set of web pages, and at
present there is no further processing on the webpages, it may be not very precise. Technically
it is possible that some terms of different meanings have the same Google semantic. And
when the given terms are very frequently used (such as “and”, “not”, “or”) or their meanings
are absolutely opposite (such as "right", "wrong"), the Google semantic cannot distinguish
them. All in all, as the web grows, the Google semantic may become less primitive[36].

Although primitive, the Google semantic is a feasible solution to get relationship between
search terms. An algorithm to compute the distance between the sets of Google semantics
is required. The Kolmogorov complexity can be used for that purpose. The Kolmogorov
complexity K(x) of a string x is the length, in bits, of the shortest computer program of
the fixed reference computing system that produces x as output. The choice of computing
system changes the value of K(x) by at most an additive fixed constant[15]. Since K(x) goes
to infinity with the length of x, this additive fixed constant is an ignorable quantity if we
consider large x. One way to think about the Kolmogorov complexity K(x) is to view it as
the length, in bits, of the ultimate compressed version from which x can be recovered by a
general decompression program[14]. It is the lower bound on the ultimate compression: for
all the compressors C(x) (no matter already discovered or not), K(x) is always less than
or equal to the length of the compressed string of x.In other words, K(x) is the ultimate
value of the length of compressed version of x, and the task in designing better and better
compressors is to approach this lower bound as closely as possible.

3.2.3 Normalized Information Distance

So far we have found the way to convert the terms into sets of points in the high dimensional
data space by applying Google semantics, and the formula to calculate distance between



26

numbers. If we use these concepts in the basic formula, the expression of the information
distance will be done[32, 22].

E(x, y) = K(x, y)−min(K(x), K(y))

In the formula above, the function K(x, y) stands for the Kolmogorov complexity of term
x and y. The information distance E(x, y) is actually a metric. For all possible compression
functions F (x, y), E(x, y) 6 F (x, y) + cf , where cf is a constant that depends only on the
certain compression function itself F but not on the inputs x, y of it. The information distance
E should be a universal metric for all computable distances, because E minimizes every
member of the distances up to an additive constant. If the distance of x, y is close according
to any kind of computable distance, they must be also close to each other according to
the information distance E. Just like our simple situation with numbers, the information
distance itself could not express the true similarity, it should be compared to the size of the
information itself. That is why the normalized information distance is introduced.

NID(x, y) = K(x,y)−min(K(x),K(y))
max(K(x),K(y))

The Normalized Information Distance (NID) inherits the universality of the information
distance and has the values from 0 to 1 (0 for exactly the same and 1 for completely different).

3.2.4 Normalized Compression Distance

Apparently the Kolmogorov complexity is talking about the limitation of compression, it
is just a theoretical value, and uncomputable. As a result, the NID is also uncomputable.
However, Kolmogorov complexity can be approximated by an arbitrary compressor C, since
as already mentioned, it is an upper bound for the Kolmogorov complexity. Thus, for any
compressor C , using C(x) to denote the length of the compressed version of a string x,
Normalized Compression Distance (NCD) can be computed:

NCD(x, y) = C(x,y)−min(C(x),C(y))
max(C(x),C(y))

It is noteworthy that the algorithm used in NCD is actually a family of compression
functions, for all possible compressors C. The value changes when the algorithm changes, and
the The NID is the limiting case of it, where an algorithm can give Kolmogorov complexity as
output. As mentioned, C(x) is always one of the upper bounds of K(x), with the development
of compression technology, it is more and more accurate for C to approximates K. As to
how the NCD approximates the NID if C approximates K, please see [30]. The NCD
is an important medium, using this method, every known compression could be used to
approximate the value of NID. Thus, NID is no longer unreachable, man can touch it step
by step (although infinite steps are needed).

3.2.5 Normalized Google Distance

Noticing that what the Kolmogorov complexity focuses on is the length of the compressed
strings not the compressing algorithm, itis easy to come up with the concept of entropy[34].
In information theory, the entropy (more specifically, the Shannon entropy) is the expected
value of the information contained in each message. Shannon defined the entropy I of a
discrete random variable X with probability mass function P (X) as:

I(X) = −logbP (X) = logb
1

P (X)
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Common values of the base b are 2, Euler’s number e, and 10, and the unit of entropy is
Shannon for b = 2, Nat for b = e, and Hartley for b = 10. When b = 2, the units of entropy
are also commonly referred to as bits[4]. As Kolmogorov complexity just requires the binary
length of the string, man can use the above formula to compute the entropy of a certain event
with base b = 2, and in this case, the events are always that the given term (or two terms
for doubleton search) appears. The real possibility of the terms’ appearance is unknown
forever. However, statistics is able to give an estimated value when the sample space is big
enough. The number of web pages currently indexed by Google is approaching 1010. Every
common search term occurs in millions of web pages. This number is so vast, and the number
of web authors generating web pages is so enormous (and can be assumed to be a truly
representative very large sample from humankind), that the probabilities of Google search
terms, conceived as the frequencies of page counts returned by Google divided by the number
of pages indexed by Google, approximate the actual relative frequencies of those search
terms as actually used in society[19, 35]. Define g(x) the probability of term x to appear in a
webpage, and g(x, y) the probability of both terms x, y to appear in the same webpage :

g(x) = g(x, x), g(x, y) = |x
⋂

y|
N

where N stands for the number of each set and each doubleton set (by definition unordered).
Please note that it is quite possible that N is bigger than the total amount M of all the
webpages in the database. Because for every legal pair x, y with x 6= y, the web page z ∈ x

⋂
y

are counted 3 times: once in x = x
⋂

x, once in y = y
⋂

y, and once in x
⋂

y.
Now we have the entropy G(x) of terms x, which is defined by

G(x) = G(x, x), G(x, y) = log 1
g(x,y) .

In this sense, Rudi L. Cilibrasi and Paul M.B. Vit´anyi suggested to use the Normalized
Google Distance (NGD), which is able to capture the assumed true semantic relations
governing the search terms approximately[14]:

NGD(x, y) = G(x,y)−min(G(x),G(y))
max(G(x),G(y)) = logN−logf(x,y)−min((logN−logf(x),(logN−logf(y)))

max((logN−logf(x)),(logN−logf(y)))

= logN−logf(x,y)−(logN−max((logf(x)),(logf(y))))
logN−min(logf(x),logf(y)) = max(logf(x),logf(y))−logf(x,y)

logN−min(logf(x),logf(y))

where f(x) is the number of reported pages, which contain string x, and f(x, y) denotes
the number of pages containing both x and y, as reported by Google[29].

The NGD is an approximation to the NID by using the prefix code-word lengths (entropy)
generated by the Google distribution as defining a compressor approximating the length of
the Kolmogorov code, using the background knowledge on the web as viewed by Google as
conditional information[9, 11, 5].

3.3 Performance Test
Now that the way to calculate NGD is explained, it is time to discuss how it performs. A
possible method is to use NGD to cluster objects by contructing a hierarchical cluster tree,
which is also named as the semantic tree[38]. There are two main steps to do this. Firstly
compute the NGD-matrix with all the input terms, and then produce the best-matching
unrooted ternary tree using a novel quartet-method style heuristic based on randomized
hill-climbing using a new fitness objective function for the candidate trees. The first step
of hierarchical clustering is to compute the distances between all the input clusters. Then
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just keep on finding out the closest two terms, and classify them into a new cluster and
computing the distance between the new cluster and all the old clusters until only one cluster
is left.There are several kinds of hierarchical clusterings, although slightly different from each
other in details, the main steps of them are almost the same, for more explanation please see
[1, 28, 30].

Figure 1 Hierarchical clustering of authors

Table 1 Distance matrix of pairwise NGD ’s

A Woman of No Importance 0.000 0.458 0.479 0.444 0.49 0.149 0.362 0.471 0.371 0.300 0.278 0.261
A Midsummer Night’s Dream 0.458 -0.011 0.563 0.382 0.301 0.506 0.340 0.244 0.499 0.537 0.535 0.425
A Modest Proposal 0.479 0.573 0.002 0.323 0.506 0.575 0.607 0.502 0.605 0.335 0.360 0.463
Gulliver’s Travels 0.445 0.392 0.323 0.000 0.368 0.509 0.485 0.339 0.535 0.285 0.330 0.228
Julius Caesar 0.494 0.299 0.507 0.368 0.000 0.611 0.313 0.211 0.373 0.491 0.535 0.447
Lady Windermere’s Fan 0.149 0.506 0.575 0.565 0.612 0.000 0.524 0.604 0.571 0.347 0.347 0.461
Love’s Labours Lost 0.363 0.332 0.607 0.486 0.313 0.525 0.000 0.351 0.549 0.514 0.462 0.513
Romeo and Juliet 0.471 0.248 0.502 0.339 0.210 0.604 0.351 0.000 0.389 0.527 0.544 0.380
Salome 0.371 0.499 0.605 0.540 0.373 0.568 0.553 0.389 0.000 0.520 0.538 0.407
Tale of a Tub 0.300 0.537 0.335 0.384 0.492 0.347 0.514 0.527 0.524 0.000 0.160 0.421
The Battle of the Books 0.278 0.535 0.359 0.330 0.533 0.347 0.462 0.544 0.541 0.160 0.000 0.373
The Picture of Dorian Gray 0.361 0.415 0.463 0.229 0.447 0.324 0.513 0.380 0.402 0.420 0.373 0.000

Figure 1 shows the clustering result of some famous books with their NGD matrix in
table 1. It is not difficult to find out that the terms will be near to each other in the tree
when the NGD between them is small, and vice versa. To get a more obvious result to show
the performance, we have figure 2, in which the terms are all numbers, colors or tricky words.
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It is clear that the colors are distributed concentratedly to one certain part of the tree, and
the numbers to the other part. On the farthest reach of the color side and the number side,
there are words with only a few meanings, such as chartreuse and fortytwo. Terms with more
ambiguous interpretation are put in the center, such as "black", "white", “zero", "two". As
to the terms which are not exactly colors or numbers are also in the center, like the word
“small".

Figure 2 Colors and numbers arranged into a tree using NGD

To some extent, this result is satisfying. Almost all the terms are distributed to its
“family”, as to some details in the tree, such as the brother of the term “zero” is not other
numbers but “transparent”, it is still acceptable. Some of the terms are quite frequently used,
for example "black", "white", “zero", “one", "two", as a result, for a large part of the returned
web pages of them will be the same. However, the NGD is still able to identify which class
these terms belong to. This is a good proof that NGD is able to compute the similarity of
similar and frequently used terms.

3.4 Applications
As a relatively new algorithm in term comparisons, because of the lack of follow-up applica-
tions, there is few situations suitbale for using NGD directly. However, there are potential
applications. Yet one of the best potential applications of the NGD algorithm is the language
translation, or dictionary function, for example, an English-Spanish dictionary[10, 17].

This process is not complicated. The system is considered to try to infer a translation-
vocabulary between English and Spanish. At the outset, eight English words with their
matched Spanish translation are given as the training data for the system, 2 . Then a NGD
matrix will be formed, the columns of which are labeled as the (in this situation eight)
translation-known English words, the rows as the (in this situation five) translation-unknown
English words, and every entry of the matrix is the NGD value between its column and row.
Next, form another NGD matrix in the same way but with the Spanish words. In addition
the columns should be in the same order as the English words, as the translation of these
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words is already known as the training data, this is very easy to accomplish. After this work,
keep on rearranging the rows from the Spanish matrix in order to get the permutation with
the highest positive pairwise correlation with the values in the given English word basis
matrix. If there is no positive correlation, report a failure to extend the vocabulary. The
result of the test is satisfiing, the computer inferred the correct permutation for the testing
words, see table 3 and table 4.

From all the above, it is clear to see that NGD is an adequate algorithm to calculate
the similarity of given words/phrases, which are terms on the world-wide-web. The value of
NGD is usually between 0 (means identical) and 1 (means unrelated).

Table 2 Given starting vocabulary

English Spanish
tooth diente

joy alegria
tree arbol

electricity electricidad
table tabla

money dinero
sound sonido
music musica

Table 3 Unknown-permutation vocabulary

English Spanish
plant bailar

car hablar
dance amigo
speak coche
friend planta

Table 4 Predicted (optimal) permutation

Salome Spanish
plant planta

car coche
dance bailar
speak hablar
friend amigo

3.5 Improvements
3.5.1 Drawbacks and Improvements of NGD

However, this algorithm has some drawbacks. As we use the term’s entropy to approximate its
Kolmogorov complexity, and use the term’s appearance rate in database to approximate its
real probability, the quality of the database becomes extremely important for the algorithm.
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In other words, if the database is not big enough or representative enough, the algorithm
will not give satisfactory results. What is more, if we use the biggest database in the world,
the world-wide-web, just like in the paper, as this database is updated in a very high speed,
it is very possible that the NGD value of a term will change overtime. Especially when one
or more of the terms suddenly becomes popular. Because at that time the common part of
two terms will also increase, and there will be two big variables in the formula[24].

This is illustrated in Figure 3. When term y for is getting popular, there will be more
and more webpages with term y, and the circle C, which stands for term y, will also expand.
As a result, the corresponding set of pages will become bigger and bigger (illustrated as the
increase of its ridius R2 and the increase of the value of f(y)), and the common part of the
two circles will also increase. This common part is f(x, y) in NGD’s expression:

NGD(x, y) = max(logf(x),logf(y))−logf(x,y)
logN−min(logf(x),logf(y))

After this growth if f(x) > f(y), then NGD(x, y) = logf(x)−logf(x,y)
logN−logf(y) and if f(x) < f(y),

NGD(x, y) = logf(y)−logf(x,y)
logN−logf(x) . It is not difficult to find that in both situations, the numerator

and the denominator change disproportionately. As a result, the value of NGD should not be
considered to remain constant[3].

Figure 3 variations of intersection

The original NGD algorithm supposed that both the total number of pages and the total
number of search terms in Google would continue to grow for some time, so that the similarity
distance between two keywords would not be significantly changed. However, that is just the
common situation. There are so many possibilities that one term suddenly becomes focused
on[12]. Such as a breakthrough in some area, or a concept mentioned in a popular TV show,
or even the advent of new products[26]. Since how similar two objects are should not depend
on the popularities of them, but the real meanings, it is preferable that the relationship
between two terms stays as stable as possible if no new meanings are added into the terms.
As this is not guaranteed, the time-variance effect is a big drawback. Measure called Google
Core Distance (GCD for short) was introduced to overcome these drawbacks of NGD[27].

As can be seen in figure 4, the information distance of term D and term E is the length
of the segment DE. And an important assumption here is that the angle at center of the
circle ( ∠BAC in this case) should not be bigger than 90°. Noticing that generally the sizes
of circles D and E is very small in compare with the outside circle A. And if 4ADE is a
obtuse triangle, the public part of circle D and E will be very small, which means that the
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Figure 4 Google Core Distance

NGD will probably be 0. The outside circle A should be the tangent circle of all the inside
circles (both D and E), because every circle here stands for the total scope of a certain term,
and the biggest circle (circle A in this case) should be the total scope of all the terms in
the database, which means that the margin of circle A is consisted of the farthest points
form all small circles (remember the whole database is considered as a high-dimensional
space, not just a 2D circle represented by the figure). So obtuse triangle means no similarity,
and as long as the similarity is positive, the triangle is not obtuse. If the right triangles are
considered as the extreme case, the Pythagorean Theorem can be used to compute the upper
limit of GCD, which is

√
(R− r1)2 + (R− r2)2. And now the range of GCD is got:

GCD(x, y) ∈ [0,
√

(R− r1)2 + (R− r2)2]

3.5.2 GCD vs. NGD

To compare these two algorithms, Ping-I Chen and Shi-Jen Lin used the Spearman footrule
distance. In this experiment, same terms will be given to the two algorithms, and for each
system the system will construct a set of ranking lists on the terms (from internet) which
are the most similar to the given terms. The value of this distance means the proportion
that the terms keeps their positions on the ranking list. In other words, the bigger this value
is, the more stable the algorithm is[6, 18].

Table 5 Spearman’s footrule measurement of GCD and NGD

Algorithm
Measurement GCD NGD
Spearman’s footrule 0.74 0.56

Sometime has passed and the experiment was repeated. The Spearman footrule takes
all the values from both algorithms into consideration. From the result (table 5) of the
experiment, 56% of the terms chosen by NGD are still on the ranking lists, and the value by
GCD is 74%. This result has fully demonstrated the better stability of GCD.

And this algorithm has another advantage, it is faster. By NGD we need to query 3
times (for f(x), f(y) and f(x, y)), but by GCD twice is enough, r1 (from f(x)) and r2 (from
f(y))[7, 20].



33

3.6 Summary
In this paper, algorithms to calculate the similarity of the objects are given. Based on several
assumptions on the human language’s representative capacity, normalized information distance
(NID) is thought as the best way to express the similarity. However, as the Kolmogorov
complexity is incomputable, the information entropy is used to approximate the value
of Kolmogorov complexity, and as a result, the Normalized Google Distance (NGD) is
obtained[33]. Although technically NGD is just one of the upper bounds of NID. Using
NGD to compute the similarity of the objects is of good accuracy, and performed well in
the experiments. It can fully identify the differences between numbers and colors, and for
the Hierarchical clustering of authors, the result is also good. There is no doubt that to
let the computer do more and more repeated simple work instead of human is one of the
tendencies of the technological innovation. And this algorithm gives us a method to compute
the similarity of objects in human’s world which is totally different from the computer’s
world of digital numbers.

As the database used in NGD is the world-wide-web, which is updated at a horrendous
speed, making the stability of the result a big problem. At last a new GCD algorithm is given
as an improvement of NGD. The two algorithms are based on the same assumptions, but
GCD computes the information distance more directly. Therefore it performs more stable
than NGD in the Spearman footrule distance experiment. The precision of the GCD system
was nearly 90%, making it GCD a good adaption of NGD. However, there is a problem that
GCD is also not able to solve. Some words will be given new meanings, such as the emoticon.
Long ago it is just a grammatically wrong and meaningless permutation of punctuation, but
nowadays it is at least able to express some emotions of human. In other words, the meanings
of terms will change, and this tendency is hardly predictable. As a result the stability of
both these two algorithms can never reach 100%.

The entire Google data base is many terabytes, so each Google search takes a significant
amount of time. It takes time to apply these two algorithms (although GCD is faster). And
better adaptions with higher accuracy and less running time will be needed in the future.
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4 Text Variant Graph and its construction

Guangping Li

Abstract
Variation problem is a pervasive problem in linguistic. To realize the coexistence of multiple
versions of the same text in digital form, some representations are developed. Text Variant Graph
is a highly readable and wildly used representation among them, for whose construction a lot
of tools and algorithms have been developed. In this paper, we will see how to represent the
variations of text in Text Variant Graph (Section 1.1). This paper focuses on the construction of
a Text Variant Graph including the algorithms of linear alignment (Section 1.2.2) and the basic
ideas of algorithms in transposition detection (Section 1.2.3).

4.1 Introduction
4.1.1 Variation in linguistic

Variation is a characteristic of linguistic. There is more than one way of expressing the same
thing. Speakers may vary pronunciation (accent), word choice (lexicon), or morphology and
syntax (grammar) [6]. Textual variation is a problem that has affected literary texts almost
since the invention of writing. Variations present in different copies of literary texts and texts
in linguistic. It leads to an old conundrum: what exactly is the text in variation? With the
development of the digital medium, the old conundrum gave way to the problem of how to
realize the coexistence of different versions of the same text.

Figure 1 [1] Different versions of the book Bible.

One of the examples of text variation are hundreds of different translations of the Bible
into English, which are based on different manuscripts. It is important to find a way to save
the versions of the same text and make version research operations like reading a single
version or comparing two versions possible. In Figure 1 you can see different versions of the
Bible.

4.1.2 Representations of text in Text Variant Graph

In the following, I will introduce a way for the visual representation of textual variation.
This representation uses a directed graph model to represent variation in literal texts. For
convenience we call this a Text Variant Graph or in short Variant Graph.
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The Text Variant Graph

A directed graph is an abstract structure in computer science, which contains a
set of nodes v1. . . vn and a set of edges e1. . . em, each of which connects two nodes. An

edge can be represented by an ordered pair eq = (vi, vj) in a directed graph, where edge eq

is directed from vi to vj . In-degree of a node is the number of edges that end adjacent to
the node and the out-degree is the number of edges that start from the node. A path in a
directed graph is a sequence of edges that connect a sequence of nodes.

The Text Variant Graph model is an acyclic directed graph. This graph contains contents
of different versions of the same text. Each edge is labeled by an index of one version. The
nodes are labeled with non-empty strings. There are three types of nodes: start nodes, normal
nodes and end nodes. A start node contains the start part of the content. A start node has
in-degree 0. Analogously, an end node contains the end part of the content and has out-degree
0. A normal node is a node with non-zero in-degree and non-zero out-degree. A normal node
labeled by a certain version is connected by an edge to a node with same relevant version.
Analogously, this normal node is also connected by an edge from a node with same relevant
version. In Figure 2 you can see a Text Variant Graph of the seven versions of Genesis1:1.

Figure 2 [2] A short example from the Bible visualization project BibleViz based on seven versions
of the Genesis 1:1. The direction of edges is left to right.

The directed edges indicate the order of the words in the variants. For each version of
the text, there exists a single path from a start point to an end point in the Text Variant
Graph, in which all the nodes are part of this version and the concatenation of the contents
of the nodes in the path from start to end represents the content of this version.

The common parts of the versions are stored in one node in this graph model. This graph
model saves the memory by solving the high redundancy problem in variation. It also allows
the basic operations in version research: reading a single version, comparing two versions, etc.

Having labeled the nodes with version information, reading a single version only needs to
find a path from the start node to an end node, which contains exactly the nodes relevant to
this version. By going along the path and concentrating the contents in the nodes of this
path, the content of a single version is outputted. Reading a version in a Text Variant Graph
is clearly O(n), where n is the number of nodes in the graph. Comparing two versions in
Text Variant Graph and finding the differences of versions are corresponding to compare the
paths of the two versions. The common parts of them are represented by common nodes in
the graph and the differences are the nodes, which belong to only one of these two versions.
So this operation is also O(n).

4.2 Construction of Text Variant Graph
The question we consider in this section is how to construct the Text Variant Graph from a
set of different versions of the same text.
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4.2.1 The Gothenburg model

A collation summit and a collation workshop were held in Gothenburg and Brussel in 2009
[3]. The immediate result of these meetings was the Gothenburg model. The Gothenburg
model is an agreement of modularization of the collation process into four basic well-defined
steps: tokenization, alignment, transposition detection, visualization.

The first step is the tokenization of digital plain texts. In this pre-processing step, the
texts can be split at any level of granularity. For example, splitting plain text based on
whitespace. Normalization is an optional part of this step. After text splitting, the tokens
can be normalized by a user-defined equivalence relation. For example, all the words can
be converted to lower case. In Text Variant Graph model construction, each version is
represented as a sequence of words as tokens. Each token is a vertex. Thus a version is a
path from its start node to its end node.

The second step is alignment, in which a set of matched tokens are aligned via insertion
of gaps such that the token sequences of all versions are lined up1. For example, the optimal
alignment for string “abcd” and “acbd” is “abcd␣” and “a␣cdb” (see Figure 3). In this
alignment, three tokens, a, c and d are matched. After this step, the vertices are merged
when corresponding words are aligned 2

Figure 3 An alignment of “abcd” and “acdb”.

The third step is transposition detection. A transposition is a permutation which exchanges
two elements and keeps others remained. A transposition means same content in different
positions in different versions. Some sentences are transposed in versions. The corresponding
sentences in different version need to be found. If the alignment algorithm in step 2 aligns
two irrelevant sentences, the alignment score is normally bad. Detecting transposed parts is
a further analysis based on the alignment result. It will find the transposed sentences and
the alignment algorithm can align the relevant sentences. Transposition detection is much
harder than the linear alignment. Wagner has stated that transposition detection is NP-hard
[14]. In Figure 4 you can see a transposition of “abcd” and “acdb”.

Figure 4 Transposition of b in the example above.

1 We use the word “line up” to describe the alignment of two characters in two sequences.
2 Alignment here has been described on the level of words. For Text Variant Graph the alignment is on

the level of sentences.
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The fourth step and final step is the output and visualization of the collation results [3].
Based on different building principles, layouts and notation conventions are suggested. After
construction of the graph, some output formats are provided for printing or saving the graph
in digital form.

From the algorithmic point of view, alignment and transposition detection are most
interesting steps. In the following, several widely used algorithms for alignment and the basic
idea of transposition detection algorithms are introduced.

4.2.2 Text alignment and Text Variant Graph

Linear alignment is the core of 4-steps Gothenburg collation workflow. In this step, the token
sequences of all versions are lined up by the insertion of gaps. After insertion of gaps, the
sequences must contain the same number of the tokens inclusive gaps. Alignment of two
sequences is not unique. Recall the example of Figure 3, here “abcd” and “acdb” are aligned.
An alternative way to align these sequences is illustrated in Figure 5. This alignment matches
a and b while the previous matches a, c, d, and therefore is superior. Actually, the alignment
in Figure 3 is optimal, in the sense that it aligns the most characters. So this alignment is
not optimal. So how to find the optimal alignment is the problem to be solved in this step.

Figure 5 Another alignment of “abcd” and “acdb”.

Base-Text and Oder-independence of alignment algorithm

This section gives an overview of the whole process of linear alignment, which is the core step
of the construction of Text Variant Graph. In linear alignment, a version is chosen as the
base text, which will be compared with other versions. Alignment algorithm is reduced to
pairwise comparisons of two versions at one time. Each time when a new version is added in
the collation, it must be compared with the base text. During the construction of the graph,
each version must be compared with the base text and the result of alignment is merged
consecutively.

Figure 6 [2] Text Variant Graph with ASV as the base text.
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Figure 7 [2] Text Variant Graph with YLT as the base text.

So the alignment result depends on the choice of the base text and the order in which the
pairwise comparisons are merged. Different alignment results lead to different forms of the
Text Variant Graph. To find a suitable order of merging of the pairwise alignment results
is very important. It affects the effort of merging and also the readability of the graph. A
Hypothesis: More similar to the basic text, the version should be compared and merged
earlier [13].

The result of linear alignment will be stored in a data structure, for example, JASON
format.

After introducing the process of alignment, we will see two widely used pairwise alignment
algorithms.

Needleman-Wunsch algorithm

Needleman-Wunsch algorithm is a widely used alignment algorithm. This algorithm uses
dynamic programming to align two sequences of tokens [11].3

Dynamic programming is an important algorithmic technique which solves a complex
problem by using the solutions of subproblems. In our alignment algorithm, the optimal
alignment of two sequences is found by searching the best alignment of the subsequences. In
the following, we use A0...i to represent the subsequence of A which contains the characters
from the first to the (i + 1)-th. The condition, to determine how A0...i and B0...j are aligned,
are illustrated in the following table.

condition Gap added Line-up Alignment
1 No gap at end of the alignment Ai and Bj A0...i−1 and B0...j−1.
2 One gap at the end of A Bj and gap A0...i and B0...j−1.
3 One gap at the end of B Ai and a gap A0...i−1 and B0...j .

In this algorithm, a scoring schema S is used to evaluate the alignments. The optimal
alignment is considered to be the alignment with the highest score based on the scoring
schema. The scoring schema can be defined by the user himself. In this way, the user can get
the optimal alignment on his demand. For example, a scoring schema can be like this: for a
match one score is awarded, and for a non-match one score is reduced. If a gap is lined up
with another gap (gap-matching), the score is unchanged. In our example (see Figure 5), the
alignment “abcd␣” and “a␣cdb” has score 1 for 3 matches and 2 non-matches.

Apart from the scoring schema, a matrix C is used to record the highest score of
alignments of sub-sequences A and B. The scoring matrix is an N × N matrix, in which
N = max{|A|, |B|}+ 1.4 This matrix is also called scoring matrix. Each entity Cij contains
the highest score of Alignment of A0...i and B0...j . So the entity at the bottom right corner
will contain the highest score of the alignments of sequence A and B. For example, the C0i

3 In this description, we use the character as the granularity.
4 A0 and B0 are considered to be a leading gap in sequences.
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contains the highest score of alignments of A0 and B0...i. Because A0 and B0 are a gap-match
and i gaps needs to be added after A0 to align with B1...i, the value of C0i is equal to −i. In
this way, the first row and the first column are filled in the scoring matrix.

After filling the first column and first row in C, the next step is to fill the internal entities.

Figure 8 Three directions of filling up the internal cell.

Beyond our thoughts in dynamic programming, we can get the value in entity Cij by
considering three directions corresponding to the three conditions (see Figure 8). Under the
first condition, the optimal alignment of A0...i and B0...j with the additional condition of
the line-up of Ai and Bj is based on the optimal alignment of A0. . . i−1 and B0. . . j−1. The
score of the optimal alignment depends on the score of this optimal alignment of A0. . . i−1
and B0. . . j−1 (Ci−1,j−1) and if Ai and Bj a match or not. So it is called diagonal direction.
As for the second condition, to add a gap at the end of A is related in the scoring matrix
the up direction. This value of the best alignment of A0. . . i and B0. . . j with adding a gap
after Ai is dependent on the score of optimal alignment of A0. . . i and B0. . . j−1 (Ci,j−1).
Because of a gap insertion, a non-match exists. So the total score from the direction is Ci,j−1
-1. Similar to the second condition, the third condition corresponds to the left direction. The
score of alignment with lining up a gap with Ai is Ci−1,j−1. From these tree directions or
three conditions, we will get three candidates for Cij .

qdiag = Ci−1,j−1 + S(i,j) (align A0...i−1 and B0...j−1, Ai and Bj)
qup = Ci−1,j -1 (align A0...i and B0...j−1, gap and Bj)
qleft = Ci,j−1 -1 (align A0...i−1 and B0...j , gap and Ai)
The highest one of these three values will be used as the value of Cij .
A matrix D called direction matrix with the same size as the scoring matrix is used to

record the directions. The entity Dij records the direction be chosen in filling the entity
Cij . The process of filling up the direction matrix is synchronous to the process of filling
up the scoring matrix. After comparing the values of qup qleft and qdiag for Cij , the chosen
direction is recorded in Dij .

After filling up the two matrices C and D, Cnn contains the score of the optimal alignment
of sequences A and B and a traceback from Dnn can provide the process of getting this score.
And according to the process, an optimal alignment is constructed. A diagonal direction
corresponds to lining up to characters of A and B, a left direction corresponds to adding a
gap to A and an up direction to adding a gap to B.
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Figure 9 Optimal alignment of “abcd” and “acdb” illustrated using the entrances of the direction
matrix D.

There are variants of the Needleman-Wunsch algorithm with a different scoring schema. In
our example, we give a score for a match and reduce one score for a mismatch [11]. Users can
define their own score scheme based on their requirement on alignment. For example, when
users prefer to compact alignment and try to avoid excessive gaps in the alignment, they can
add gap penalty in the scoring schema. When a large deletion occurs, it is more convenient
to be a large gap rather than a continuous set of small deletions. Hence, a continuous set of
small gaps should have a worse score than a big gap. A common way to solve this problem
is to add an extra gap-start score reduce in the scoring schema. The pseudo-code for the
Needleman-Wunsch algorithm based on the scoring scheme (match +1, mismatch −1) is in
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Algorithm 1.
Input : Sequence A and B

Output : Alignment of Sequence A and B

for i=0 to length(A) do
for j=0 to length(B) do

C0j ← j
end

end
for i=1 to length(A) do

Match ← Ci−1, j−1 + S(Ai, Bj)
Delete ← Ci−1, j − 1
Insert ← Ci, j−1 − 1

end
AlignmentA ← ␣
AlignmentB ← ␣
i ← length(A)
j ← length(B)
while i > 0 ∨ j > 0 do

if i > 0 and j > 0 ∧ Dij = 1 then
AlignmentA ← Ai + AlignmentA
AlignmentB ← Bj + AlignmentB
i ← i− 1
j ← j − 1

end
else

if i > 0 ∧ Dij = 2 then
AlignmentA ← Ai + AlignmentA
AlignmentB ← ␣+ AlignmentB
i ← i− 1

end
else

AlignmentA ← ␣+ AlignmentA
AlignmentB ← Aj + AlignmentB
j ← j − 1

end

end
end

Algorithm 1 : Needleman-Wunsch algorithm
The time complexity of the algorithm is O(n2). The algorithm reads in two sequences

and compares each pair of the cells of the two sequences. So the run time depends on the
maximum number of the cells of the two sequences and the comparison strategy of the cells.
We consider here only the normal string comparison in the cell. So the time cost is O(n2), in
which n is the maximum number of characters in sequences A and B.

MEDITE alignment algorithm

MEDITE alignment algorithm is a linear alignment algorithm developed and used in MEDITE
by Julien Bourdaillet and Jean-Gabriel Ganascia [8].

The process of the alignment algorithm MEDITE has two steps. The first step is to find
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the longest matching in the two sequences and align the found match exactly regardless of
the rest part of the sequences. The second step is to align the rest part of the sequence with
MEDITE alignment algorithm literally or other alignment algorithms. In the second step,
the exact line up of the longest matching remains.

In the first step, to find the maximum match, MEDITE alignment algorithm uses the
suffix tree. In linguistics, a suffix (also sometimes termed postfix or ending) is an affix which
is placed after the stem of a word [4]. Informally, a suffix is the end part of a word, which
can be attached to a start part to get the original word. For example, the word “APPLE”
has suffixes: E, LE, PLE, PPLE, APPLE, ␣. The last two are special suffixes, one with
empty start part and one with the original word as its start part.

The Suffix tree is a space-efficient tree data structure, which is wildly used in string
comparison and other fields of textual analysis. A suffix tree is an ordered tree data structure
which is used to store exactly the suffixes of a string. The keys (the strings) are stored in the
edges. More formally, the suffix tree T(S) of string S is a rooted tree with labeled edges. A
path from the root to a leaf responds to a suffix of S. Two suffixes with same start part must
share the corresponding start part in the path. Therefore, the form of the suffix tree of one
string is unique. The construction of the suffix tree of a string S can be done in linear time
[10].

Figure 10 [5] Suffix tree of string “abbabbab”.

A Generalized suffix tree is the suffix tree of a sequence, which is catenated by a set of
sequences. The sequences involved in a Generalized suffix tree are catenated, separated from
a special sequence separator from each other. For example, the Generalized suffix tree of
strings “GATCG” and “CTTCG” is the suffix tree of string “GATCG$1CTTCG$2”.
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Figure 11 [7] Generalized suffix tree of strings “GAT CG” and “CT T CG”.

With this generalized suffix tree, we can find the longest matching, which corresponds to
the longest path from the root to a node, whose subtree contains all the sequence separator
symbols. The concentration of the labels of the edges in the path presents the longest common
string of two sequences.

The maximal match is not unique. Multiple maximal matches can be found in a generalized
suffix tree. After aligning the maximal matches found in step 1, the regions between the
maximal matches will be aligned in step 2. A heuristics variation is to choose the alignment
strategy in Step 2 based on the condition of the subsequences needed to be aligned.

The MEDITE alignment algorithm is not limited in pairwise comparison. A generalized
suffix tree of multiple strings can be used to find the maximal match of strings. The version
with multiple comparisons is often used in Computational Biology, for example for Detection
of RNA Elements.

4.2.3 Transposition detection

Sentences sometimes change their positions in variation problem. The step 2 may align two
sequences with a very bad score, a reason of this is: The aligned sentences are not meant to
be different versions of the same sentence. The transposition detection, is to find the set of
versions of same sentences.

Compared with the linear alignment, transposition detection is a much harder problem. It
is a further analysis of alignment result by adding transpositions. Schmidt D. concludes his
analysis of the transposition detection problem by stating detection of arbitrarily transposed
words an NP-hard problem [12]. Besides this, the words are not transposed literally but often
combined with small changes.

Match table

In this section, a concept by which most textual comparison tools detect transpositions will
be introduced. A data structure we use here to explain this concept is match table. It is
a version to version matrix, whose index of rows and column represents the tokens of the
sequence. The cells in the match table are scored if the corresponding tokens are a match.
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Figure 12 [13] A match table without variation.

A path of the scored cells from the upper left corner to the bottom right corner deviates a
transposition interpretation of the sequences. Two paths of our example are shown. Obviously,
the path in picture A (Figure 13) is more consistent with the assumption of human beings
and the path in Fig B (Figure 13) is invalid. The path in picture B, which assumes the first
“the” in sequence 1 is transferred to the second “the” in sequence 2 and the first “the” in
sequence 2, which in the same position as the first “the” in sequence 1, is yet transferred
from the second “the” in the first sequence.

A B

Figure 13 [13] Two paths in match table.

Token transposition and diagonal transform

After introducing the match table, we consider a situation of transposition. The paper
“Computer-supported collation of modern manuscripts: CollateX and the Beckett Digital
Manuscript Project” offers an example of match table based on a six-sentence quote from
Samuel Beckert’s Stirrings Still.

If we compare two identical copies of the text, we will arrive at the result shown in picture
A (Figure 15). As our explained example without variation, we will get a path through the
main diagonal. Then, we consider a situation of a transposition by moving the last sentence
to the first. If we compare the original text with the text with our artificial transposition, we
get the result in picture B (Figure 15). A diagonal in the top right corner depicts the swap
of last sentences. If we create multiple transpositions, the corresponding match table is in
picture C (Figure 15).

Figure 14 [13] A six-sentence quote from Samuel Beckert’s Stirrings Still.
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Figure 15 [13] A B C
*We add some vertical dotted line in the match table to get the optimal path of transposition.

A basic idea of transposition detection is: The transposition in variation is performed by
breaking main diagonal into smaller diagonals in match table. Thus, the problem of finding
transpositions is transformed to finding break-up path of main diagonal in match table. There
are two steps in algorithms using this idea. At first, the match table is calculated by comparing
tokens of two versions. In this step, the parts with best scores in alignment are ignored. The
time complexity of this step is O(n2). The second step is finding transposition approximately.
This step relies on a mathematical approximation of finding a set of sub-diagonals in a matrix.
Each of this smaller diagonal corresponds two parts in two versions. If a small diagonal is not
on the main diagonal, the corresponding two parts will be supposed to be a transposition in
two versions. These algorithms, which rely on matrix algorithms, can also be used to provide
transposition detection in multiple versions by using a multidimensional matrix as match
table.

4.3 In closing
The variation problem is a pervasive problem in linguistic. In the process of collation of
modern manuscripts, an efficient model is needed. The graph model, Text Variant Graph is a
compact, efficient and highly readable form of visualization of multiple versions of the same
text. The graph model allows several edit operation. In this work, the steps to Text Variant
Graph are explained. The key steps are linear alignment and the transposition detection. For
linear alignment, there are several algorithms with different ideas and data structures. We
present two most used algorithms among them: Needleman-Wunsch algorithm and MEDITE
alignment algorithm. For transposition detection, the basic idea of most detection algorithms
is finding diagonals in match table is explored.
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5 Block Edit Models for Approximate String Matching

Moritz Klammler

Abstract
Approximate string matching means identifying and rating similarities between strings. This is
usually done by considering how much editing would be required to transform one string into
another. Traditional models only consider character-by-character editing but this doesn’t take
the higher-level structure into account. Unfortunately, adding more powerful editing operations
quickly makes the problem become NP-hard. It is therefore essential to consider refinements
that maintain polynomial solvability and approximation algorithms. In this article, we will
look at the traditional Levenshtein distance which is based on character-wise editing and is in
P, editing with move operations which is NP-complete, minimum common string partitioning
which is also NP-complete and, finally and foremost, the model of block-level approximate string
matching introduced by Lopresti and Tomkins which is NP-complete if constrained and in P
under certain relaxations. In order to manage the complexity of editing with move operations,
we will investigate a restricted version thereof that can be solved in polynomial time and the
greedy heuristic, which is a very fast approximation algorithm. For minimum common string
partitioning, we will discuss its fixed parameter tractability. Finally, we will show the idea of the
proof that constrained block-level approximate string matching is NP-complete and present the
idea of the polynomial algorithms to solve the relaxed problems. We will conclude our survey by
an estimation of the potential benefits and drawbacks of some models.

5.1 Introduction
The basic problem that is studied in this article, approximate string matching, can be thought
of as the following task: given a source string A ∈ Σ∗ and a target string B ∈ Σ∗ over an
alphabet Σ with |A| = m and |B| = n, transform A into B by applying a sequence of yet
to be defined editing operations. In general, there will be more than one way to achieve
the task. Among these, we seek an “optimal” one. In order to remove the quotation marks
around the word “optimal”, we assign a cost – expressed as a, usually integral, number
– to each edit operation and associate with an edit sequence the accumulated costs of its
constituting operations. An optimal editing sequence is one with minimum cost. The edit
distance between A and B is the cost of an optimal edit sequence to transform A into B.
Instead of “transform into” we also say “match”.

In order to preserve space and improve readability, we will use the variables A, B, m,
n and Σ throughout the remainder of this article with the meaning given to them above
without defining them again every time.

We shall investigate different sets of allowed edit operations, called a model, with asso-
ciated costs and study the algorithmic difficulty of finding optimal editing sequences and
therefore edit distances in these models.

Before we look into more manageable edit models, let’s get an intuition by considering
an edit model that matches very closely how a human editor would nowadays think about
transforming text. Pick your editor of choice and define the set of allowed operations as the
operations provided by that editor. The cost function can be defined in several ways – for
example, a cost could be assigned to each key-stroke. “Many” people consider the challenge
of finding narrow upper bounds for optimal editing sequences in this model a joyful mental
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exercise and entire web-sites1 are dedicated to this “sport”, often referred to as golfing, with
the obvious analogy to classical golf sport2. Given that a powerful text editor will come
with a Turing complete scripting language, it is clear that edit distance in that model will
be undecidable as it basically boils down to Kolmogorov’s complexity.3 We will therefore
want to restrict ourselves to less powerful models that are at least computable. Ideally so
with feasible computational effort.

Scientific applications of approximate string matching arise for example in genomics
where biologists might ask how “close” the DNA (or RNA for that matter) of one species
is to the DNA of another species and thus draw conclusions about possible evolutionary
relationships. (Recall that DNA is composed of linear strands of molecules drawn from
a finite set of nucleic acids so the textual representation of DNA as strings is straight-
forward.) Lopresti and Tomkins [9] show an example of such analysis and cite another
source [6, p. 96] which claims that – at least by the time (1991) – manual inspection of a
graphical visualizations was / is the go-to strategy for identifying similarities between DNA
sequences.

Many papers on the subject seem to be motivated by genetics. It is also worth noting
that DNA strands can be quite long – potentially much longer than English sentences – so
algorithmic complexity might be an ample concern of this discipline.

Other applications involve the analysis of natural-language text where edit distances are
used as a low-level tool in order to construct so-called text variant graphs that visualize
similarities and variations among short texts [11]. In literary science, these visualizations
can be used to supplement a comparative discussion of the versions or to discover even new
aspects of the correlations between them.

Tichy [13] has studied a very similar problem with a focus on reducing the amount of
storage required for revision control systems. The systems he considered would store the
history of an evolving (software) project by keeping a base version (that could either be the
initial or the most recent version) and defining other versions in terms of recursively applied
deltas to that version. (Called forward or backward deltas depending on which revision was
used as the baseline.) Since a delta can be thought of as a sequence of edit operations,
finding an optimal sequence would have helped reducing the required amount of storage
(and presumably speeding up application of the deltas).

5.2 Character-Based Editing (Levenshtein Distance)
A classical similarity measure for strings is the so-called Levenshtein distance which has
become a standard item in the algorithm engineer’s toolbox. Since the original publications
from the 1960s are not very easily accessible, the reader is instead referred to a more re-
cent publication by Navarro [10] that compares several character-based distance functions,
including the Levenshtein distance. The primary work may be found via that paper’s refer-
ences.

1 http://vimgolf.com/
2 https://en.wikipedia.org/wiki/Golf
3 For a fixed Turing-complete description language over Σ (such that the description can be fed into

a universal Turing machine to simulate the described machine) and a string s ∈ Σ∗, the Kolmogorov
complexity of s is the length of a shortest description of a Turing machine that, when started with an
empty tape, outputs s and then halts. The Kolmogorov complexity relates to the entropy in a string.
It is not computable but more or less tight upper bounds can be determined for certain strings.
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Table 1 The Levenshtein editing model.

operation cost function

insert single character δins : Σ → N0

delete single character δdel : Σ → N0

replace single character δsub : Σ × Σ → N0

In the Levenshtein model, there are three allowed operations which are rated by three
corresponding cost functions as shown in table 1 where the understanding is that an editing
operation, say, inserting a character σ ∈ Σ will have cost δins(σ).

One might often find it sufficient to assign unit cost to all operations but arbitrarily
sophisticated choices are possible. For example, assigning a lower cost to replacing a char-
acter by its corresponding lower- or upper-case pendant could make the model partially
or completely case-insensitive. Likewise, assigning reduced or zero cost to the insertion
and deletion of punctuation characters might be desired (if they are not pruned from both
strings upfront). As a third example, δsub might be defined such that correcting common
typos (such as slipping fingers to an adjacent key on the keyboard or confusing the letters
“Y” and “Z” by switching from English to German keyboard layouts, where their locations
are inverted) is made cheaper.

Finding the edit distance in the Levenshtein model is straight-forward and is a popular
textbook exercise in dynamic programming, also known as Wagner-Fischer algorithm. See
again Navarro [10], transitively including references therein if desired. The algorithm always
finds the optimal solution and runs in time O(mn), so approximate string matching in the
Levenshtein model is in P.

5.3 Editing with Move Operations
While simple and efficient, the Levenshtein model falls short for modeling how the human
mind approaches similarity of strings. For example, if merely the order of words or even
larger chunks of text is permuted, we would like the strings to be considered still fairly
“close together”. The Levenshtein model cannot provide this because there is no way to
move sub-strings around other than deleting and re-inserting each character at a time.

Therefore, it might seem natural to add move operations to the set of allowed operations.
Of course, moving a single character doesn’t provide much benefit over deleting and inserting
it again elsewhere. It will be more interesting, however, to look at block moves: relocation
of blocks of text of arbitrary length. Such a block move is visualized in figure 1. There is a
distinction to be made between block moves that draw from the original source string and
such moves that take character sequences generated by previous edit operations. The latter
type is referred to as a recursive move and visualized in figure 2.

We drop the concept of cost functions and instead associate a fixed cost with insertion
and deletion of any character as well as moving of a block of text of arbitrary size. Note
that we have also abandoned the concept of replacing individual characters (which is trivially
compensated by a deletion followed by an insertion). The author does not know whether
and what properties of this edit model that are discussed in the following would have to be
revised, would these simplifications not be made. Table 2 summarizes the new edit model.
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Table 2 The editing model with block moves.

operation cost

insert single character cins ∈ N0

delete single character cdel ∈ N0

move sequence of characters cmov ∈ N0

Figure 1 A block move operation.

THE BUNNY EATS THE CHOCOLATE BAR.

THE CHOCOLATE BUNNY EATS THE BAR.

Figure 2 Editing with recursive block move operations. Note how in the second step, the string
“no good teeth” is moved, which doesn’t appear in the original string.

CHOCOLATE AIN'T NO GOOD FOR YOUR TEETH

FOR YOUR CHOCOLATE AIN'T NO GOOD TEETH

NO GOOD TEETH FOR YOUR CHOCOLATE AIN'T
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5.3.1 Complexity

Shapira and Storer [12] give a proof that approximate string matching in this model is an
NP-complete problem. Their proof uses a reduction of the bin packing problem4, which is
known to be NP-complete in the strict sense5.

In the same paper, they show that if dist(A,B) is the distance between strings A and B

for some fixed values of cins, cdel and cmov, then the distance using the same parameters but
disallowing recursive moves is bounded above by 3× dist(A,B). Consequently, the model is
NP-complete, regardless of whether recursive moves are allowed.

Ann et al. [1] show that the “problem can be solved by the polynomial-time optimization
algorithms if some reasonable restrictions are applied. The restricted variations […] involve
character insertions, character deletions, block copies and block deletions.” Note that there
are no block moves but instead copies and deletions which can simulate moves.

Their “reasonable restrictions”, which they adopted from another paper by Ukkonen [14],
involve partitioning the string into a dynamically changing active suffix and inactive prefix.
Initially, the entire string is active. As editing proceeds, the active part shrinks until the
entire string eventually becomes inactive. Edits are only allowed to modify prefixes of the
active part which subsequently become inactive.6

The paper considers three kinds of copies, referred to as external, internal and shifted.
External copies insert portions of the original (unedited) string while internal copies are
what we have previously defined as recursive moves except that the sub-string is copied
instead of moved. Shifted copies allow character-wise shifts of the copied text. For example,
if the alphabet is the ASCII character set and spaces and punctuation are ignored for a
moment, then a shift of −32 means conversion from lower-case to all-caps.

In addition to the three copying alternatives, the paper also considers three alternative
cost measures referred to as constant, linear and nested. The constant cost measure assigns
the same cost to any copying or deletion operation, no matter how long the copied or moved
sub-string is, while the linear measure assigns it a cost that is a constant base cost plus
a variable cost linear in the length of the sub-string. The nested model allows additional
modification of the copied strings and sets the cost to a fixed base cost plus the character-
based edit distance of the edit.

Three combinations are evaluated in the paper and polynomial algorithms using dynamic
programming with additional pre-processing are presented. The pre-processing step involves
preparing a suitable data structure for the actual algorithm to use. The results are shown
in table 3.

4 The bin packing problem is defined as follows: given a set of n “items” X = {x1, . . . , xn}, each with an
associated “weight” given by a function w : X → N, and a “per-package weight limit” k ∈ N, as well as
an integer m ∈ N, does there exist a “packaging”, that is, a partitioning of X into at most m sub-sets
P = {p1, . . . , pm} such that for the individual weight of each “package” p, the inequality

∑
x∈p w(x) ≤ k

holds. The version of the problem used in the proof actually requires that
∑

x∈p w(x) = k but it is not
hard to see that this additional requirement is easily dealt with by adding mk −

∑
x∈X w(x) additional

items of unit-weight.
5 A problem is NP-complete in the strict sense if it remains NP-complete even if a unary encoding is

used for all numbers in the input.
6 The reader who is inclined to read up on this in the cited paper shall be warned that the authors use

the variables A and B for different purposes than we do here.
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Table 3 Worst-case complexity of the algorithms presented by Ann et al. [1]. The column of
allowed block-copy operations is meant as a disjunction. That is, more than one kind of block-copy
operation is allowed. The “pre-processing” and “dynamic programming” columns do not refer to
alternatives but two mandatory steps that both have to be carried out sequentially.

allowed block-copy operations cost measure pre-processing dynamic programming

external, internal, shift constant O(n + m2) O(nm)

external, internal linear O(n + m2) O(nm log(m))

external, internal nested O((n + m)m2) O(nm2)

5.3.2 Greedy Heuristic

Another approach to combat the NP-complete nature of the problem is to leave the prob-
lem definition unaltered but accept sub-optimal solutions, that is, approximations. One
particular approximation that has received a lot of attention is the so-called greedy heuristic
(algorithm shown in figure 3) which was first suggested by Shapira and Storer [12] in 2002.
The idea is very straight-forward: by repeatedly replacing longest common sub-strings in
both the source and the target string with unique single symbols, the problem is converted
into one where both strings do not contain identical sub-strings beyond single characters.
This instance is then solved by applying the standard Wagner-Fischer algorithm (which
doesn’t consider block moves). Move operations can later be re-identified and used to cor-
rect the computed distance. The main step of the algorithm is visualized in figure 4. The
last loop in that algorithm is called check_move by the authors. It looks for pairs of inser-
tions and deletions of the same symbol and replaces them with a move operation. (This only
makes sense of course if it results in a reduction of the net cost which is assumed here.) For
this post-processing step to be efficient, additional arrays (called ηins and ηdel in the listing)
are used that keep track of the number of insertions and deletions. The Wagner-Fischer
algorithm has to be modified to populate those arrays accordingly. The maximum number
of symbols in the strings given to the Wagner-Fischer algorithm (and therefore the length
of these arrays) is bound by the length of the input (and probably much lower).7

When a suffix tree is used for finding the longest common sub-strings, and a new tree
is constructed in each iteration of the main loop, the algorithm has complexity O(mn) [12].
In 2014, Goldstein and Lewenstein [5] presented a major improvement of the algorithm by
re-using the suffix tree instead of re-constructing it anew in each iteration. This cuts down
the complexity of the pre-processing step to O(m+n) which seems impossible to be lowered
any further.

Shapira and Storer [12] alleged that the greedy algorithm would achieve an approximation
quality of log(m) but this claim turned out to be based on flawed reasoning. Chrobak,
Kolman, and Sgall [3] could show that the actual approximation quality is rather mγ with
0.43 ≤ γ ≤ 0.69. Kaplan and Shafrir [7] could improve their result and show that γ ≤ 0.46

is a tight lower bound. Their proof assumes that |Σ| ∈ O(log(m)).

7 The paper by Shapira and Storer [12] is not very clear here about its use of variables for the required
storage. The numbers mentioned in the text are partially based on own reasoning. It is clear that the
greedy step might increase the size of the alphabet, although not the length of either string. Since
characters that never occur in any string need not be considered, the number of characters in both
input strings together appears to be a safe upper bound.
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Figure 3 The greedy heuristic suggested by Shapira and Storer [12]. For simplicity, unit cost per
operation is assumed.

PROCEDURE Greedy
INPUT

A : String of length m

B : String of length n

OUTPUT
δ : Integer

VARIABLES:
ηins[1, . . . , m + n] : Integer
ηdel[1, . . . , m + n] : Integer
i : Integer

BEGIN
WHILE True DO

Find longest common sub-string s of A and B.
IF |s| ≤ 1 THEN BREAK FI
Choose arbitrary character x not currently present in either A or B.
Replace the same number of occurrences of s in A and B with x.

DONE
CALL StandardDistance(A,B, ηins, ηdel, δ)

FOR i = 1 TO m + n DO δ ← δ −min(ηins[i], ηdel[i]) DONE
END

Figure 4 The repetitive substitutions of longest common sub-strings with arbitrary new symbols
during the main loop of the greedy heuristic illustrated by example.

CHOCOLATE␣WITH␣GARLIC GARLIC␣WITHOUT␣CHOCOLATE

α␣WITH␣GARLIC GARLIC␣WITHOUT␣α

α␣WITH␣β β␣WITHOUT␣α

αγ␣β βγOUT␣α
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Table 4 The editing model behind minimum common string partition.

operation cost

move sequence of characters 1

Figure 5 An instance of MCSP with k = 4.

JUST ANOTHER GOLDEN CHOCOLATE BUNNY

ANOTHER BUNNY JUST GOLDEN CHOCOLATE

The algorithm was modified by Kolman and Waleń [8] to obtain an O(k2) approximation
(independent of the input length) for the special case that each input string contains at most
k repetitions of any given character. (Note how this conflicts with the previously mentioned
assumption that the alphabet size is logarithmic in the length of the strings.)

5.4 Minimum Common String Partition
Moving further along with our survey of different edit models, let’s consider the case next
where the only supported operation is moving blocks of text at unit cost while recursive
moves are disallowed. Obviously, if we can neither insert nor delete any characters, then
A and B had better be permutations of the same multi-set of characters to begin with or
the distance cannot be finite. The edit model is formally defined in table 4. Edit distance
in this model is also referred to as minimum common string partition or MCSP for short.
If dist(A,B) = k, then both A and B are permutations of the same k-tuple of text blocks.
This is illustrated in figure 5.

5.4.1 Complexity

It is not hard to see that MCSP can be viewed as a special case of editing with move
operations if the cost for insertions and deletions is set to infinity and the cost of moving
to one. More interestingly, Shapira and Storer [12] could also show that – if insertion,
deletion and movement all have unit cost – an instance of string editing with block moves
can be transformed into an instance of MCSP that has the same cost. Note that it was not
required on the original problem that the two strings be permutations of the same multi-set
of characters.

As a consequence, it is clear that MCSP will be NP-complete, too.

5.4.2 Fixed Parameter Tractability

Let k ∈ N be an upper bound for the number of blocks in the optimal solution and r ∈ N the
maximum number of consecutive repetitions of any given sub-string in either string, called
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the repetition number.

r = max
{
i ∈ N : ∃v ∈ Σ+ : ∃u,w ∈ Σ∗ : (A = uviw) ∨ (B = uviw)

}
(1)

Furthermore, let l ∈ N bet the minimum distance between two “cuts” (length of a smallest
block) in either string in an optimal solution. Define d = n/l as the distance ratio. Note
that d ≥ k.

Damaschke [4] showed in 2008 that MCSP is fixed parameter tractable in (d, r) as well as
in (k, r). For fixed (d, r) ∈ N2, an optimal solution can be found in O(n) and in O(n log(n))

for fixed (k, r) ∈ N2.
While the algorithm is not exactly straight-forward, the basic idea for the case that

(d, r) is fixed is simple. Since the distance between any two “cuts” in a string is at least
l = n/d, we can divide each string into fixed-sized segments. None of these segments can
contain more than one cut. After guessing an initial sub-set of the segments that contain
cuts (referred to as fragile segments by Damaschke), the remaining segments that are not
expected to contain cuts (referred to as conserved) have to be aligned. If the segment size
was chosen sufficiently small (but still linear in l) then between each pair of matched blocks,
there must be at least one segment that can be aligned to an exact match. The alignment
need not be unique (consider repetitions in the string) so additional guessing is required.
This alignment step corresponds to guessing a matching permutation. If an alignment turns
out to be not possible, then the initial guess was wrong and has to be discarded. Otherwise,
the algorithm proceeds by constructing a set of linear equations that either have as solution
the exact positions of the cuts in a valid solution or no solution if one of the guesses was
wrong. It is not too hard to see that the number of possible guesses only depends on d

and r. The paper also proves that solving the remaining linear system is possible in O(n)

which shows the overall result. If we fix (k, r) instead of (d, r), the reasoning becomes more
complicated.

It is intuitively clear why fixing k is useful. The reason why the solution must also
depend on r is less clear. In fact, Damaschke wonders whether the restriction is actually
necessary at all and points out that a similar NP-complete problem – minimum common
integer partitioning – is in fact fixed parameter tractable only in k. Yet, nobody seems to
have found a way to show the same for MCSP so far.

Meanwhile, however, Bulteau et al. [2] were able to lower the complexity of solving the
problem for fixed (k, s) where s is the maximum number of occurrences of any letter in
either input string8 to O(n) as well. The “constant” (due to fixing k and s) factor hidden by
the “O” is bound above by O(ks2k). While their algorithm is not at all obvious, the paper
explains it in good detail and they made a prototype implementation available for public
inspection9.

5.5 Block-Level Approximate String Matching
As a last edit model, we turn our attention to the oldest – and perhaps most intuitive –
block-editing model for the scope of this article. In 1997, Lopresti and Tomkins published

8 Beware that Bulteau et al. use the letter d instead of s which may confuse the hell out of you if you
have just previously read Damaschke’s paper.

9 It can be downloaded from http://fpt.akt.tu-berlin.de/mcsp/ although, unfortunately, they omitted to
mention any kind of software license so the code cannot really be used legally for anything beyond an
academic reading.
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Figure 6 A thought experiment to motivate the block edit model for approximate string matching.
(0) Some random DNA strand. (1) The DNA strand is broken into pieces by the application of
chemicals. (2) The DNA undergoes some local mutations due to exposure to radioactive radiation.
(3) The pieces of DNA mix with other biologic material. (4) Finally, the pieces of DNA re-combine
in different order and some DNA is lost. A new species is formed.

(0) AADCDCDADGGCCDCDAGAAGACCCCDCGCGCACDD

(1) AADCDCDAD GGCCDC DAG AAGACCCCDCG CGCACDD

(2) AAGCDCDAD GGCCDC DAG AAGCDCCCDCG CGCADDD

(3) AAGCDCDAD GGCCDC DAG AAGCDCCCDCG CGCADDD AAG GG

(4) CGCADDDAAGCDCDADAAGAAGCDCCCDCGDAGGG

Table 5 The editing model corresponding to the work of Lopresti and Tomkins [9].

operation cost

insert single character cins ∈ N0

delete single character cdel ∈ N0

break into block (sub-string) cblk ∈ N0

fuzzy matching of blocks dist : Σ∗ × Σ∗ → N0

a model [9] that might be understood by an analogy from genetics. Interpreting the source
and target strings as DNA sequences, one transits from A to B by cutting A into smaller
pieces, possibly mutating some pieces somewhat, loosing some of them, adding new material
and finally re-combining all the pieces in a potentially different order. This informal idea
is visualized in figure 6. Their model allows sub-strings to be matched in a fuzzy manner –
corresponding to the mutation step in the aforementioned analogy. Table 5 summarizes the
model but the table does not describe it as crisply as it did the other models.

Breaking the source and target strings into blocks may be subject to certain constraints.

The blocks form a cover if no characters are “left over”, that is, each character is contained
in at least one block.
The blocks are disjoint if no characters are “re-used”, that is, each character is contained
in at most one block.

All four combinations of “cover” and “disjoint” (visualized by example in table 6) are
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Table 6 Examples for the four possible combinations of breaking the string “chocolate” into
blocks with regard to their property of being disjoint or a cover.

disjoint not disjoint

cover {CHOCO, LATE} {CHOC, OCL, OCLATE}

no cover {HOC, ATE} {HOC, CAT}

Figure 7 Block-level approximate string matching. Note how “made” is matched to “make” and
how the blocks are neither disjoint nor a cover for either strings.

CHOCOLATE IS GOOD . IT'S MADE FROM CACAO BEANS .

GOOD CACAO BEANS MAKE FOR GOOD CHOCOLATE .

possible and define meaningful constraints. These may be applied to the source and target
string individually. For example, we might require a disjoint cover for A and only disjoint
blocks for B (or any other combination).

5.5.1 Complexity

As it turns out, if we require that the breaking into blocks of both A and B shall be
constrained to disjoint covers, set cins = cdel =∞, cblk = 1 and define

dist(x, y) =

{
0, x = y

∞, x ̸= y

for x, y ∈ Σ∗ then we obtain an MCSP instance. Necessarily, we conclude that block-level
approximate string matching with arbitrary costs and distance function is NP-complete if
both, the source and the target string, are constrained to disjoint covers.

Actually, as Lopresti and Tomkins [9] prove, the problem is NP-complete if and only if
both strings are constrained in some way. If either of them is unconstrained, the distance
can be computed by a polynomial-time algorithm. Table 7 summarizes the results of their
paper.

5.5.2 NP-Completeness

The proof of NP-completeness given by Lopresti and Tomkins [9] works via a reduction of
sequencing with release times and deadlines which is strictly NP-complete (c.f. footnote 5).
The problem is defined as follows: given a set of jobs, each with an associated duration, re-



60

Table 7 Complexity of block-level approximate string matching depending on the constraints
placed upon the breaking into blocks of source A and target string B where we still have |A| = m

and |B| = n.

target text
source text unconstrained disjoint cover disjoint cover
unconstrained O(m2n2) O(mn2) O(m2n2) O(mn2)

disjoint O(m2n) NPC NPC NPC
cover O(m2n2) NPC NPC NPC
disjoint cover O(m2n) NPC NPC NPC

lease time and deadline, is there a non-overlapping (single-processor) scheduling that ensures
that each job is started at or after its release time and completes before its deadline?

For the proof, the characteristics of a job are encoded in a unary fashion as are the
available time-slices. For each of the cases listed as NP-complete in table 7 (exploiting
symmetry), a distance function dist is crafted that has the property that a zero-cost matching
will exist if and only if a valid scheduling exists.

5.5.3 Polynomial Algorithm

For the remaining cases (where at least one string is unconstrained), Lopresti and Tomkins
[9] present exact polynomial algorithms.

The algorithms use dynamic programming to find the optimal solution recursively. As
an example, we will discuss the case where A is unconstrained and B is constrained to be a
disjoint cover. The other polynomial cases listed in table 7 can be solved in a similar manner
by adjusting the cost functions and lookup tables. See the cited paper for details.

The algorithm begins by computing a m×m lower triangular cost-matrix W 1 with

W 1[i][j] = cblk + min
1≤k≤l≤n

{
dist(A[i : j], B[k : l])

}
(2)

for 1 ≤ i ≤ j ≤ m. The element W 1[i][j] stores the cost to optimally match the sub-
string A[i : j] to any sub-string of B plus the constant cost cblk for creating that block. If
one is interested not only in the distance but also the actual matching, the matrix (or a
supplementary data structure) should also record the indices k and l.

Then the m-element array M is defined recursively via

M[i] = min
j<i

{
M[j] + W 1[j + 1][i]

}
(3)

where M[0] = 0. The element M[i] gives the distance between the prefix A[1 : i] and B.
Consequently, M[m] = dist(A,B). Again, if the actual matching is to be re-constructed,
the values of j should be stored somewhere as well.

If W 1 is already given, evaluating M[m] is possible in O(m2) steps using a straight-
forward iterative approach.

How much does it take to computing W 1? There are O(m2) non-zero entries that need
to be computed. Approaching the task naïvely, for each of these, O(n2) possible sub-strings
of B have to be considered. If dist is the Levenshtein distance, then evaluating each of those
costs another O(mn) steps. In total, this leads to a complexity of the naïve approach of
O(m3n3) steps. While still polynomial, the growth of this function is quite steep in practice.
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Table 8 Summary of allowed operations in various edit models.

char. char. char. block moves fuzzy
ins. del. sub. normal recursive

Levenshtein 4 4 4 8 8 8

edit w. move 4 4 8 4 (?) (?)
MCSP 8 8 8 4 8 8

blk. approx. 4 4 8 4 8 4

Fortunately, at least if dist is the Levenshtein distance, the computation can be greatly
optimized down to only O(m2n) by re-using results that were already computed. How this
can be done is explained in Lopresti and Tomkins [9]. Given that the sheer size of the result
matrix which cannot be changed already contributes a factor of m2, the complexity is quite
remarkable. In any case, computing W 1 dominates the computation of M and therefore
defines the overall complexity of the algorithm.

Very similar algorithms can be formulated for the cases where other restrictions are
applied to at most one of the strings and are accessible in Lopresti and Tomkins [9].

5.6 Conclusion
Approximate string matching is finding or rating similarities between strings. Simple character-
based models like the Levenshtein distance exist but yield results that are “too localized”
by failing to consider similarities of distant blocks of text.

Allowing block edit operations quickly makes the problem NP-hard. Since solving an
NP-hard problem will be unfeasible for all but the tiniest inputs, ways have to be sought
out of this. There are basically two approaches to get back to polynomial algorithms.

Alter the problem definition such that it becomes manageable again.
Accept approximations of the optimal solution.

The first approach is taken by Ann et al. [1], Damaschke [4] and in a broader sense also
by Lopresti and Tomkins [9]. The approximation path is followed by Shapira and Storer
[12]. The allowed operations in the various editing models are summarized in table 8.

Even though papers about block-edit models for approximate string matching have ap-
peared decades ago (such as the 1984 paper by Tichy [13]), the topic remains a field of active
research up to the present day. The breakthrough on the grounds of the greedy heuristic
presented by Goldstein and Lewenstein [5] in 2014 is a good example of a substantial recent
advance.

The oldest work that was considered for the purposes of this article dates back to 1997
but there are works predating it, too. The model presented by Lopresti and Tomkins [9] is
very intuitive and leads to elegant solutions that, in the author’s opinion, match very closely
how humans would naturally approach similarity of sequences. Interestingly, the paper is
often cited in later works but preferably so in “related work” sections. The author did not
find any work that built directly upon the foundation built by Lopresti and Tomkins. One
possible reason for this might be that while simple and elegant, the polynomial algorithms
still have quite steep curves and might not be able to compete with the greedy heuristic
– even more so after introduction of the improvement by Goldstein and Lewenstein [5] –
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especially for long strings such as DNA which seems to be where most of the research effort
originates from.
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6 Latent Dirichlet Allocation

Florian Becker

Abstract
Due to the vast amounts of texts which are produced and digitized on a daily basis, it becomes
more and more difficult to find what we are looking for. Topic models can be used as a tool
to discover topics in large collections of texts. Each text is considered to be a distribution over
topics and topics are, in turn, distributions over words. Topic model algorithms receive unlabeled
texts as input and produce the topic distribution as output. Latent Dirichlet Allocation is a
generative probabilistic topic model. The basic idea is that documents are mixtures of latent
topics distributed according to a Dirichlet prior.

6.1 Introduction
When seeking digitized and hyper-linked information, we use searching tools that weigh each
result according to some centrality measure. Such techniques are often sufficient, provided
that we only want to find some result and do not care about the underlying topic structure
which might give us more insight into a document or even a collection of many documents.
Topic models enable us to not only search documents by the themes that they contain, but
also give us a tool with which we can automatically organize and structure text corpora. It
is assumed that a document exhibits multiple topics and each is a distribution over words.
Consider, for instance, a corpus with texts about digital humanities. A topic model algorithm
might output that the text corpus contains the topics Computer Science, Linguistics and
Philosophy. But since every topic is a distribution over words, the algorithm will not just
output ’Computer Science’, but will rather give a distribution over words, which we then
can identify as the topic ’Computer Science’: e.g. algorithm, program, complexity, machine,
Turing, artificial intelligence, etc.
Topic Models can also be thought of as a way of clustering similar documents. Scientific
papers, books, tweets, blogs etc. can be organized according to the themes they feature.
With topic models organizing a large corpus becomes feasible.
Latent Dirichlet Allocation (LDA) is a generative topic model. In topic models the topic and
word distribution of a document can be explained by a generative model. In machine learning
generative models are used to simulate data points. Given some data (e.g. a text corpus) in
a generative model one will assume that there exists some process in the background which
has generated the data. In our topic model context, this means that the process first decided
what to pick as a topic and then decided which word to pick from that topic. The generative
process has certain parameters and it is assumed that there must be a certain configuration
that is most likely to have generated the observation. The goal is then to infer those hidden
parameters. Hence, inference can be seen as reversing the generative process. That means
that we want to uncover the most likely configuration that has produced a document. In
the case of Latent Dirichlet Allocation the hidden variables are the per-document topic
distribution, the per-document per-word topic assignments and the topics themselves.
Generally in discriminative machine learning data-driven algorithms are building a model.
This process is called training or learning and refers to the fact that the model adapts
iteratively to the training data, such that eventually the model can explain the target
variables. Explaining the data in a supervised model means, that the model delivers a label
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to a query. In unsupervised learning, a model represents the structure of unlabeled data. In
a generative (probabilistic) model however, we understand something else under the term
model. A model in this context means something that actively models the data/observations.
Section 6.4 and 6.5 discuss the differences between discriminative and generative models in
more detail.
Latent Dirichlet Allocation was introduced by David Blei, Andrew Ng, and Michael Jordan
in 2003 [2]. Since then it has been applied in various different domains to many different sorts
of texts. It is not restricted to operate on ‘classical’ documents. It was applied, for instance,
in the domain of public health, to analyze tweets with LDA in order to track illnesses over
time [8]. It was also just recently applied in bioinformatics for annotating genomes with a
feature term that describes a feature with LDA [9] .
As the intersection of computing and humanities grows, topic models will become more
important. Humanities profit from algorithmic methodologies applied on large text corpora
for obvious reasons; manually structuring those is mostly not an option.
LDA can also be seen as a way of reducing the dimensionality of a corpus, since the topic
distribution is a low dimensional representation of the documents [7]. Thus, one may gain
insight about the semantic levels when examining the low-dimensional structure of a text
corpus.
After a section about preliminaries and notation this report will introduce plate notation in
section 6.3 and the generative model in section 6.5. Section 6.4 will discuss LDA in terms of
machine learning and will therefore also introduce some terminology. In section 6.6 plate
notation will be used in order to introduce a concise way to formulate Latent Dirichlet
Allocation as a statistical model. Afterwards, the problem of Bayesian inference is discussed
and a solution, the Gibbs Sampling algorithm, is presented.

6.2 Preliminaries and Notation
Throughout this report the notation of the original paper by Blei et al. will be used and is
summarized in the following table.

Table 1 Notation, as used in [2].

symbol description
α parameter of the Dirichlet prior on the per-document topic distributions
β parameter of the Dirichlet prior on the per-topic word distribution
θi topic distribution for document i
ϕk word distribution for topic k
zij topic for the j-th word in document i, and
wij specific word
w a sequence of words (a document)
D a corpus of M documents; D = {w1....wM}

In order to understand in what way topics are assumed to be distributed the multinomial
and Dirichlet distribution including important properties will be summarized briefly.

6.2.1 Multinomial Distribution

The binomial distribution is a discrete distribution over events with two outcomes. It gives
the probability of obtaining k successes out of n trials, where each success has a probability
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of p. The probability mass function (PMF) is given by (Equation 1).

Pr(X = k) =
(
n

k

)
pk(1− p)n−k (1)

The binomial distribution is a special case of the multinomial distribution. The multino-
mial distribution models events which have k outcomes, where each has a fixed probability.
The probability mass function is given by

f(x1, . . . , xk;n, p1, . . . , pk) = n!
x1! · · ·xk!p

x1
1 · · · pxk

k (2)

6.2.2 Dirichlet Distribution

The Dirichlet distribution Dir(α) is a probability distribution parameterized by a positive
real valued vector α = (α1, · · · , αK). The probability density function is given by:

f (x1, · · · , xK ;α1, · · · , αK) =
Γ
(∑K

i=1 αi

)

∏K
i=1 Γ(αi)

K∏

i=1
xαi−1
i (3)

where Γ is the Gamma function.
The Dirichlet distribution is often also expressed with the inverse of the Beta function as

a normalizing constant. B(α) is constant as it only depends on the fixed parameter α.

f (x1, · · · , xK ;α1, · · · , αK) = 1
B(α)

K∏

i=1
xαi−1
i (4)

where

B(α) =
∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) (5)

The expected value of the Dirichlet distribution is simply computed by:

E[Xi] = αi
α0
, α0 =

K∑

i=1
αi. (6)

The support of the Dirichlet distribution of order K is the (K − 1)−simplex. For K = 3
the 2−simplex is given by a regular triangle, where each corner is an event. The vertices are
(0, 0, 1), (0, 1, 0) and (1, 0, 0). A point ~p = (p1, p2, p3) on this probability simplex corresponds
to a certain event.

6.3 Plate Notation
Generally, Bayesian networks (or probabilistic directed acyclic graphical models) represent
conditional dependencies with a directed acyclic graph (DAG). A directed edge from a
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(a) Dir(α = 〈2, 1, 1〉) (b) Dir(α = 〈2, 2, 2〉) (c) Dir(α = 〈10, 10, 10〉)

Figure 1 Dirichlet distributions in the two-dimensional simplex with different α. The corners A,
B, C correspond to topics. Regions of higher probability are shown by a heat map, i.e. (dark) red
corresponds to the most probable sample.

random variable Y to a random variable X means that Y causes X.
In a probabilistic graphical model conditional dependencies between various random variables
are often depicted in plate notation. Plate notation is a concise method for visualizing the
factorization of the joint probability. Typically, shaded nodes stand for observed random
variables. The plates represent the repeated structure.

X1 XN

Y

. . . . . .

(a) Regular visualization
of a graphical model as
a directed acyclic graph
(DAG).

	 X

Y

N

(b)
Plate
nota-
tion.

Figure 2 Plate notation as a way to summarize conditional dependencies. Shaded nodes represent
observed variables. Here, the Xi are conditionally dependent on Y . In plate notation all the Xi are
summarized as one plate.

The joint probability of the probabilistic graphical model depicted in (Figure 2) is

Pr[X1, . . . , Xn] =
n∏

i=1
Pr[Xi|parent(Xi)] (7)

=
n∏

i=1
Pr[Xi|Y ]

The plate notation will be used in the next section to have a concise representation of
Latent Dirichlet Allocation and especially the conditional dependencies.
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6.4 Machine Learning and Topic Models
In this section Latent Dirichlet Allocation will be discussed in terms of machine learning.
Therefore, the distinction between supervised and unsupervised as well as the distinction
between discriminative and generative model will be clarified.
Machine learning algorithms or problems are usually classified into two broad categories:
supervised and unsupervised learning1. In supervised learning the task is to find a hypothesis
or model from labeled data such that the model can correctly classify the data. Given a set
of training examples {x1:N , y1:N}, where xi ∈ X is an instance or feature vector and yi ∈ Y
is its corresponding label a supervised machine learning algorithm must find a hypothesis
h : X → Y such that ∀i : h(xi) = yi. In contrast to that, in an unsupervised machine learning
problem there are no labels. Clustering, for instance, falls into the domain of unsupervised
learning. Given data vectors {x1:N} the task is to label them. The underlying premise
of clustering algorithms (such as K-Means for example) is that data that belongs to the
same cluster is more similar to each other than to data from other clusters. Given an input
space X and two clusters V = {v1:N |v ∈ X} and W = {w1:M |w ∈ X} and some notion of
similarity s : X ×X → R, it must hold that ∀v1, v2 ∈ V and ∀w ∈W : s(v1, v2) > s(v1, w).
The objective function is to maximize the similarities within one cluster and minimize the
similarities between clusters. Latent Dirichlet Allocation is an unsupervised model, which
can be seen as a clustering algorithm. The input space X consists of documents, which
exhibit K topics. Unlike K-Means, in LDA a document can be part of more than one cluster
(see also Figure 6).

6.4.1 Discriminative Models

Discriminative algorithms, as opposed to generative ones, directly optimize a model for a
classification task [6]. Given an observed variable x and unobserved variable y, discriminiative
models will give the conditional distribution P (y|x). K-Means for instance is a similarity-
bases, unsupervised, discriminative approach [11]. Examples of disriminative models include
linear regression, support vector machines and nerual networks. However, LDA is a generative
model. The assumption is that a corpus is generated by a process, which will be discussed in
the next section.

6.5 Generative Process
Generative models generate data values according to a probability distribution. In machine
learning generative models are used to estimate the joint probability distribution Pr(X,Y )
of observed data X and labels Y . In the context of probabilistic topic models, Y corresponds
to the latent variables (i.e. to the unknown parameters) and X to the (observable) words
in a corpus. Latent Dirichlet Allocation assumes the following generative process for a corpus:

1 Reinforcement learning does not fall into this categorization. Since it is not of importance in this
context, it won’t be considered here.
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Input : Number of words N , Number of topics K
Dirichlet parameters α ∈ RK+ , β ∈ RN+

Output : D documents (bag-of-words) with N words each
1. Choose θi ∼ Dir(α),
2. Choose ϕk ∼ Dir(β)
for each word position i, j do

(a) Choose a topic zi,j ∼ Multinomial(θi).
(b) Choose a word wi,j ∼ Multinomial(ϕzi,j

)
end

Algorithm 1 : Generative Model

The generative model contains the main ideas of LDA. Data is treated as observations
coming from a process which samples words from a (hidden) distribution over topics. Every
word is generated independently from any other word. The generative process does not take
word order into account. Hence, the generative model produces a bag-of-words, where word
order does not play a role.
If three topics are chosen, e.g. Linguistics, Philosophy and Computer Science, and if equal
probability is given to all of them, then the generative process might produce bag-of-words
resembling a text from Digital Humanities. By putting more weight on Linguistics and
Computer Science the result would resemble documents from the domain of Computer
Linguistics. The generative process of LDA is depicted as a Bayesian probabilistic model in
Figure 4.

Figure 3 The generative process. Every word originates from a topic coming from a distribution
over topics. The topics and their word distributions are depicted on the far left. E.g. the yellow
topic is made up of the word gene by 4%. Taken from [1]

.

In Figure 3 the generative model is illustrated. The topic proportions are plotted as a
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bar chart, the colored coins are the topic assignments for each word.

6.6 LDA as a graphical model

α θd

zd,n wd,n β

N

D

K

Figure 4 Plate notation for Latent Dirichlet Allocation corresponding to the generative process.
Every vertex depicts a random variable. The shaded node wd,n stands for the observed words.
Everything else is not observed and must be inferred.

From the Bayesian probabilistic model one can derive the probability of a corpus D =
{w1, ...,wn}. First, the joint distribution of a mixtures of topics θ, N topics z and N words
w can be calculated by considering the conditional structure given in the graphical model:

p(θ, z,w|α, β) = p(θ|α)
N∏

n=1
p(zn|θ)p(wn|zn, β) (8)

In order to arrive at the marginal distribution of one single document w, one must integrate
over the (continuous) random variable θ and sum over the topic variable z.

p(w|α, β) =
∫
p(θ|α)

( N∏

n=1

∑

zn

p(zn|θ)p(wn|zn, β)
)
dθ (9)

The probability of the corpus p(D|α, β) is now obtained by multiplying all the marginal
probabilities of the M documents:

p(D|α, β) =
M∏

d=1

∫
p(θd|α)

( Nd∏

n=1

∑

zdn

p(zdn|θd)p(wn|zdn, β)
)
dθd (10)

6.7 (Bayesian) Inference
In Bayesian statistics, one is interested in computing the degree of belief p(h|D) of a hypothesis
h ∈ H given data D, where H is the space of all hypotheses. Bayes theorem states:

p(h|D) = p(h)p(D|h)
p(D) (11)

p(h|D) is also called the posterior.
Inference means computing the posterior and corresponds to ‘reversing’ the generative
model. In other words, inference is about fitting a generative model (or rather the hidden



71

parameters), such that it explains the observed data. In Bayesian statistics, maximum
likelihood estimation is used in order to estimate the parameters of a model given data. Let
τ be the parameter of a statistical model and let x = x1, ..., xn be the observations, then the
maximum likelihood estimator is defined to be [3]:

arg max
τ

L(τ ;x) = arg max
τ

P (x|τ) (12)

Many methods solving the problem of maximum a posteriori estimation have been pro-
posed. The original paper on LDA [2] suggested a Variational Bayesian method, which
directly maximizes P (w|ϕ, θ), which corresponds to equation 12 and can be understood as
an extension of the expectation-maximization algorithm [4]. Gibbs Sampling as a way to
compute the posterior was proposed by Steyvers and Griffiths [10]. They considered the
posterior distribution over the assignments of words w1:D to topics z1:D:

p(β1:K , θ1:D, z1:D|w1:D) = p(β1:K , θ1:D, z1:D, w1:D)
p(w1:D) (13)

The posterior is intractable to compute. More precisely, the denominator of (Equation 13),
the marginal probability, is not feasible to compute. To compute p(w1:D) one would have to
sum up the joint distribution over all possible instances of the hidden topic structure.

6.7.1 Gibbs Sampling

Gibbs Sampling, named after the physicist Josiah Willard Gibbs, is a Markov Chain Monte
Carlo Algorithm (MCMC) and can be used to approximate the marginal and posterior
distribution by constructing a Markov chain which converges to the target distribution.
A Markov chain represents a random process, where going from one state to another is
determined by a transition matrix P . An entry pi,j corresponds to the probability of going
from state i to state j. The goal of Gibbs Sampling is to integrate out the per-document
topic proportions θ. In order to assign a word to a topic, the Gibbs sampler computes the
probability of a topic zd,n if it is assigned to a word wd,n, where all other word-to-topic
assignments are given or fixed. z_d,n

is defined to be the notation for all topic assignments
except for for zd,n
Formally:

p(zd,n = k|z_d,n
, w, α, β) =

p(zd,n = k, z_d,n
|w,α, β)

p(z_d,n
|w,α, β) (14)

It was shown [5] that Equation 14 can be calculated by:

p(zd,n = k|z_d,n
, w, α, β) ∝

CWT
n,k + β

∑W
n=1 C

WT
n,k +Wβ

·
CDTd,k + α

∑T
t=1 C

DT
d,t + Tα

(15)

where T is the number of topics, and W the number of unique words. CWT
n,k and CDTd,k are

matrices. CWT
n,k is the number of times topic k was assigned to word n. On the other hand

CDTd,k is the number of times topic k was assigned to words in document d. The first step
of the Gibbs Sampling algorithm is to randomly assign every word of all documents to a
topic. By this the count matrices CWT

n,k and CDTd,k are filled with values. Gibbs Sampling will
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now sample topic assignments according to Equation 15. The first term of the product in
Equation 15 also corresponds to an estimate of ϕi, and the second term to an estimate of θj

ϕ̂i =
CWT
i,j + β

∑W
k=1 C

WT
k,j +Wβ

(16)

θ̂j =
CDTd,j + α

∑T
t=1 C

DT
d,t + Tα

(17)

I Example 1. The following step-by-step example illustrates how Gibbs Sampling can be
used to assign a topic to a word. Consider the sentence (which represents one document out
of a corpus):

Text mining algorithms can be used to find structure in text corpora like Plato’s dialogues

A priori we choose the number of topics K = 3
The first step is to remove stop words and randomly assign each word to a topic (Table 2).
This is done to all documents.

Table 2 random initialization of topic assignments to words.

1 3 2 1 2 1 2
text mining algorithms structure corpora Plato dialogues

The counts for all documents is shown in Table 3.

Table 3 word counts for every topic

1 2 3
text 65 54 59
mining 21 4 12
algorithms 100 74 122
structure 20 12 14
corpora 5 2 12
Plato 35 33 42
dialogues 24 27 31

The goal is now to resample the word algorithm.
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Table 4 We first choose algorithm to be resampled.

1 3 ??? 1 2 1 2
text mining algorithms structure corpora Plato dialogues

The assignment of the word algorithm is determined by sampling according to the topic
distribution in the document and the word distribution over the corpus. In Figure 5 the
sampling is depicted. The blue bars correspond to the topic distribution, the yellow bars to
the word distribution over topics. Accordingly, it is most likely that algorithm is assigned to
topic 1, since the green area for topic 1 is the largest. After assigning the word, the word
counts for each topic get updated and the first iteration of the Gibbs sampling algorithm
is completed. This process is repeated several times, until the assignments do not change
anymore.

Figure 5 Sampling according to the green area. Blue bars represent the topic distribution, the
yellow bars to the word distribution over topics.

6.8 Experiments and Applications
To fully grasp what LDA will produce as output, this section will provide an example with
real world data.
Gensim2 is a tool for unsupervised semantic modeling. The idea is to define three topics
by using Wikipedia articles. Then, all those Wikipedia articles are put into one corpus to
see whether LDA can reproduce those three original topics. Basically this is a clustering
task with a predefined number of clusters K. Similar to K-Means LDA will use the training
set (the predefined Wikipedia articles) and will find the clusters that maximize the model
parameters.
With Gensim the model can be trained very easily3:

Listing 1 Training the LDA model
K = 3

2 https://radimrehurek.com/gensim/index.html
3 the complete ipython notebook can be found here: https://github.com/flobeck/algo-

seminar/blob/master/ipython-notebook/lda_mixture.ipynb
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lda = ldamodel . LdaModel (CORPUS , id2word =dictionary , num_topics =K,
update_every =1, chunksize =1, passes =350)

Gensim uses the Gibbs sampling procedure that was discussed in section 6.7.1. CORPUS
contains the following preprocessed Wikipedia articles. The preprocessing steps comprise
removing stop words (i.e. most common words) and transforming the documents to a
bag-of-words.

• Computer science Algorithm, Computation, Computer Programming, Programming Lan-
guage, Computational complexity theory, Computability theory, Artifi-
cial Intelligence

• Philosophy Epistemology, Metaphysics, Continental philosophy, Ancient Greek,
Ethics, Aesthetics, Art, Phenomenology (philosophy), Pythagoras, Plato

• Linguistics Language, Semantics, Syntax, Phonology, Grammar, Phonetics, Prag-
matics, Corpus linguistics, Linguistic prescription, Linguistic description

The output of a call of LDA with K=3 is summarized in table 5.
Given a set corpus of Wikipedia articles, LDA finds three topics which resemble the topics
computer science, philosophy and linguistics.
Furthermore, it is possible to query where on the topic simplex an unseen document is
located:

Listing 2 Query for a document
noam = wikipedia .page (" Noam Chomsky "). content
bow_vector = dictionary . doc2bow ( tokenize (noam ))
print lda[ bow_vector ]

>> [(1, 0.032599745516170064) ,
(2, 0.30504589551791855) ,
(3, 0.66235435896591133)]

In this case (Listing 2), the Wikipedia article on the linguist Noam Chomsky is made up
of 66% Topic 3 (Linguistics), 30% Topic 2 (Computer Science) and 3% Topic 1 (Philosophy).
Blei et. al showed that one can train a model for document classification with Latent Dirichlet
Allocation [2]. Instead of using individual words as features, one can use the topic proportions
for each document. A document can then be classified by using LDA to extract the topic
proportion feature vectors of the training set and then a finding decision boundary with a
Support Vector Machine (SVM) or some other linear classifier.
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Figure 6 Topic proportions for some of the Wikipedia articles that were used to train the model.
The Wikipedia article on ‘Pythagoras’, for instance, is classified as a document in the category
‘philosophy’ with very high confidence. Note that albeit the confidence is very high it is not 100%.
Due to the model every document exhibits all the K topics, but to a very different degree.
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Table 5 Each of the three topics is a distribution over the words. E.g. topic 1 resembles computer
science. The table only shows the most relevant words for each topic.

TOPIC REL. FREQUENCIES WORD
1 0.010 programming

0.009 turing
0.008 problem
0.007 machine
0.006 problems
0.006 algorithms
0.006 algorithm
0.006 set
0.006 complexity
0.005 time

2 0.008 plato
0.006 plato’s
0.006 knowledge
0.005 pythagoras
0.005 philosophy
0.004 phenomenology
0.004 greek
0.004 according
0.004 socrates
0.003 theory

3 0.019 language
0.009 languages
0.007 art
0.005 meaning
0.005 linguistic
0.005 human
0.004 ethics
0.004 speech
0.004 study
0.004 grammar
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6.9 Conclusion
Topic models enable scholars to find the hidden topic structure in large text corpora. The
hidden structure must be uncovered in order to gain information about the low-dimensional
structure behind a text corpus. A topic modeling algorithm takes a corpus as an input
and will output the topics running through that corpus. The generative process is the
essential idea behind Latent Dirichlet Allocation. Words come from a distribution over topics,
which are again distribution over words. Reversing the generative model by applying Gibbs
sampling yields a solution of the inference problem, which can not be solved analytically.
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7 Syntax Trees and Syntax Tree Drawing

Jan Keim

Abstract
In the field of analyzing grammatical structures, syntax trees are an essential tool for visualization.
With the help of syntax trees different properties like commonalities and differences of sentences,
movement of words between sentences or ambiguities can be explored. Drawing syntax trees
with pleasing aesthetic properties is therefor a necessity. Algorithms that fulfill these aesthetic
properties algorithm like the Buchheim-Walker algorithm are required to allow for computer-
aided or automatic drawing of syntax trees. In this work, the historical development along with
principles of this algorithm is outlined. There are many tools that all provide different features
and approaches in drawing these trees. The outputs of some of them are compared. Especially
the tool TreeForm is highlighted as an easy and proper solution for drawing syntax trees.

7.1 Introduction
People that study grammatical structures, like linguists, rely on a proper visual representation
for these structures. Syntax trees act as such a required visual model for grammar and are
therefore a necessary tool. Hence, section 7.2 gives a basic introduction into syntax trees to
get to know syntax trees and the application of them.

Although syntax trees can be drawn by hand, this solution is, for various reasons,
unsatisfying. Automatic drawing of syntax trees with the help of algorithms can solve many
issues. Section 7.3 looks into drawing conventions and properties of tree drawing algorithms
before pointing out which properties are needed for drawing syntax trees. Later the Buchheim-
Walker algorithm that is widely used for drawing syntax trees is presented along its historical
development.

Finally, section 7.4 looks into different drawing tools with focus on the tool TreeForm as
an example for an easy-to-use tool that produces good syntax trees.

7.2 Syntax Trees
People who want to explore and explain grammar need a model to represent grammatical
structures and other parts of interest in grammar visually. One possible solution is to use the
so called bracket notation, where words within a sentence are annotated and surrounded with
brackets to limit the scope of the annotated grammatical structure. An example of bracket
notation for the question “What did John eat?” with the corresponding answer “John ate
bread.” can be found in example 1.

I Example 1.
((SBARQ (WHNP (WP What)) (SQ (VBD did) (NP (NNP John)) (VP (VB eat))) (. ?)))
((S (NP (NNP John)) (VP (VBD ate) (NP (NN bread))) (. .)))

Bracket notation can carry all information needed, but is a rather poor visual representa-
tion as it is not particularly well readable by the viewer. It is especially hard for the user to
see where the scopes of structures exactly are. This gets even harder for phrases like noun
phrases, commonly abbreviated NP, or verb phrases, commonly abbreviated VP, because
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those phrases usually aggregate multiple structures, which results in an even more confusing
representation.

A solution for this problem is the usage of Syntax Trees. Syntax trees are made to
give the viewer an excellent visual representation for grammatical structures. Examples
for syntax trees can be found in Figure 1. The sentences are the same as in example 1 for
bracket notation and the exact same grammatical structure is represented. Instead of having
confusing brackets the tree visualizes neatly how the grammar in the sentence is structured.
The depiction of the depth of grammatical structures with the help of levels in syntax trees is
especially beneficial. Structures like phrases, that made bracket notation more confusing, are
easily visualized with sibling nodes under a common parent. For example in Figure 1b there
is a verb phrase (VP) consisting of the verb (VB) “ate” and as the object of the sentence
a noun phrase (NP) solely consisting of the noun (NNP) “bread”. Verb phrases generally
contain at least a verb and can be extended with further details like adverbs, objects and
the like. Similar to a verb phrase, a noun phrase contains at least a noun (NN*) and can be
extended by descriptive information like adjectives (JJ), pronouns (PRP) etc. Both are the
most important structures in syntax trees as a common sentence has at least a subject, which
is represented by a noun phrase, and a verb, which is represented by a verb phrase. There are
plenty of labels on clause level, phrase level and word level, but the detailed meaning of each
possible label is not important for this write-up. Further, those labels are not standardized,
which results in a huge amount of labels. Therefor further labels will not be explained here if
the explanation are not needed for understanding 1.

(a) “What did John eat?” (b) “John ate bread.”

Figure 1 Example syntax trees

In this write-up the focus lies primarily on the usage of syntax trees in the linguistic
field, so mainly syntax of natural language is shown. However, syntax trees are not tied to
grammar in natural language but can theoretically be used for every other grammar like the
ones for parser and compilers in computer science.

Generating a syntax tree is done with the help of a grammar that is used to parse the
sentence. By exchanging the underlying grammar the appearance and focus of a syntax tree
can be altered, because the grammar defines how structures look like and what phrases

1 A popular set of labels with explanations can be found at https://gist.github.com/nlothian/9240750
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exists, what they can contain etc. An example would be one grammar that treats all verbs
the same while another grammar makes a difference in active and passive verbs. Additionally
one grammar may put adjectives in a verb phrase together with the verb while another one
would not cover this.

Besides just representing syntax, these trees also offer the possibility to point out de-
pendencies between structures of sentences. Once one or multiple syntax trees are drawn
one can start to observing the special points of interest like commonalities between different
sentences.

By adding further information and structures into syntax trees, theories can be examined
even better. One of these structures are movement lines that can be seen in Figure 2. The
sentences there are the same as above from example 1 and figure 1, but the parsing grammar
is different. This syntax tree illustrates how a question and its answer are related to each
other. This resemblance is visible in the subtree at the node TP on the left that is basically
the same as the syntax tree on the right. This shows how the question is closely related to the
answer. The movement lines support this statement by showing how parts of the sentences
were dragged to the beginning to form the question. Here, the past tense auxiliary verb “did”
was moved to the front and the question word “what” can be derived from “bread”, the main
subject of the answer of the question.

Figure 2 Example for syntax trees with movement lines [6]

Another application for syntax trees is their usage to show differences in ambiguous words
and sentences. Figure 3 shows the syntax trees for the ambiguous word “unlockable”. The left
meaning “Cannot be locked” can be easily explained with the help of the syntax tree. The
verb “lock” is grouped with the word “able”, which builds the adjective “lockable” as main
meaning, that then gets negated with the prefix “un”. On the right hand side the meaning
“Can be unlocked” can be explained with its syntax tree as easily. Now the verb gets negated
at first to form main meaning “unlock” before it then gets transformed into an adjective
with the help of the suffix “able”.

Besides words, sentences can be ambiguous as well and those ambiguities can be explained
in a very similar way. Figure 4 shows the two syntax trees for the ambiguous sentence “I
saw the man with a telescope.” Here, the meaning is also easily explainable with the help of
those syntax trees. In figure 4a there is a verb phrase (VP) consisting of a Verb (V ) and a
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Figure 3 Example for syntax trees for the ambiguous word “unlockable” [6]

noun phrase (NP). The noun phrase itself consists of the noun phrase “the man” and the
prepositional phrase (PP) “with a telescope”. It is easily visible that the phrase “the man
with a telescope” is here the intended coherent meaning. The syntax tree on the right shows
a slightly different structure. The noun phrase from above was split here and the verb phrase
now consists of the verb, a noun phrase and a prepositional phrase. This prepositional phrase
is not bound to the noun phrase anymore but rather bound to the verb phrase and thus
emphasizes the verb. This results in the meaning that a telescope was used to see the man.

To go even further the sentence can be altered with the little phrase “on a hill” to form
the sentence: “I saw the man on a hill with a telescope.” This would result in up to 5 different
meanings that could be extracted from this sentence. Syntax trees would help again to
differentiate most of these meanings.

(a) I saw a man who was with a telescope. (b) Using a telescope I saw a man.

Figure 4 Syntax trees for the ambiguous sentence “I saw the man with a telescope.”

7.2.1 Dependency Trees

Similar to syntax trees there are so called Dependency Trees. They use different grammars to
serve a slightly different purpose to show dependencies within one sentence. In contrast to
syntax trees, here the depth of the structures is not that important anymore because the
focus lies more on the edges instead of the nodes. A basic example can be seen in Figure 5.

The root of dependency trees is usually the verb of the sentence. In contrast to syntax
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Figure 5 Example for a dependency tree, created with Stanford’s CoreNLP [8]

trees phrases are distinguished based on their dependencies and task in the sentence. For
example in a syntax tree “the quick brown fox” and “the lazy dog” would each be noun
phrases and it would be slightly harder to tell which one of them is the actual subject within
this sentence. Within the dependency tree there is the edge nsubj from the verb to the subject
of the sentence, here from “jumps” to “fox”.

Such dependencies are designed to be useful in many situations, especially if you need
to process the information of the dependencies within a sentence instead of the actual
(grammatical) structures [5][7]. A good example for that is trying to convert a natural
language text into code. There, the information about subject, predicate and object(s) of the
sentence can be used to transform them into the class or object that calls a function with
some parameters.

Both, dependency trees and syntax trees each have their own applications where they
are more beneficial to use than the other and the user judges which represents the required
information better.

7.3 Tree Drawing Algorithms
There is a wide variety of tree drawing algorithms [1][10]. Each of them has its own characte-
ristics and area of application and not every algorithm for drawing trees is automatically
applicable for drawing syntax trees.

Syntax trees have special drawing requirements as they are for instance designed to
provide a good visual representation. To figure out which of these algorithms are applicable
for syntax trees a short introduction into drawing conventions of tree drawing algorithms is
given in section 7.3.1. After this overview a deeper look into the actual needs of syntax trees
is taken in section 7.3.2.

7.3.1 Properties

According to Battista et al [1], properties or drawing conventions are basic rules that a
drawing of a graph must satisfy to be admissible. These properties define some aspects of
how the resulting trees will look like.

In a Polyline Drawing of a tree, edges are represented as polylines with bends. An example
for this can be found in Figure 6a.

A similar but more strict version of polyline drawings are Orthogonal Drawings, where
the edges consist of only vertical and horizontal segments like the ones visible in Figure 6b.

If we look into syntax trees both drawing conventions are not desired as bends can confuse
the viewer. Additionally, with these bends the order of nodes cannot be assured which is a
rather disadvantageous trait for syntax trees.

The next kind of drawings are Planar Drawings, where the lines of the edges must not
cross each other. The trees of Figure 6 show examples for this property while the tree in
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(a) Polyline and Upward
Drawing

(b) Orthogonal and Non-Upward Drawing

Figure 6 Trees drawn with different properties [10]

Figure 7 does not fulfill this property. In regard to syntax trees it is essential for the clarity
of the visualization that the used algorithm creates a planar drawing.

Figure 7 Tree drawn in a non-planar way [10]

Drawing algorithms can also have a property to create an Upward Drawing like the tree in
Figure 6a. An upward drawing tree has the characteristic that no child node is drawn above
its parent node. In contrast, Figure 6b shows a non-upward drawing, where no limitation
regarding the position in reference to the parent node is made.

In Figure 6a some children nodes are drawn on the same level with their parents. Level-
based approaches are a more strict version of upward drawings that do not allow this. In a
level-based approach nodes that have the same distance from the root node are drawn on the
same horizontal level. This is illustrated in Figure 8. It is easy to see that such a level-based
approach is desired for syntax trees as this means that grammatical structure that have the
same depth within the sentence will be drawn on the same level. This also means that it is
easily visible where higher-ranking structures are and what they do contain.

7.3.2 Drawing Conventions for Syntax Trees

To understand which drawing conventions match the syntax trees we take a closer look on
their definition.

I Definition 2. A Syntax Tree is a rooted, ordered tree of unbound degree.
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Figure 8 Tree drawn with a level-based approach [1]

The definition says that a syntax tree is rooted meaning that a single vertex of a tree is
designated as a root. Further, the definition states that the tree must be ordered, which
means the relative position of each node in the tree is predefined. In the case of syntax trees
this means that the order of the leaves is defined by the order of the input, thus the leftmost
part of the sentence will also be the leftmost part in the syntax tree. The last part states
that syntax trees have unbound degree, that is, nodes can have arbitrarily many children.

Thus, definition 2 and other considerations lead to the following drawing conventions [2]:

• The first aesthetic property demands that the layout of the tree needs to display the
hierarchical structure. This property can be assured with the help of the aforementioned
level-based approach.

• The second aesthetic property states that edges must not cross, which means the algorithm
must produce a planar drawing.

• The third property requires that the drawing of a subtree does not depend on its position
in the tree. This assures that isomorphic subtrees will look equal.

• To include the “ordered” leaves property from definition 2, the fourth aesthetic property
defines that the order of the children must be displayed.

• Last but not least, the algorithm must work symmetrically. This means, that the reverse
input would result in a mirrored tree. This property additionally secures the “ordered”
property.

7.3.3 Buchheim-Walker Algorithm

The Buchheim-Walker algorithm is a tree drawing algorithm that fulfills the required aesthetic
properties for drawing syntax trees and grew historically. The initial Reingold-Tillford-
Algorithm [9] from 1981 for binary trees was adapted in 1990 by Walker [13] to support trees
of unbound degree and lastly improved in 2002 by Buchheim [2] to achieve linear time for
drawing.

Reingold and Tillford [9] designed their algorithm to draw binary trees in a bottom-up
fashion. Leaves and subtrees are independently placed at first before they get merged under a
common parent. The parent in such a merge is drawn one level above its children and placed
horizontally between them. Merging two subtrees in this way causes the need of avoiding
collisions of these subtrees. Reingold and Tillford introduced contours to overcome this
problem. A contour of a (sub)tree are the nodes that lie on the “boundary” of its drawing.
Contour nodes of the tree in Figure 9 are colored gray. Subtrees are placed as close to each
other as possible such that the contours do not collide (and have a minimum distance in
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between them). Contour nodes on the same level of subtrees are checked against each other
for collisions by comparing their positions and in the case of a collision the whole subtree is
shifted. To get the contour of a subtree the leftmost and rightmost nodes are walked. This
creates a problem if the leftmost (rightmost) path cannot be walked down to the lowest level.
In this case each time a calculation of the leftmost (rightmost) node on the level below would
be needed. To overcome this computational overhead so called “threads” are introduced to
leaves to save a pointer to the next node of the contour. These threads are visible as dotted
arrows in Figure 9. A naive implementation of this algorithm would run in quadratic time
as shifting all nodes would result in quadratic time. However, Reingold and Tilford used a
technique presented by Wetherell and Shannon [14] and introduced new modifier values to
the nodes. While traversing the tree these values are set “on the fly” and are representing the
amount of shifting of a node. At the end of the algorithm the tree only have to be traversed
once more to compute all real positions in linear time.

Figure 9 Grey marked nodes represent the contours, dotted arrows represent the threads [2]

In 1990 Walker [13] adapted the Reingold-Tillford algorithm to be able to draw trees of
unbound degree. This adaption made it possible to use this algorithm for syntax trees.

Walker adapted the former algorithm by stating that subtrees can be processed left to
right. For each subtree it is evaluated if there is a collision with one of the subtrees left of it
and the subtree is then placed accordingly. If the placed subtree needs to be shifted to avoid
collisions all subtrees left of it need to be shifted so the subtrees are all spread evenly. Figure
10 illustrates the placing and shifting of subtrees.

The calculation for collisions on the one hand causes much computation, especially because
the number of subtrees that each subtree contains needs to be calculated and traversed.
On the other hand, the shifting of the subtrees causes the other major computational time.
According to [2] this results in the algorithm needing more than linear time for drawing: In
total, traversing the contour has a runtime of Ω(n3/2), finding ancestors and summing up
modifiers has a runtime of Ω(n2) and counting and shifting of nodes needs Ω(n3/2) time.

To solve the problem of Walker’s algorithm being a non-linear drawing algorithm Buchheim
et al. improved it in 2002 [2]. Most improvements consisted of saving calculated information
rather than calculate that information each time. This needs more memory for saving that
information but the recalculation time is significantly improved.

At first threads were reintroduced to get contours easily, like in the original Reingold-
Tillford algorithm. Another major problem in Walker’s algorithm was the runtime of finding
ancestors and summing up modifiers. These informations are now calculated once and then
stored in the corresponding nodes. Additionally, nodes now carry information about their
ancestors and the counting of smaller subtrees. This results in a linear runtime instead of a
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Figure 10 Placing of subtrees with shifts in Walker’s Algorithm [2]

quadratic runtime for these operations.
One other big change was to change when and how nodes are shifted. When checking

for collisions and needed shifting, only the currently added subtree is shifted, while the
information of how far this subtree needed to be shifted is stored. These values are similar to
the modifier values in the original Reingold-Tillford algorithm. Once every subtree is added
the values of how far each subtree needs to be shifted are calculated and the shift operations
are carried out. This reduces the amount of shift operations for each subtree from a linear to
a constant amount.

Looking at the costly operation of Walker’s algorithm these improvements erase the
problematic parts that run in non-linear time. Placing a subtree is now possible in constant
time, which overall makes the algorithm to run in linear time.

The Buchheim-Walker algorithm with its linear time and visually good results is therefore
a solid choice for drawing syntax trees.

7.4 Syntax Tree Drawing Tools
Before using syntax trees to describe and explore grammar, these trees need to be drawn.
There is a variety of tools that all offer various features and use different approaches to draw
syntax trees.

Additional features include coloring of nodes and text and the addition of movement
lines like the ones in Figure 2. Some tools also provide the facility to check created syntax
trees with the help of provided grammar to make sure there are no mistakes regarding the
grammar.

Different drawing tools and techniques can be distinguished in different ways. One major
difference is which technique and input is used to produce syntax trees. Besides, tools differ
in the amount of features they offer as well as the amount of exporting formats they provide.
Common export formats are document formats like PDF and image formats like PNG and
JPEG.

In section 7.4.1 an overview of different tools is given before a deeper look into the syntax
tree building tool TreeForm is given in section 7.4.2. Finally, a critical look into missing
features of TreeForm and a proposal for an alternative is given in section 7.4.3.
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7.4.1 Comparison of Tools

The first obvious category of tools is drawing syntax trees by hand. This technique can be
quite error-prone which collides with the fact that erasing wrongly drawn parts can be more
difficult than in digital versions as sometimes the only option is to redraw the whole tree.
However, the major disadvantage of these hand-drawn trees is that they are not eligible for
publication.

The next possibility is the technique to draw syntax trees with the help of special fonts
like Arboreal [3] and Moraic [4]. According to Derrick et al. [6], most linguists use word
processors with these fonts to draw their syntax trees. Drawing syntax trees with fonts is
done by writing the labels on every other row. The rows in between will then be filled with
special characters that represent the edges. In Figure 11 tree (a) was made with this manual
typesetting. Advantage of this technique is its easy approach and that the insertion of the
syntax trees into documents is easy. Problem with this approach is that it is error-prone and
time-consuming. The user has to figure out manually each problem that an algorithm would
solve, like the positioning of subtrees, spacing and others.

LATEX macros form the next category. Among the different macros are qtree and synttree.
One of the major problem of LATEX macros is a by-product of LATEX the absence of a graphical
user interface (GUI). This often causes less experienced LATEX users to struggle using these
macros. Additionally, some macros leave some tasks like spacing to the user, which makes
them even less user-friendly.

Some LATEXmacros like qtree are transforming bracket-notation into syntax trees. Similarly,
there are some tools unrelated to LATEX that just take the bracket notation of a syntax tree
as input and build the tree out of it. One of these is the web-based tool phpSyntaxTree [12]
where one can enter trees using bracket-notation and the resulting syntax trees can then be
exported as PNG or SVG.

Another category of tools are basic graphic tools. With almost any graphical software
nodes and lines can be drawn and text can be added. Put together in the correct way one
can easily form a syntax tree. Similar to e.g. the special fonts, all algorithmic decisions need
to be taken by the user, which makes this technique again error-prone and time-consuming.

Better suited to solve these algorithmic decisions are conventional graph visualization
tools like Graphviz, yEd, Pajek, visone and many more. Problematic with these tools is that
they are not adopted to syntax trees and therefore are usually not suitable for drawing syntax
trees.

To overcome most of the problems stated above specific Syntax Tree building tools like
TreeForm [6] and TreeBuilder [11] were developed. Such tools provide an easy accessible way to
create syntax trees in no time. These tools usually use an algorithm like the Buchheim-Walker
algorithm to draw pleasing syntax trees.

Figure 11 shows a comparison of the results of different tools and techniques. They can
be divided into two groups. The first group involving tree a,b and e creates good looking
syntax trees. The other group with the rest of the trees have weird looking results as the
spacing and positioning of subtrees are less favorable. The weird looking spacing is caused
by the following property of the algorithms: Each subtree is drawn left of the leftmost node
of the right subtree (and the other way round), without taking into account the level of the
nodes. In contrast, better solutions like the Buchheim-Walker algorithm take the contours
into account and place subtrees closer to each other, which results in more compact and
clearly arranged trees.
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Figure 11 Comparison of different Syntax Tree Drawing tools [6]

7.4.2 TreeForm

TreeForm is an easy to use What-you-see-is-what-you-get (WYSIWYG) syntax tree building
tool and provides the user with a clear graphical interface that is shown in Figure 12. The
user can utilize simple drag-and-drop elements to build up the syntax tree. Resulting syntax
trees are drawn with the help of the Buchheim-Walker algorithm. With this tool first syntax
trees can be created in no time without a steep learning curve. Besides building syntax
trees TreeForm offers features such as multiple colors and font types, indices and other text
formatting features. Additionally, TreeForm supports drawing of movement lines.

The syntax trees can be saved, printed and exported in the image formats PNG and
JPEG and as a vector graphic in the document format PDF. On top of that, there is the
possibility to copy the tree into the clipboard to then be able to directly insert the tree into
word processors like Microsoft Word or its free pendant LibreOffice.

The major benefit of TreeForm is its accessibility and usability. Syntax trees can be easily
drawn and the WYSIWG property underlines this even more. As it is visible in Figure 11
TreeForm also produces good looking syntax trees which is naturally essential. Last but not
least TreeForm is also platform independent as it is written in Java.

In contrast to all those benefits there are also some disadvantages. TreeForm supports
movement lines reasonably well, but sometimes the positioning of these lines is not beneficial
as they might cross nodes or edges. Another disadvantage is that it is impossible to change
the structure or position of a subtree without deleting and rebuilding it. TreeForm is good at
adding nodes etc. to the tree but offers no other solution to change them except deletion.
This can be frustrating for the user when the user only wants to make slight changes but has
to rebuild the majority of the tree. Finally, the biggest disadvantage right now is that this
tool is not supported anymore and thus gets no more updates. This is problematic as some
features are broken when using a current version of Java. The last Java version that was
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Figure 12 Screenshot of the graphical user interface of TreeForm

officially supported by this tool was Java 1.6, that lost support in 2013 and thus received no
public updates since then.

7.4.3 Missing Features for Treeform and Alternatives

TreeForm can be improved in some aspects to provide an even better experience for the
user. At first the disadvantages of TreeFrom could be removed. This can be done by at first
adding the functionality to move or copy subtrees to enable modification without deletion.
Additionally, releasing the source code to open source to make it possible for the community
to repair broken features and introduce new functionalities would be beneficial. One of these
new features could be an optional automatic generation of syntax trees. An input sentence
could be transformed into a syntax tree with tools and libraries like Stanford’s CoreNLP
[8]. Such an automatic generation of syntax tree could reduce the time needed for creating
syntax trees and also would help beginners to get into syntax trees.

An alternative to TreeForm is TreeBuilder [11]. TreeBuilder is a commercial syntax
tree building tool that offers the same features like TreeForm and has some additional
functionalities as well. The tool itself uses menus to create further elements in the syntax
tree in comparison to TreeForm’s drag-and-drop solution. In contrast to TreeForm this tool
enables the user to edit the tree by moving and inserting parts. It also provides the user the
possibility to set a specific grammar and check whether the tree is sufficient regarding that
grammar. The biggest disadvantage is that it is commercial, but there is also a free trial
version to test this tool.
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7.5 Summary
Syntax trees aid in understanding and explaining aspects in grammar. They are an essential
tool especially for linguists and other people involved in analyzing grammar. With the help of
syntax trees tasks like comparison of differences and commonalities in grammatical structures
within sentences as well as e.g. ambiguities can easily be done.

For automatically drawing syntax trees proper algorithms are needed. These algorithms
need specific aesthetic properties to create a satisfactory visual representation of syntax trees.
One appropriate algorithm is the Buchheim-Walker algorithm that creates syntax trees in
linear time. The Buchheim-Walker algorithm was developed out of the Walker-Algorithm
to solve the issue of the non-linear time complexity. The Walker-Algorithm in turn was
developed out of the Reingold-Tillford algorithm to be able to fix the problem of only
supporting binary trees.

Drawing tools implement algorithms to help users create syntax trees. Various tools and
techniques have been mentioned in this writeup. Most tools have either the problem of being
error-prone and time-consuming or being hard to use and less user friendly. However, syntax
tree building tools like TreeForm and TreeBuilder provide the user with a solid and easy to
use solution to draw syntax trees that then can be exported to various formats.
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8 Graph-based Topic Labelling Using DBpedia

Germaine Götzelmann

Abstract
In text mining and natural language processing, topic modelling is a way to enlist the subjects
appearing in text. However, topic models are not easily understood by human users. Given a
topic model for a text or a corpus of documents, how can we find fitting labels describing the
clustered topics by exploitation of an external knowledge base? The described approach makes
use of the graph-based structure of DBpedia, which is a semantic web database derived from
Wikipedia articles. Topic words are mapped to their corresponding DBpedia concepts and then
concepts that are semantically closely related to them are used to generate subgraphs of DBpedia.
With the help of graph centrality measures the top-k labelling candidates are chosen from all
nodes in such a graph. This report describes the approach in detail, assesses the evaluation for
the explained approach and supplements a possible use case in the humanities.

8.1 Introduction
Topic models have become an increasingly popular way to analyse text corpora since the
proposal of the Latent Dirichlet Allocation (LDA) in 2003 [9] (see report 6 in this collection
for details). A standard approach for presenting said topic models are simple term lists
which contain the top-k topic words of the model [17]. It can be quite difficult to interpret
these term lists correctly. Especially the readability for human users can be improved if a
semantically fitting word or phrase could be found instead, to describe those top-k words of
a given topic. This word or phrase is called a topic label.

A good label is characterized as understandable for the user, fitting for all or most given
topic words and good for distinguishing topics. The last-mentioned trait excludes labels that
are too broad from being good candidates. Previous research indicates that single words
tend to be rather generic while whole sentences on the other hand may be too specific to
subsume a given topic [18]. The most promising approach seems to be one that does not
limit the labels to single terms but also considers short phrases as fitting candidates.

The following report focuses on a paper from 2013 with the title Unsupervised Graph-based
Topic Labelling using DBpedia by Iona Hulpuş, Conor Hayes, Marcel Karnstedt and Derek
Greene [13]. It is a shortened version of chapter 6 of Ioana Hulpuş’ PhD thesis Semantic
Network Analysis for Unsupervised Topic Linking and Labelling, published in 2014 [12]. The
basic idea of the presented research is to select topic labels by clustering the content of one
or multiple documents into sets of topic words and to link those topic words to concepts in
the Semantic Web database DBpedia. From the DBpedia concepts two-hop-neighbourhood
graphs are constructed to find the best label candidates among DBpedia concepts with the
aid of graph centrality measures. The document processing can be roughly divided in the
following steps: extraction of topics from the document(s) (step 1), word-sense disambiguation
of the topic words with support of information from DBpedia (step 2), extraction of subgraphs
from DBpedia (step 3), selection of topic labels based on the subgraphs (step 4). This report
focuses on step 3 and 4.

Within the scope of the PhD thesis, a framework was developed to implement the
presented approach. In the paper it is called Canopy, the name was later changed to Kanopy.
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There is a web demo of the framework available online1 which can be used with custom text
input. A short paper with an overview over the framework was published additionally in
2013 [14].

The following report starts with the place of the approach in current scientific research
(section 8.2). Afterwards we describe the used structure of DBpedia as well as the core of
the graph-based topic labelling in detail (section 8.3). Section 8.4 focuses on the evaluation
that was conducted by the authors of the paper. The last part of this thesis discusses the
adaptability of the given approach for usage in the humanities (section 8.5).

8.2 Related Work
The related work given by Hulpuş,Hayes, Karnstedt and Greene can be basically divided into
two parts. The first one contains work that uses a text-based approach for topic labelling.
The approaches in the second part use an external knowledge base for the labelling process.
Most of the approaches either exploit Wikipedia and/or a web search engine like Google or
Bing. Instead of repeating the related work information in the paper we complement the
existing list with more recent papers from 2013 to 2016.

A new text based approach was announced 2015 ‘using Word Vectors and Letter Trigram
Vectors’ [16]. Different kinds of vectors are generated from candidate labels within the
documents. In 2014, an approach on event extraction based on tweets focused on the problem
of the description of events that are happening at the same moment the texts about them
are created [7]. Obviously an approach based on static knowledge bases cannot be sufficient
for such a task. Summarization techniques (Sum basic, Hybrid TFIDF, Maximal marginal
relevance, TextRank) are used instead to exploit the information in the stream of tweets
itself.

In 2014 as well, a different unsupervised graph-based approach was presented [4]. In this
case, topic words were the basis for a query in a web search engine. A graph is constructed
from the result words and then the label candidates in said graph are ranked with PageRank.

Schuhmacher and Ponzetto [22] make use of DBpedia, but mainly for a graph-based
computation of document semantic similarity. They adapt Hulpuş’ list of stop-URIs to get
rid of unwanted shortcuts in the DBpedia concept relations. 2015, Allahyari and Kochut
announced another graph-based topic labelling approach making use of the DBpedia ontology
[5] (which was described in more detail most recently in [6] – paper under review). They
propose the OntoLDA model, an ontology-based topic model. DBpedia concepts describing
topic words are constructed as a graph based on their relations in the DBpedia ontology.
The connected subgraph with the largest number of nodes is called the dominant thematic
graph. The concept nodes are weighted accordingly to their distribution in the topic as well
as based on their ‘authoritative’ character (according to the HITS algorithm) in the graph.
A semantic relevance scoring function is applied to the gained label candidates. Overall
OntoLDA shares a lot of similarities with the approach by Hulpuş et al.

Additionally, an attempt was made to use images for labelling purposes instead of words
or phrases[3]. Candidate images are retrieved via a web search with graph-based processing
of the given image meta data. With images, a user maybe could identify the topic more
quickly than with textual labels and would not depend on a specific language for the topic

1 Kanopy demo version 1: http://kanopy.insight-centre.org/KanopyDemo.html,
updated version 2: http://kanopy.insight-centre.org/V2/KanopyDemo.html
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labels. In 2015, an evaluation paper compared said image representation of topics with
textual labels as well as a list of the top-k terms of a topic model [2]. The results indicate
that textual topic labels are a better way to represent topics of document collections than
image labels, and do not have significant disadvantage regarding precision compared to term
lists.

The Kanopy framework, on which we will concentrate in the following, did not receive a
lot of attention. It has been taken note of [11, 22, 4, 2, 5, 6, 10], but mainly as related work
only. In 2014, the characteristics of DBpedia graphs regarding semantic relations assessed by
Hulpuş et al. were used for a more generic named entity recognition task by Prokofyev et al.
[20]. Specifically, they reused the two hop threshold for the graph extraction as well as the
list of stop-URIs (see p. 96 for details). Most recently the labelling step by Hulpuş et al. was
used in a modified version for the labelling of topic clusters for reader comments of online
news articles [1]. We will present evaluation results by this paper in subsection 8.4.

8.3 Graph-based Topic Labelling
For the topic labelling step in the Kanopy framework, the technical prerequisite is to link
and disambiguate the words in a topic cluster, extracted from a document, to concept nodes
in the DBpedia graph. We consider this task to be done and do not focus further on the
challenges that come with it. A detailed explanation of the proposed procedures for the
unsupervised word-sense disambiguation (WSD) can be found in chapter 4 and 5 of the PhD
thesis [12]. To better understand the graph extraction and the labelling step we first have to
have a closer look at the general semantic structure of data in DBpedia.

8.3.1 DBpedia Concepts

DBpedia is a structured knowledge base containing extracted information from Wikipedia
articles. There are over 4.5 million entities (like places, persons, species, films, etc.) in the
English version of DBpedia alone. The contents of DBpedia are stored as RDF (Resource
Description Framework) triples. RDF triples are built in the form of subject – predicate
– object and represent simple semantic relations, similar to a simple sentence in natural
language with the same structure. All subjects, predicates and objects have unique Uniform
Resource Identifiers (URIs) and represent entities of the real world.2 The result is a graph
database in which subjects and objects of said triples are modelled as nodes and properties
form the edges between them. The data can be queried with the SPARQL Protocol and
RDF Query Language, which simulates semantic questions like ‘retrieve all musicians born
in Berlin, Germany’. SPARQL endpoints for querying are available online or can be set
up with a local version of DBpedia. Encyclopaedic information can be retrieved this way
without additional preprocessing of unstructured text (as it would be needed to get similar
information from Wikipedia articles directly).

To create a well-defined data set, controlled vocabularies (e.g. taxonomies, ontologies)
give information about the overall knowledge structure of the database. Typical namespace
prefixes for external ontologies used in DBpedia are rdf for standard rdf syntax3 and rdfs

2 Objects can also be literals instead of resources with an URI, but the distinction is not important for
explanations in this report.

3 http://www.w3.org/1999/02/22-rdf-syntax-ns#
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for rdf schema, owl for the Web Ontology Language4, skos for the Simple Knowledge
Organization System5 and dcterms for the extended Dublin Core ontology6.

The DBpedia project itself implements mainly two knowledge structures: the DBpedia
ontology on one hand and Wikipedia categories on the other. The DBpedia ontology
(namespace dbo) is a manually created class hierarchy. It is based on the most common
infoboxes in Wikipedia articles and contains over 500 concepts as nodes in a directed-acyclic
graph.7 The root node for all ontology classes is owl:Thing. Classes link to their parent(s)
in the hierarchy with the property rdfs:subClassOf. They also hold information about the
child classes (is rdfs:subClassOf of).

The second hierarchical structure in DBpedia stems from Wikipedia article categories
(namespace dbc). It is extracted automatically and contains over 700k categories as nodes.
A category refers to its parent via the skos:broader property and also has knowledge about
the reversed relation (is skos:broader of, sometimes also called skos:narrower). While
the relations broader and narrower indicate a semantic hierarchy, however, the “categories
do not form a proper topical hierarchy, as there are cycles in the category system and as
categories often only represent a rather loose relatedness between articles” [8].

Both hierarchical structures only kind of describe ideas or concepts of the real world but
not specific things or named entities. Those are represented by DBpedia resources. Resources
are the equivalent of Wikipedia articles in structured form. They both link to the DBpedia
ontology as well as to the Wikipedia categories. Therefore resources have DBpedia ontology
classes as rdf:type and are dcterms:subject in a Wikipedia category (and categories link
to their related resources with a ‘is dcterms:subject of’ property vice versa).

Moreover DBpedia is closely linked to the YAGO classification schema8. YAGO is
a semantic knowledge base extracted from Wikipedia, WordNet and GeoNames. It is
characterized by “deepness”, “encoding of much information in one class” and “high accuracy
in general” [8]. It is linked to DBpedia resources and structured the same way as the DBpedia
ontology: it can be retrieved via the rdf:type property and traversed with rdfs:subClassOf
edges.

8.3.2 Topic Graphs

In step 2 of the Kanopy framework topic words get linked to their matching DBpedia concepts.
In step 3 so called sense ego-networks are extracted for those DBpedia concepts.

I Definition 1 (Sense Ego-Network). Given a set of DBpedia relation types R, we denote by
DBpediaR the subgraph of the DBpedia semantic network formed only by the relations of
types included in R. Then we define the sense ego-network or ego-graph of kthdegree of a
sense si, as an undirected graph Gki = (V ki ∪ {si}, Ei, si, R), where V ki is the set of DBpedia
concepts lying at most k steps away from si in DBpediaR, and Ei is the set of undirected
edges between pairs of concepts in V ki ∪ {si} that are connected by an edge in DBpediaR.
The node si is called the seed concept or seed node of graph Gki . [12, p. 95]

4 http://www.w3.org/2002/07/owl#
5 http://www.w3.org/2004/02/skos/core#
6 http://purl.org/dc/terms/
7 See http://wiki.dbpedia.org/services-resources/ontology.
8 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/
yago/
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Figure 1 Visualization of a Sense Ego-Network for the DBpedia concepts Energy, Atom, Electron,
Quantum and Classical studies (Source: [12, Fig. 6.2])

While there are more properties to a DBpedia concept than the ones we described before,
the approach focuses on those relations between resources, classes and categories. So the
set R in the definition is limited to the properties described above. With the relations
dcterms:subject, skos:broader, rdfs:subClassOf and their reciprocal properties as well
as rdf:type, the DBpedia ontology classes, YAGO classes and Wikipedia categories are
traversed starting from a seed node.9

While strictly speaking the properties in R are unidirectional, the graph is constructed
with undirected edges. For the sake of simplicity there are no parallel edges between vertices
even if they have more than one connection in R. The used ego-networks are constructed
with k = 2. This was preceded by experiments with 3-hop neighbourhoods but “the potential
gain from the analysis of the bigger network does not justify the cost of the computational
difference” [12, p. 95]. A visualization of a sense ego-network for the DBpedia concepts
‘Energy’, ‘Atom’, ‘Electron’, ‘Quantum’ and ‘Classical studies’ can be seen in Figure 1. All
concepts were disambiguated from topic words of a single topic.

With the sense ego-networks we get semantic concepts in one graph for each topic word
that could be linked to a DBpedia concept in the step before. To interlink the topic words of
one topic with each other, all ego-networks are merged into one topic graph. The topic graph
is the result of step 3 and the input for step 4 of the Kanopy framework. A visualization of a
topic graph for the concepts ‘Energy’, ‘Atom’, ‘Electron’, ‘Quantum’ and ‘Classical studies’
can be seen in Figure 2.

I Definition 2 (Topic Graph). Let Cθ = {C1, ..., Cn} be the set of DBpedia concepts
corresponding to the disambiguated senses of the words in topic θ. Let Rθ be a set of
semantic relations defined in DBpedia. Let Gki = (Vi, Ei, Ci, Rθ) be the sense ego-graph of
degree k corresponding to Ci, i ∈ 1, ..., n. Then, G = (V,E,Cθ, Rθ) is the topic graph or
topic network of θ, where V =

⋃
Vi , and E is the set of undirected edges between nodes in

V that correspond to the DBpedia relations Rθ. The concepts Ci ∈ Cθ are called the seed
concepts or seed nodes of G.[12, p. 139]

In the creation of the ego-networks and the topic graphs two main challenges oc-
cur. The first one is, that a 2-step-path in the graph might be obstructed by the fact
that oftentimes there are DBpedia resources and DBpedia concepts that share the same

9 To be precise additional Infobox properties are used in some of the experimental settings. This is not
described here for the sake of brevity. Moreover “[t]he decision of considering only the Types and
Category datasets, or also the Infobox properties makes almost no difference” regarding the contents of
the resulting graphs (see [12, p. 112] for further details).
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Figure 2 Visualization of a Topic Graph for the DBpedia concepts Energy, Atom, Electron,
Quantum and Classical studies (Source: [12, Fig. 6.2])

name. To give an example, the topic word Helium would be linked to the DBpedia re-
source dbr:Helium10. It has a dct:subject relation to dbc:Helium11, which is linked via
skos:broader to dbc:Chemical_elements12. However the path to dbc:Atoms13 is already of
length 3 but it could provide a viable connection to all kind of concepts within the range
of Atomic Physics (i.e. Nuclear Fusion). To improve the results, resources and Wikipedia
Categories with the same name are merged beforehand into one node that inherits all relevant
relations from both original nodes. So in our example dbr:Helium and dbc:Helium would be
merged and, as an implicit result, dbc:Atoms would become a part of the ego-network for
Helium.

The second challenge for the construction of useful topic graphs are nodes that are closely
connected to the seed nodes via property types in R, but are not relevant for the determination
if two concepts are semantically close. They are instead creating unwanted shortcuts
between concepts and can be roughly classified as administrative links (i), semantically
irrelevant relations (ii) and high-level ontology links (iii). Examples for the first problem
are dbc:Articles_containing_video_clips14 and dbc:Place_of_birth_missing15. (ii)
contains Wikipedia categories like dbc:New_Testament_Latin_words_and_phrases16 or
dbc:Living_people17. DBpedia concepts are also often linked to owl:Thing, even if they
are of more specific ontology types at the same time. owl:Thing would in consequence
shortcut nearly all seed concepts and is therefore an example for problem (iii). The shortcut
problem can be minimized with a semi-automatically generated list of 865 stop-URIs which
are ignored when creating the ego-networks. Evaluations of the word sense disambiguation
results show in regard to the stop-URIs that “their removal greatly improves the performance
of all tested measures” and that on the flipside “their tolerance in the semantic network

10 http://dbpedia.org/resource/Helium
11 http://dbpedia.org/resource/Category:Helium
12 http://dbpedia.org/resource/Category:Chemical_elements
13 http://dbpedia.org/resource/Category:Atoms
14 http://dbpedia.org/resource/Category:Articles_containing_video_clips
15 http://dbpedia.org/resource/Category:Place_of_birth_missing
16 http://dbpedia.org/resource/Category:New_Testament_Latin_words_and_phrases
17 http://dbpedia.org/resource/Category:Living_people
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sometimes renders the path-based semantic relatedness measures unusable” [12, p. 132].
The topic graph of a set of seed concepts is not necessarily a connected graph. Ego-

networks can stay separated from others if they share no neighbouring nodes with other seed
concepts. This leads to the definition of core topic graphs.

I Definition 3 (Core Topic Graph). Let G = (V,E,Cθ, Rθ) be the topic graph of θ. G

consists of c connected components, with c ≥ 1. Then a connected component Gj =
(Vj , Ej , Cθj , Rθ), j ∈ 1, ..., c. It follows that

⋃
Cθj = Cθ, and

⋂
Cθj = ∅. We define a core topic

graph any connected component Gj for which |Cθj | > 1. The seed concepts that belong to a
core topic graph are called core concepts. [12, p. 140]

Seed concepts that stay disconnected from the core topic graph are less related to the
other concepts than those that connect with each other. This might indicate that something
went wrong in one of the previous steps, so either something was added to a set of topic
words by mistake or the linking and disambiguation step lead to the wrong DBpedia concept.
All concepts that are not core concepts are eliminated from the labelling process. The core
topic graph for the topic graph in Figure 2 consists only of the connected subgraph on the
left (with the seeds ‘Energy’, ‘Atom’, ‘Electron’ and ‘Quantum’). The subgraph for the
concept ‘Classical studies’ has been discarded. This is fitting, because the concept does not
have anything in common with the other terms of the topic and most likely is the result of
an erroneous disambiguation.

Every core concept, on the other hand, can be considered as a label candidate. Hulpuş
states that “usually the topic graphs have only one core component, and the concepts that
are not connect to it are isolated” [12, p. 140]. If there are multiple core graphs for one
topic they are treated as separate topics from this point on. The impact of the stop-URIs
are described as follows, regarding the structure of the core topic graph created for the
evaluation process (for details of the evaluation see subsection 8.4): if no stop-URIs are
used, 9 out of 10 core topic graphs are identical with the overall topic graph. Excluding
stop-URIs instead, only 16% of the topic graphs still connect every seed concept. But the
other 84% still connect approximately 2/3 of the seed concepts on average in one core topic
graph [13]. This indicates that shortcuts exaggerate the connectivity and therefore hinder
further analysis of the graph, while after a removal of the shortcuts a reasonable amount of
seeds stay connected.

8.3.3 Centrality Measures

After the core topic graph is computed, the question is how to choose the most fitting label
candidate(s) from all nodes in said graph. To state the problem more formally:

Problem Statement Let Cθ be the set of seed concepts in a core topic graph. We want to
identify the concept C∗ from all core concepts such that the relation r(Cθ, C∗) is optimised.

The given problem can be solved by the use of graph centrality measures. Centrality is a
term from social network analysis and it aims to identify the most important or influential
actor in a network. With centrality measures, a ranking of importance can be determined
among the nodes of a graph. How this importance is defined depends highly on the
characteristics of the given network as well as on the task you want to achieve. Hulpuş et al.
chose four popular centrality measures for their experiments: closeness centrality, betweenness
centrality, information centrality and random walk betweenness centrality. Moreover, they
propose a focused variant for each of the centrality measures, which concentrates on the seed
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nodes instead of the complete core topic graph. In the following all centralities are described
both with their basic definition as well as in their focused variant. First of all, closeness
centrality ranks a node as important in a network, if it has a short distance to all other nodes.
It is computed as the inverse of the average shortest distance from a node to all others in
the graph.

I Definition 4 (Closeness Centrality). Let distij be the shortest path between two nodes vi
and vj in a graph G = (V,E). Then the closeness centrality for vi is calculated as:

CCi = |V |∑
vj∈V distij

When finding a fitting label, we are not particularly interested in all distances, but
especially in short distances from a node to the seed concepts. Because of that, a variant
that is better suitable for the task at hand can be computed as the inverse of the average
shortest distance from a node to all seed concepts in a core topic graph18. It is called the
focused closeness centrality.

I Definition 5 (Focused Closeness Centrality). Let |Cθ| be the number of seed concepts and
Cθ the set of seed concepts in a core topic graph G. The focused closeness centrality can be
calculated as:

fCCi =





|Cθ|∑
vj∈Cθ distij

, vi /∈ Cθ

|Cθ| − 1∑
vj∈Cθ distij

, vi ∈ Cθ

Information centrality measures importance based on the assumption that the amount of
information flow on a given path is higher the shorter the path. Accordingly, two nodes are
more closely related the more (preferably short) paths they have between them. Information
centrality as the result is calculated as the harmonic mean of informations between the target
node and all other nodes in G.

I Definition 6 (Information Centrality). Let Iij =
∑
p∈P

1
length(p) be the information between

two nodes in G with P being the set of paths between vi and vj . Then the information
centrality for vi can be calculated as:

ICi = |V |
∑|V |
j=1 1/Iij

Focused information centrality limits the computation to the information flow between
seed nodes instead.

I Definition 7 (Focused Information centrality).

fICi =





|Cθ|∑
vj∈Cθ 1/Iij

, vi /∈ Cθ

|Cθ| − 1∑
vj∈Cθ\vi 1/Iij

, vi ∈ Cθ

18The notations of the following definitions may differ slightly from the ones in [12], hopefully in a
beneficial way.
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The focused information centrality favours nodes that are passed by a high amount
of paths between seed concepts regardless of the path length. This makes the focused
information centrality biased towards high degree nodes. It is, in contrast to closeness
centrality, computed using all paths in the core topic graph and not only the shortest ones.

Betweenness centrality is computed as the proportion of shortest paths through a node in
relation to all shortest paths in the graph between all nodes. It is scaled by the total number
of pairs of nodes in the undirected graph G, excluding vi. Betweenness centrality ranks a
node in a network by the amount of control the node has over communication in the network,
if we assume that control flows over shortest paths (see [15]).

I Definition 8 (Betweenness Centrality). Let gst be the number of shortest paths between
nodes vs and vt in G, and xist the number of those shortest path that pass through vi. Then
betweenness centrality for vi can be calculated as:

BCi =
∑
vs,vt∈V

xist
gst

(|V | − 1)(|V | − 2)/2

Betweenness centrality is biased towards nodes with a high degree, since those tend to lie
on a higher number of shortest paths. For the labelling task we can once again focus on the
shortest paths between seed concepts only. The focused variant of the betweenness centrality
only computes the proportion of shortest paths between seed concepts through the target
node vi, instead of all shortest paths in G. The denominator is adjusted depending on vi
being one of the seed concepts or not.

I Definition 9 (Focused Betweenness centrality). Let |Cθ| be the number of seed concepts
and Cθ the set of seed concepts in a core topic graph G. The focused betweenness centrality
can be calculated as:

fBCi =





∑
vs,vt∈Cθ

xist
gst

|Cθ|(|Cθ| − 1)/2 , vi /∈ Cθ

∑
vs,vt∈Cθ

xist
gst

(|Cθ| − 1)(|Cθ| − 2)/2 , vi ∈ Cθ

Experiments indicate that betweenness centrality often results in high ranks for seed
concepts, while the focused betweenness centrality tends to favour nodes between the seed
concepts, which does correspond better to intuitive label candidates.19

Random walk betweenness, as a variant of betweenness centrality, measures how often a
node is passed on a random walk in the graph. The basic concept is, that a start node in
a network wants to send a message to a target node but has no shortest path information.
Instead it sends its message randomly to a neighbouring seed which continues to do so until
the message eventually reaches the target node. The idea of a random walk betweenness
centrality was introduced by [19]. While Hulpuş et al. call their computed measure Random
Walk Betweenness (RWB), in fact they use a current-flow betweenness, which is equivalent to
RWB for all vertices in a network and “is simple and intuitive and makes for easy calculations”
[19]. For explanation of current-flow betweenness, we picture the given graph as a current
flow network with identical electrical resistance at all edges. The sum of the current flowing

19For example, to label the topic words ‘Atom’ and ‘Electron’, one would expect that a label should
describe both terms equally well, instead of using ‘Atom’ or ‘Electron’ themselves as a topic label.
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into a node in the circuit is the same as the sum of the current flowing out of it (according
to Kirchoff’s current law). For a source s and a sink t we can calculate the throughput for a
node v inbetween. If we consider all possible st-pairs, the fraction of throughput through v
for all pairs (st) defines the current-flow betweenness centrality. For sake of consistency we
keep the name RWB for this measure and for simplicity we substitute the definition used by
Newman and by Hulpuş et al. with a definition given by [15].

I Definition 10 (Random Walk Betweenness / Current-Flow Betweenness). Let G be a flow
network with a current x between a source s and a sink t. Let δ(v) ⊆ E be the subset of
edges that are incident to v. Moreover, we define bst, the supply of one (abstract) unit that
enters the network at s and leaves at t. It is defined as bst(s) = 1, bst(t) = −1 and bst(v) = 0
otherwise. We define the throughput τ for a node vi as:

τst(vi) = 1/2


−|bst(vi)|+

∑

e∈δ(vi)

|x(e)|




and the centrality measure of vi as following:

RWBi =
∑
vs,vt∈V τst(vi)

(|V | − 1)(|V | − 2)

Note, that for the throughput both current flowing in and out of a node is summed up, and
to account for this the result is divided in half afterwards.

Instead of accounting for all possible pairs of source s and sink t, a focused variant of the
centrality measure only takes into account pairs of seed concepts in G to compute centrality
for flow between them.

I Definition 11 (Focused Random Walk Betweenness).

fRBWi =





∑
vs,vt∈Cθ τst(vi)
|Cθ|(|Cθ| − 1) , vi /∈ Cθ

∑
vs,vt∈Cθ τst(vi)

(|Cθ| − 1)(|Cθ| − 2) , vi ∈ Cθ

The result is biased towards nodes with high degree since they handle more flow in the
current network and they are more likely to be used by a random walker.

Hulpuş et al. experimented with all given focused variants of centrality measures. The
top-k ranked concepts in every core topic graph were extracted as candidates for the topic
labels. They compare the centrality measures and calculate the Pearson correlation coefficient
as shown in Table 1. The centrality measures fCC and fIC have a high correlation as well
as fBC and fRWB. The measures fCC and fBC rely on shortest paths only, while fIC and
fRWB take all paths in the core topic graph into account. As a result, fIC and fRWB are
the preferred representatives for the closely correlated measures and chosen to be further
evaluated.

8.4 Evaluation
To evaluate the results of automatic topic labelling, they can either be compared to corpora
that were labelled manually beforehand, or by presenting the labelling candidates to human
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Table 1 Pearson correlation coefficients (PCC) of focused centrality measures

fCC fBC fIC fRWB
Degree 0.3365 0.4889 0.5072 0.6620
fCC 1 0.4432 0.7967 0.5118
fBC 1 0.4967 0.8923
fIC 1 0.6436
fRWB 1

annotators to assess the quality of the labels. Hulpuş et al. decided to use the latter. They
chose three corpora from very different domains and with different text styles: the British
academic written English Corpus (BAWE), which is a corpus of assessed student writings
from 35 different scientific disciplines; the BBC corpus, containing news website texts, and
the Stack Exchange dataset with discussion threads from topics in wordpress, webmasters,
web applications, photography, gaming, game development, android, cooking and bicycles.
There were 54 users in the study (mostly PhD students and post-docs). Each automatically
produced label candidate was shown to three users.

From BAWE 150 topics were extracted, 50 from BBC and 50 from Stack Exchange.
Topics considered to be ‘hard to grasp’ or too domain specific for a user study were removed
manually afterwards (30 topics were eliminated from BAWE, 18 from BBC and 2 from Stack
Exchange). The topic labels were extracted using fIC and fRWB. For comparison additional
labels were extracted with the text-based approach of [18]. The labels were presented to the
annotators in a questionnaire in randomized order. The top-n topic words for the labelled
topic were shown to the users. They had to choose one rating for every label: ‘good fit’, ‘too
broad’, ‘related but not a good label’ and ‘unrelated’.

8.4.1 Results

From the results for the top-k labels precision was computed as #Hits with rank <= k

k
and

coverage as #topics with at least one hit at rank <= k

#topics . A label was considered to be a hit
if at least two out of the three annotators marked it accordingly. From one and the same
user study two results were computed. The first only took labels assessed as ‘good fit’ into
account, the second shows results for all labels that were marked either as ‘good fit’ or as
‘too broad’. Results can be seen in Figure 3. We only show the results for the three corpora
separately since they give more detailed information than the results combined.

In the comparison with labels that are considered as good fit only, the improvements over
the text-based approach are only minimal except for the Stack Exchange corpus. Especially
the fRWB approach boosts the results significantly in this case. On the other hand the
performance is nearly identical when used on the BBC corpus. This might partially be
the case because news texts tend to state their topics very clearly and in a lot of variation
regarding the used terms. The typical use of buzzwords in journalistic texts can favour a
text-based approach and limit the improvement due to an external knowledge base. The
result is very different with labels that are a good fit or broader. The Kanopy framework
outperforms the text-based approach significantly and reaches a maximum coverage of over
90% in all corpora.
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Figure 3 Evaluation results for the corpora. Top row: “good fit”, bottom row: “good fit or
broader”. From left to right: Stack Exchange, BBC, BAWE. x axis: top-k labels, y axis: Precision
and Coverage (Source: [12, Fig. 6.10])

8.4.2 Assessment of the Evaluation Results

Overall the evaluation results were presented in a comprehensible and structured way. There
are some grounds for criticism. Two major points concern the baseline of the evaluation and
the separation of the evaluation into results for good terms on one hand and for good and
broader terms on the other.

First, Hulpuş et al. compare their approach to the ‘state of the art text-based approach’
[18] under the presumption that their own solution will be less sensitive to the text style
and the domain specific characteristics of the tested corpora. The assumption itself would
be fine, but while [18] compare two implementation alternatives, Hulpuş et al. chose the
variant with an OpenNLP noun-chunker, which is trained on news texts. Therefore, it is not
surprising that the baseline performs better on the BBC corpus than on the other two, and
it is an unfair comparison in this regard.

Second, the separation into evaluation of ‘good fits’ and ‘good fits and broader’ emphasizes
an improvement if broader labels are acceptable. The problem that we see with this indication
is, that even a much simpler approach might be able to produce reasonably good results if
broader labels are considered acceptable. Earlier in the paper/thesis, an approach which
computes the least common subsumer in a hierarchical knowledge base (like the Wikipedia
categories) is dismissed as a solution because it “would most often produce very generic terms”
[12, p. 138]. A very generic term would be considered as a hit in the ‘good fit or broader’
evaluation. There is no grading for the labels that are assessed as broad and therefore no
information is gathered about how acceptable those labels could be. For example the label
entertainment for the topic [song, rock, single, lyrics, instrument] could be an acceptable
one depending on the use case (while music (industry) could be more fitting), the label life
for [health, healthcare, hospital, drug, professional] most likely could not. Both might get
annotated as ‘too broad’ in a user study.

The problem with the acceptance of broader labels might have already been confirmed
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by [1]. They combined a topic clustering approach with the topic labelling step by Hulpuş et
al. for reader discussions/comments of online news. The results were evaluated as following:
they presented 22 extracted comment clusters and their labels to three annotators. For every
label three clusters were randomly selected to be suggested along with the one belonging
to the label. The annotators chose one or multiple clusters as being described best by the
current label. Precision, recall and F-score were calculated based on the annotation results.
There was also the possibility to mark the label as NA (not annotated), if it was not fitting
or “too generic or even very abstract”. The authors reported an overall acceptable precision
(0.80 mean) but not only with a low recall (0.50), but also with a very high percentage in
NA annotations of 40.9% (mean value).20 The problem seems to be pretty subjective since
the numbers differ vastly between the three annotators. One marked 13 labels out of 22 as
NA while another one only marked two. Overall the results might indicate that broader
labels can indeed mean that they are not accepted as a label at all by a human reader and
therefore are rendered useless. Overall the study design of [1] seems to be more fitting to
determine if computed labels are useful to a human user.

The given major points of criticism we would like to supplement with some smaller
comments on details of the evaluation. Due to the lack of comparison with a different
knowledge base, it is undecidable (as stated by [13] themselves) if the leaning towards labels
that are to broad is linked to the method or to the specifics of the knowledge base DBpedia.
Moreover, it would have been interesting to additionally present the seed concepts themselves
to the annotators. This would have given more insight about the intuitive assumption that
centrality measures with lower ranking of seed concepts are resulting in more fitting labels
overall. It also could have provided more insight, if there are still DBpedia concepts in the
core topic graphs that are falsely disambiguated (and marked as ‘unrelated’ by a human
annotator as a result), and still influential enough in the topic graph to be among the top-5
label candidates.

The user study both eliminates domain specific topics and focuses on coherent topics
only. This leads to some blind spots regarding more domain specific labelling tasks, as well
as corpora with sparse content, which can make topic clusters less coherent. While this is
understandable for the evaluation, we might encounter both challenges (domain specific texts
and sparse content) on a regular basis if we want to use the approach for humanities use
cases.

8.5 Adaptability for Digital Humanities
As was outlined in subsection 8.2, the Kanopy framework did not get a lot of resonance so
far. There are no real world use cases known for the approach. In this section we discuss
the general possibility for a usage in the range of humanities. We focus on the upcoming
challenges first and then present an example for a use case that could have profited from
automatic topic labelling.

20Since they comment on possible links like Articles_containing_video_clips, it seems that there was
no list of stop-URIs used like it is described by Hulpuş et al. to solve the problem of shortcuts (see
subsubsection 8.3.2). So worse results than necessary might have been produced due to noisy data.
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8.5.1 Challenges

In general it is easy to see why a database like DBpedia is appealing for exploitation. It is a
well-structured, well maintained information source. DBpedia as a knowledge base is derived
from Wikipedia content. Wikipedia with a vast amount of contributors from all kinds of
domains provides information about nearly every thinkable topic – often up-to-date and with
potentially more than decent quality in at least some fields of interest. Overall there are two
main problems for topic labelling tasks in the scope of humanities. The first one is about the
adaptability for scientific use in general. Since Wikipedia is at least partially considered to
be a unreliable source of information with low quality content in some domains, DBpedia
naturally would share that categorization. Moreover, DBpedia and Wikipedia seem to be
a universal, nearly inexhaustible data base, but this can obscure the fact that this sort of
encyclopaedic world-knowledge naturally comes at a cost in details. Instead of aiming for
completeness, Wikipedia has clear-cut relevance filters and a notability guideline to focus on
the things that are ‘really important’. The problem with this are not only the resulting gaps,
but also the a-priori assumption that the entities in Wikipedia/DBpedia are more important
than the missing ones. By using a knowledge base not well suited for a scientific interest, we
not only get bad results, we are also in danger of diminishing the research topic itself.

A second problem can occur with any research topic that deals with historic texts. There
is no such thing as stability if it comes to knowledge and language. More specific: world
knowledge as a whole is not historically stable; semantic meanings are not historically stable
and also semantic relations between concepts are not historically stable. The phenomenon
regarding semantic meanings is called semantic shift and it can produce a problem that in
language learning is called false friends. The main problem with this is that it would result
in false positives, which could only be eliminated in a fully automated labelling process with
Kanopy, if they are not related well enough to the rest of the topic and – because of this –
are not a part of the core topic graph.

These problems can likely be overcome if the interlinking potential of the Linked Open
Data (LOD) Cloud is used. The ‘data hub’ DBpedia could be supplemented or even exchanged
with more domain specific knowledge already being part of the LOD cloud. This also might
provide an opportunity to encourage researchers in the humanities to publish their own data
accordingly to the Linked Open Data standards, and thus to enrich the domain specific
knowledge openly available.

8.5.2 Use Case Example

Overall automatic topic labelling might find interesting use cases in the range of humanities.
We want to conclude this report with an example from German literature studies. It evolves
around one of the most important awards in German literature, the Ingeborg-Bachmann-
Preis (Bachmannpreis in short) which is awarded in a yearly television show called Tage der
deutschsprachigen Literatur (aka Festival of German-Language Literature). The show airs on
the Austrian network ORF and lasts 2–3 days. Up to 23 authors are reading a short story
live on television and are rated by a jury afterwards. Since the award was first given out
in 1977, the texts within the Bachmannpreis form a relatively large corpus. While some of
the texts can only be accessed in archives, over 400 of the texts are published in anthologies
and are readily available for research purposes. Since the Bachmannpreis can have quite
an impact on the following (sometimes life-long) success of the competing authors, it is
interesting to see if the winning texts themselves are deemed to be of a lasting quality. Usual
hermeneutic methods in literature studies however are not suitable to accomplish such a
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distant reading task. A PhD thesis, finalised in 2014, instead quantitatively analysed the
corpus of all published texts of the Bachmannpreis from 1977 up until 2009 [21]. It focused
on the question what kind of text the jury appreciated the most over the years and if there
is such thing as a ‘prototypical’ Bachmannpreis text. The research method was a manually
conducted content analysis. One of the questions in the so called code book asked for the
topic of every text. 27 possible categories like ‘religion’, ‘love, relationship, marriage’, ‘family’,
‘friendship’, ‘illness and death’ were defined beforehand.21 Every text could be annotated
with 1–3 topic labels. The resulting tables can be summarized as shown in Table 2 (in an
abbreviated version).

Table 2 Topics in texts of the Bachmannpreis. Percentages by decades in relation to texts.

1977–79 1980–89 1990–99 2000–09
Topic % of texts % of texts % of texts % of texts
Current Affairs 21.1% 12.2% 5.7% 3.5%
Family 18.4% 16.8% 17.0% 25.6%
Illness,Death 13.2% 16.0% 11.3% 10.5%
Love 15.8% 18.3% 6.6% 10.5%
Daily Life 7.9% 6.9% 15.1% 9.3%
Work Life 5.3% 11.5% 10.4% 11.6%
History 5.3% 9.2% 9.4% 12.8%

To accomplish a task like this, automatic topic labelling could be highly beneficial. We
would gain a more objective result, since the parameters for the approach could be made
transparent and the results could be reproduced. The labelling process would be a lot faster
than manual coding and it could be easily adapted and repeated in case the underlying
hypothesis shifted. There would be no need to define the labels beforehand, which would
minimize the risk to come across texts that cannot be subsumed under the chosen topics.

The obvious drawbacks are that this would only be useful for a very small part of the
overall analysis. Moreover, fictional literature poses a particularly difficult task since it is
highly polysemantic and ambiguous. An automatic tool cannot entirely substitute a human
reader, let alone a domain expert. Nonetheless, it seems plausible that with such an approach
a researcher could be supported in his/her study and be relieved of some of the simpler tasks
in favour of concentrating on data analysis and interpretation.

8.6 Conclusion
The described approach indicates possible improvements in comparison with a text-based
approach especially if labels are allowed to be broad, and if coverage is more important than
precision. However, the margin for benefits is rather small, and we have shown that it is open
for discussion if broader labels are acceptable or not. This determination is rather subjective
and might also only be possible within specific use cases but not as a general measure.

The approach of Hulpuş et al. has the clear benefit of being usable without preprocessing
and completely unsupervised. The existing Kanopy web demo is a valuable asset for testing
both time performance and result quality with custom text examples. The Kanopy framework

21One text from every year was used to test the labels before the actual coding started.



106

is not meant to be “ready for fully automated labelling” yet [13]. There is no indication of
further updates at the moment. To find the most promising approach it would have to be
evaluated against more recent research in regards of topic labelling. Especially OntoLDA
([5, 6]) seems to be an interesting and comparable approach with active development. One of
the most interesting distinctions is that OntoLDA transfers the probability distribution in
the underlying topic model into weights in the extracted graphs while Kanopy treats topic
clusters as bags of topic words only. Lately, [10] have raised criticism that the separation of
the topic modelling and the graph labelling steps could “result in the loss of rich semantics”.
Moreover they pointed out that, while being unsupervised with DBpedia, the approach is
based on a very specific subset of relations and would have to be adapted accordingly for
every change of the used knowledge base.

In summary, frameworks for automatic topic labelling could be beneficial to support
researchers with their tasks in humanities. We have presented an example for such a use case
regarding a quantitative analysis of the Festival of German-Language Literature. However, for
the usage of an encyclopaedic knowledge base its limitations have to be evaluated beforehand,
to assess the benefits for a specific task. Since the method is based on Semantic Web data
structure, it should further be examined if there are more domain specific datasets in the
LOD cloud that could be exploited for scientific use cases. Especially with historic documents,
a text-based approach might be superior, if it does not inflict modern world knowledge and
semantics, but mainly uses the connections within the text.
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