

Algorithmen für Routenplanung

14. Vorlesung, Sommersemester 2016 Moritz Baum | 13. Juni 2016

Stoff bisher

- Problemtransformation auf Graph + Dijkstra
- Vorberechnungstechniken (point-to-point, one-to-all)
- Alternativrouten (fast optimal, hinreichend unterschiedlich)
- Berücksichtigung von historischem Wissen über Staus

Stoff bisher

- Problemtransformation auf Graph + Dijkstra
- Vorberechnungstechniken (point-to-point, one-to-all)
- Alternativrouten (fast optimal, hinreichend unterschiedlich)
- Berücksichtigung von historischem Wissen über Staus

Was fehlt noch für Einsatz in Produktion?

Stoff bisher

- Problemtransformation auf Graph + Dijkstra
- Vorberechnungstechniken (point-to-point, one-to-all)
- Alternativrouten (fast optimal, hinreichend unterschiedlich)
- Berücksichtigung von historischem Wissen über Staus

Was fehlt noch für Einsatz in Produktion?

- Berücksichtigung von (aktuellen) Staus
- Turn-Costs
- Weitere Anfrageszenarien: one-to-all, many-to-many, POIs
- Andere Optimierungskriterien?
- Was ist eigentlich mit Bus+Bahn?

Stoff bisher

- Problemtransformation auf Graph + Dijkstra
- Vorberechnungstechniken (point-to-point, one-to-all)
- Alternativrouten (fast optimal, hinreichend unterschiedlich)
- Berücksichtigung von historischem Wissen über Staus

Was fehlt noch für Einsatz in Produktion?

- Berücksichtigung von (aktuellen) Staus
- Turn-Costs
- Weitere Anfrageszenarien: one-to-all, many-to-many, POIs
- Andere Optimierungskriterien?
- Was ist eigentlich mit Bus+Bahn?

Dynamische Szenarien

Dynamische Szenarien

Szenario:

- Unfall auf einer Straße
- Reisezeit ändert sich auf dieser Straße
- berechne schnellsten Weg bezüglich der aktualisierten Reisezeiten

Herausforderung

Hauptproblem:

- Kantengewichte ändern sich
- Vorberechnung basiert auf ursprünglichen Kantengewichten
- komplette Vorberechnung für jeden Stau wenig sinnvoll

Herausforderung

Hauptproblem:

- Kantengewichte ändern sich
- Vorberechnung basiert auf ursprünglichen Kantengewichten
- komplette Vorberechnung für jeden Stau wenig sinnvoll

"Server"szenario:

- identifiziere den Teil der beeinträchtigten Vorberechnung
- aktualisiere diesen Teil

Herausforderung

Hauptproblem:

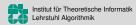
- Kantengewichte ändern sich
- Vorberechnung basiert auf ursprünglichen Kantengewichten
- komplette Vorberechnung für jeden Stau wenig sinnvoll

"Server"szenario:

- identifiziere den Teil der beeinträchtigten Vorberechnung
- aktualisiere diesen Teil

"Mobiles" Szenario:

- robuste Vorberechnung
- immer noch korrekt, wenn Kantengewichte sich erhöhen
- dadurch eventuell Anfragen langsamer
- oder passe Query an, so dass Vorberechnung nicht aktualisiert werden muss



Landmarken [Goldberg, Harrelson 05]

Vorberechnung:

- wähle eine Hand voll (\approx 16) Knoten als Landmarken
- berechne Abstände von und zu allen Landmarken

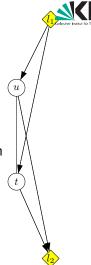
Anfrage:

 benutze Landmarken und Dreiecksungleichung um eine untere Schranke für den Abstand zum Ziel zu bestimmen

$$d(s,t) \geq d(L_1,t) - d(L_1,s)$$

 $d(s,t) \geq d(s,L_2) - d(t,L_2)$

verändert Reihenfolge der besuchten Knoten



Serverszenario

Beobachtung:

- Landmarkenwahl ist Heuristik, also nicht ändern
- Distanzen von und zu Landmarken sind nicht korrekt

Vorgehen:

- aktualisiere diese Distanzen
- benutze dafür dynamisierte Dijkstra-Variante, die nur betroffene Teilbäume (jeder Landmarke) neuberechnet
- dann Anfragen korrekt und (in etwa) so schnell wie bei kompletter neuer Vorberechnung

Beobachtung:

 Korrektheit von ALT basiert darauf, dass reduzierten Kantengewichte größer gleich 0 sind

$$\mathsf{len}_{\pi}(u,v) = \mathsf{len}(u,v) - \pi(u) + \pi(v) \geq 0$$

Beobachtung:

 Korrektheit von ALT basiert darauf, dass reduzierten Kantengewichte größer gleich 0 sind

$$\operatorname{len}_{\pi}(u,v) = \operatorname{len}(u,v) - \pi(u) + \pi(v) \geq 0$$

- durch Erhöhen der Kantengewichte wird dies nicht verletzt
- durch Staus können Reisezeiten nicht unter Initialwert fallen

Beobachtung:

 Korrektheit von ALT basiert darauf, dass reduzierten Kantengewichte größer gleich 0 sind

$$\operatorname{len}_{\pi}(u,v) = \operatorname{len}(u,v) - \pi(u) + \pi(v) \geq 0$$

- durch Erhöhen der Kantengewichte wird dies nicht verletzt
- durch Staus können Reisezeiten nicht unter Initialwert fallen

Idee:

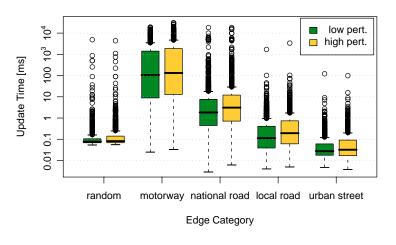
- Vorberechnung auf staufreiem Graphen
- Suchanfragen ohne Aktualisierung
- korrekt aber eventuell langsamere Anfragezeiten

Suchraumvergrößerung durch Stau (mobiles Szenario)

Suchraumvergrößerung durch Stau (mobiles Szenario)

Aktualisierung der Vorberechnung

Aktualisieren von 32 kürzeste-Wege Bäumen für 16 Landmarken: (Serverszenario)



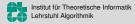
Mobiles Szenario: Typ des Updates

- Zufallsanfragen nach 1 000 updates
- erhöhe Kantengewicht um x2 (x10 in Klammern)
- verschiedene Straßenkategorien

road type	affected queries	16 landmarks search space		32 landmarks search space	
no updates	0.0 %	74 699	(74 699)	40 945	(40 945)
all urban	7.5 % 0.8 %	74 700 74 796	(77 759) (74 859)	41 044 40 996	(43 919) (41 120)
local	1.5 %	74 659	(74669)	40 949	(40995)
national	28.1 %	74 920	(75 777)	41 251	(42279)
motorway	95.3 %	97 249	(265472)	59 550	(224268)

Beobachtung:

nur Autobahnen haben Einfluß auf Suchraumgröße



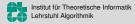
Mobiles Szenario: Anzahl Updates

- Zufallsanfragen nach Autobahn updates (x2, x10 in Klammern)
- verschiedene Anzahl Updates

	affected	16 landmarks		32 landmarks	
updates	queries	search space		search space	
0	0.0 %	74 699	(74 699)	40 945	(40 945)
100	39.9 %	75 691	(91 610)	41 725	(56349)
200	64.7 %	78 533	(107084)	44 220	(69 906)
500	87.1 %	86 284	(165022)	50 007	(124712)
1 000	95.3 %	97 249	(265472)	59 550	(224268)
2000	97.8 %	154 112	(572 961)	115111	(531 801)
5 000	99.1 %	320 624	(1286317)	279 758	(1247628)
10 000	99.5 %	595 740	(2048455)	553 590	(1 991 297)

Beobachtung:

■ ≤ 1000 gut verkraftbar



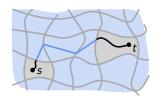
Customizable Route Planning

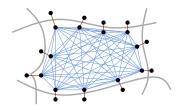
Idee:

- partitioniere Graphen
- Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten

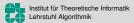




Suchgraph:

- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Optimierung: multiple Level



Update der Vorberechnung

Beobachtung:

- Shortcuts (Cliquenkanten) können invalidiert werden
- Shortcuts repräsentieren Pfade innerhalb der Zelle

Update:

- identifiziere Zelle in der die aktualisierte Kante liegt für jedes Level der Multi-Level Partition
- wiederhole (bottom-up) Preprocessing für diese Zellen
- dauert weniger als 10 ms

Beobachtung:

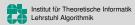
- Stau-Update invalidiert Zellen-Overlay
- erhöht meistens nur einige Overlay-Gewichte
- restliche Overlay-Kanten bleiben korrekt

Query:

- Normale Query, aber steigt bei invalidierten Zellen direkt ab (vgl Path Unpacking)
- jeder Abstieg erhöht Suchraum um ca. 50%

Optimierung:

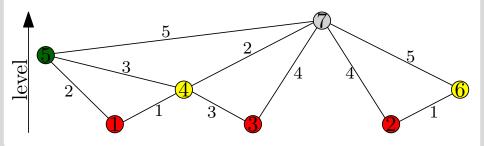
- markiere invalidierte Zellen (ohne Overlay zu aktualisieren)
- führe Anfrage aus (ohne Abstieg)
- wenn der Pfad nicht die aktualisierte Kante enhält ⇒ fertig
- sonst Suche mit Abstieg

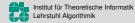


Contraction Hierarchies

preprocessing:

- ordne Knoten nach Wichtigkeit
- bearbeite in der Reihenfolge
- füge Shortcuts hinzu
- Levelzuordnung (ca. 150 in Straßennetzwerken)





Update der Vorberechnung I

Beobachtung:

- Knotenordnung ist Heuristik
- also behalte Ordnung bei
- lacktriangle geänderte Kante (u, v) kann zu Shortcuts beitragen
- aber auch Teil von Zeugensuchen gewesen sein
- Frage: welche Knoten müssen neu kontrahiert werden (mit Zeugensuche)

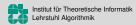
Update der Vorberechnung II

Idee:

- wiederhole Kontraktion für Knotenmenge U
- füge alle aufwärts erreichbaren Knoten der geänderten Kante (u, v) zu U
- speichere für jede Kante e auf welchen Zeugensuchen sie benutzt wurde. Die zugehörigen Knoten speichere in A_e. Kann einfach während Vorberechnung gespeichert werden.
- füge alle aufwärts erreichbaren Knoten von A_e (und aller A_f für alle Shortcuts f, die e enthalten) zu U
- wiederhole Kontraktion für alle Knoten U bezüglich Originalordnung

Beobachtung:

- erhöht Speicherverbrauch von CH deutlich
- Updatezeit abhängig von Art der Kante



Beobachtung:

Kontraktion von Knoten zu teuer

Beobachtung:

Kontraktion von Knoten zu teuer

Idee:

- identiziere Knotenmenge U wie zuvor
- erlaube Abstieg an Kanten (u, v) mit $u, v \in U$
- iterativer Ansatz (wie bei CRP) auch hier möglich

Weitere Techniken

Arc-Flags:

- Aktualisierung aller Bäume nötig
- momentan keine vernünftige Update-Routine vorhanden

Customizable Contraction Hierarchies

wie CRP

Transit-Node Routing

- schwierig
- Tabellen und Access-Nodes können sich ändern

HubLabels

- halte Ordnung vor.
- nach Update: Aktualisierung aller Labels
- bisher nicht gelöst: nicht alle Labels müssten aktualisiert werden



Zusammenfassung

- Stau erhöht Kantengewicht temporär
- Anpassung Landmarken, CRP, CCH trivial
- Anpassung CH machbar
- schwierig bei anderen Techniken

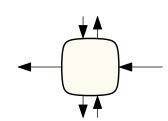
Anmerkungen

- Mobil: nur "nahe" Staus beachten?
- viele Staus vorhersehbar

Abbiegekosten

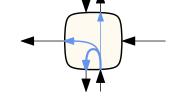
bisher:

- Kreuzungen → Knoten
- \blacksquare Straßen \rightarrow Kanten



bisher:

- Kreuzungen → Knoten
- Straßen → Kanten



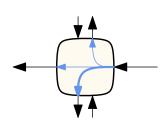
aber:

- Abbiegen manchmal verboten
- Linksabbiegen teurer als rechts
- Kosten U-Turns hoch
- wurde als einfaches Modellierungsdetail abgetan

bisher:

- Kreuzungen → Knoten
- Straßen → Kanten

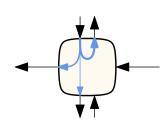
- Abbiegen manchmal verboten
- Linksabbiegen teurer als rechts
- Kosten U-Turns hoch
- wurde als einfaches Modellierungsdetail abgetan



bisher:

- Kreuzungen → Knoten
- Straßen → Kanten

- Abbiegen manchmal verboten
- Linksabbiegen teurer als rechts
- Kosten U-Turns hoch
- wurde als einfaches Modellierungsdetail abgetan

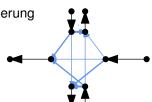


Modellierung

ACIT Karlsruher Institut für Technologie

Möglichkeit I:

- Vergrössern des Graphen durch Ausmodellierung
- kantenbasierter Graph da
 - Straßen → Knoten
 - $\blacksquare \ \, \mathsf{Turns} \to \mathsf{Kanten}$
- redundante Information



Modellierung

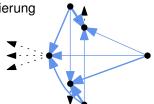
Karlsruher Institut für Technologie

Möglichkeit I:

Vergrössern des Graphen durch Ausmodellierung

kantenbasierter Graph da

- \blacksquare Straßen \rightarrow Knoten
- $\blacksquare \ \, \mathsf{Turns} \to \mathsf{Kanten}$
- redundante Information
- entferne einen Knoten pro Straße



Modellierung

Möglichkeit I:

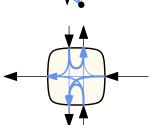
Vergrössern des Graphen durch Ausmodellierung

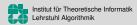
kantenbasierter Graph da

- Straßen → Knoten
- Turns → Kanten
- redundante Information
- entferne einen Knoten pro Straße

Möglichkeit II:

- behalte Kreuzungen als Knoten
- speichere Abbiegetabelle Abb. Eingangs- × Ausgangspunkte → Kosten
- Beobachtung: viele Knoten haben die gleiche Abbiegetabelle
- also speicher jede Tabelle einmal, Knoten speichern Tabellen-ID

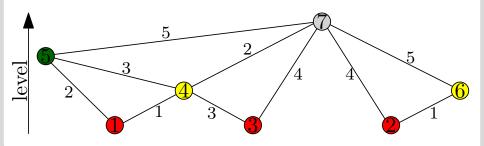




Wdh: Contraction Hierarchies

Preprocessing:

- ordne Knoten nach Wichtigkeit
- bearbeite in der Reihenfolge
- füge Shortcuts hinzu
- Levelzuordnung (ca. 150 in Straßennetzwerken)



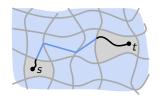
Wdh: Multi Level Dijkstra

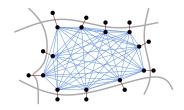
Idee:

- partitioniere Graphen
- Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten

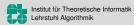




Suchgraph:

- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Optimierung: multiple Level



Kantenbasierter Graph

Dijkstra:

- funktioniert ohne Anpassung
- mehr Knoten zu scannen
- Faktor 3-4 langsamer

Kantenbasierter Graph

Dijkstra:

- funktioniert ohne Anpassung
- mehr Knoten zu scannen
- Faktor 3-4 langsamer

CH

- funktioniert ohne Anpassung
- aber grössere Anzahl Knoten/Kanten erhöht Vorberechungszeit

Kantenbasierter Graph

Dijkstra:

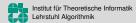
- funktioniert ohne Anpassung
- mehr Knoten zu scannen
- Faktor 3-4 langsamer

CH

- funktioniert ohne Anpassung
- aber grössere Anzahl Knoten/Kanten erhöht Vorberechungszeit

MLD

- Anzahl Schnittkanten erhöht sich
- Schnittkanten = Schnittknoten
- (eventuell Wechsel zu Knotenseparatoren sinnvoll?)



Dijkstra:

- Turns müssen in den Suchalgorithmus integriert werden
- Kreuzungen können mehrfach gescannt werden label-correcting bzgl. Kreuzung, label-setting bzgl. Eingangs-/Ausgangspunkte
- jede Kante wird höchstens einmal gescannt
- Suchraum gleich zu kantenbasiertem Modell simuliert Dijkstra auf kantenbasiertem Graphen
- Vorteil: weniger Speicher für den Graphen

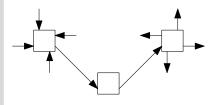
CH

CH

Zeugensuche wird komplizierter

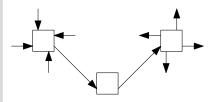
CH

- Zeugensuche wird komplizierter
 - für jedes Paar eingehender und ausgehender Kanten muss eine Zeugensuche durchgeführt werden



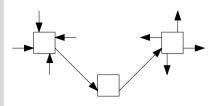
CH

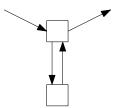
- Zeugensuche wird komplizierter
 - für jedes Paar eingehender und ausgehender Kanten muss eine Zeugensuche durchgeführt werden
 - es können Self-Loops entstehen



СН

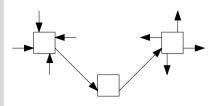
- Zeugensuche wird komplizierter
 - für jedes Paar eingehender und ausgehender Kanten muss eine Zeugensuche durchgeführt werden
 - es können Self-Loops entstehen

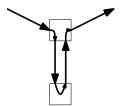




СН

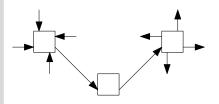
- Zeugensuche wird komplizierter
 - für jedes Paar eingehender und ausgehender Kanten muss eine Zeugensuche durchgeführt werden
 - es können Self-Loops entstehen

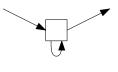




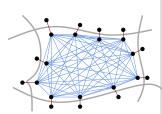
CH

- Zeugensuche wird komplizierter
 - für jedes Paar eingehender und ausgehender Kanten muss eine Zeugensuche durchgeführt werden
 - es können Self-Loops entstehen



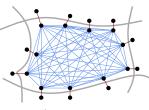


MLD



MLD

- Schnittkanten bleiben erhalten
- Schnittkante → 2 Knoten auf Overlay
- Turns müssen nur auf unterstem Level beachtet werden
- auf Overlaygraphen: normaler Dijkstra
- ⇒ einfache Anpassung, aber zusätzliche Fallunterscheidung in der Query

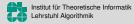


Ergebnisse

		Customization		Queries	
	Algorithm	time [s]	[MB]	#scans	time [ms]
<u>8</u>	MLD-4 [2 ⁸ : 2 ¹² : 2 ¹⁶ : 2 ²⁰]	5.8	61.7	3556	1.18
	CH expanded	3407.4	880.6	550	0.18
	CH compact	849.0	132.5	905	0.19
100 s	MLD-4 [2 ⁸ : 2 ¹² : 2 ¹⁶ : 2 ²⁰]	7.5	61.7	3813	1.28
	CH expanded	5799.2	931.1	597	0.21
	CH compact	23774.8	304.0	5585	2.11

Beobachtung:

- (Metrikabhängige) CH Prioritätsfunktionen problematisch bei Turns
- Feingranulare Priorität auf Turnebene wichtig (vgl CH expanded vs compact)
- MLD robust



Optimierungskriterien

Bisher:

Kürzester Weg

eine Metrik

Alternativrouten

eine Metrik; fast kürzeste, dennoch sinnvolle Wege

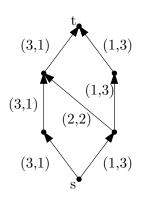
Zeitabhängigkeit / dynamische Szenarien

eine Metrik; Kantengewichte ändern sich über die Zeit

Jetzt: Mehrere Metriken

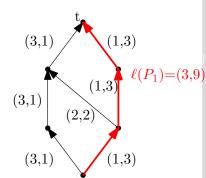
Idee:

 Mehrere Gewichte an Kanten (z. B. Reisezeiten, Kosten, Energieverbrauch)



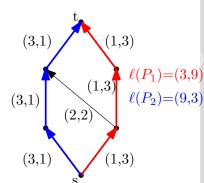
Idee:

- Mehrere Gewichte an Kanten (z. B. Reisezeiten, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Routen
 - Route ist Pareto-optimal, wenn nicht von anderen Routen dominiert
 - Route dominiert andere, wenn sie sie hinsichtlich jedes Kriteriums ersetzen kann
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



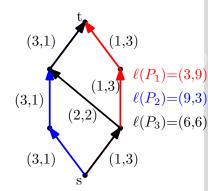
Idee:

- Mehrere Gewichte an Kanten (z. B. Reisezeiten, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Routen
 - Route ist Pareto-optimal, wenn nicht von anderen Routen dominiert
 - Route dominiert andere, wenn sie sie hinsichtlich jedes Kriteriums ersetzen kann
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



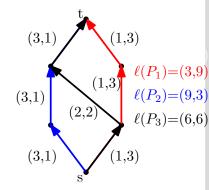
Idee:

- Mehrere Gewichte an Kanten (z. B. Reisezeiten, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Routen
 - Route ist Pareto-optimal, wenn nicht von anderen Routen dominiert
 - Route dominiert andere, wenn sie sie hinsichtlich jedes Kriteriums ersetzen kann
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



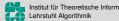
Idee:

- Mehrere Gewichte an Kanten (z. B. Reisezeiten, Kosten, Energieverbrauch)
- Berechne alle Pareto-optimalen Routen
 - Route ist Pareto-optimal, wenn nicht von anderen Routen dominiert
 - Route dominiert andere, wenn sie sie hinsichtlich jedes Kriteriums ersetzen kann
 - Grenzfall: Gleich gut in allen Kriterien (wird unterschiedlich behandelt)



Herausforderung:

Viele Routen zum Ziel



Definition (Pareto-Dominanz)

Geg. zwei *n*-Tupel $m_i = (x_1, \dots, x_n), m_j = (y_1, \dots, y_n)$ gilt: m_j domininiert m_i gdw. m_j in allen Werten besser und in mindestens einem echt besser ist, d. h. $\forall k : y_k <= x_k$ und $\exists I : y_l < x_l$.

Definition (Pareto-Optimum)

Zu einer Menge M von Tupeln ist ein Tupel $m_i \in M$ Pareto-Optimum, wenn es kein anderes $m_j \in M$ gibt, so dass m_i von m_j dominiert wird.

Die Menge M heißt Pareto-Menge, wenn alle $m \in M$ Pareto-optimal.

Definition (Pareto-Dominanz)

Geg. zwei *n*-Tupel $m_i = (x_1, \ldots, x_n), m_j = (y_1, \ldots, y_n)$ gilt: m_j domininiert m_i gdw. m_j in allen Werten besser und in mindestens einem echt besser ist, d. h. $\forall k : y_k <= x_k$ und $\exists l : y_l < x_l$.

Definition (Pareto-Optimum)

Zu einer Menge M von Tupeln ist ein Tupel $m_i \in M$ Pareto-Optimum, wenn es kein anderes $m_j \in M$ gibt, so dass m_i von m_j dominiert wird.

Die Menge M heißt Pareto-Menge, wenn alle $m \in M$ Pareto-optimal.

Beispiel: Public Transit (Ankunftszeit und # Umstiege)

Definition (Pareto-Dominanz)

Geg. zwei *n*-Tupel $m_i = (x_1, \ldots, x_n), m_j = (y_1, \ldots, y_n)$ gilt: m_j domininiert m_i gdw. m_j in allen Werten besser und in mindestens einem echt besser ist, d. h. $\forall k : y_k <= x_k$ und $\exists l : y_l < x_l$.

Definition (Pareto-Optimum)

Zu einer Menge M von Tupeln ist ein Tupel $m_i \in M$ Pareto-Optimum, wenn es kein anderes $m_j \in M$ gibt, so dass m_i von m_j dominiert wird.

Die Menge M heißt Pareto-Menge, wenn alle $m \in M$ Pareto-optimal.

Beispiel: Public Transit (Ankunftszeit und # Umstiege)

 $M = \{(14:00 \text{ Uhr}, 5), (15:13 \text{ Uhr}, 3), (13:45 \text{ Uhr}, 4), (15:15 \text{ Uhr}, 0)\}.$

Definition (Pareto-Dominanz)

Geg. zwei *n*-Tupel $m_i = (x_1, \ldots, x_n), m_j = (y_1, \ldots, y_n)$ gilt: m_j domininiert m_i gdw. m_j in allen Werten besser und in mindestens einem echt besser ist, d. h. $\forall k : y_k <= x_k$ und $\exists l : y_l < x_l$.

Definition (Pareto-Optimum)

Zu einer Menge M von Tupeln ist ein Tupel $m_i \in M$ Pareto-Optimum, wenn es kein anderes $m_j \in M$ gibt, so dass m_i von m_j dominiert wird.

Die Menge M heißt Pareto-Menge, wenn alle $m \in M$ Pareto-optimal.

Beispiel: Public Transit (Ankunftszeit und # Umstiege)

 $M = \{(14:00 \text{ Uhr}, 5), (15:13 \text{ Uhr}, 3), (13:45 \text{ Uhr}, 4), (15:15 \text{ Uhr}, 0)\}.$

Definition (Pareto-Dominanz)

Geg. zwei *n*-Tupel $m_i = (x_1, \ldots, x_n), m_j = (y_1, \ldots, y_n)$ gilt: m_j domininiert m_i gdw. m_j in allen Werten besser und in mindestens einem echt besser ist, d. h. $\forall k : y_k <= x_k$ und $\exists l : y_l < x_l$.

Definition (Pareto-Optimum)

Zu einer Menge M von Tupeln ist ein Tupel $m_i \in M$ Pareto-Optimum, wenn es kein anderes $m_j \in M$ gibt, so dass m_i von m_j dominiert wird.

Die Menge M heißt Pareto-Menge, wenn alle $m \in M$ Pareto-optimal.

Beispiel: Public Transit (Ankunftszeit und #Umstiege)

 $M = \{(14:00 \text{ Uhr}, 5), (15:13 \text{ Uhr}, 3), (13:45 \text{ Uhr}, 4), (15:15 \text{ Uhr}, 0)\}.$

Wie effizient berechnen?

Multi-Criteria Dijkstra (MCD)

Idee

- Benutze Graph mit Kantengewicht len: $E \to \mathbb{R}^n_{\geq 0}$
- Grundlage: Dijkstra's Algorithmus

Multi-Criteria Dijkstra (MCD)

Idee

- Benutze Graph mit Kantengewicht len: $E \to \mathbb{R}^n_{\geq 0}$
- Grundlage: Dijkstra's Algorithmus

...aber...

- Label ℓ sind n-Tupel (x_1, \ldots, x_n)
- An jedem Knoten $u \in V$: Pareto-Menge L_u von Labeln
- Jedes Label entspricht einem (Pareto-optimalen) s-u-Pfad
- Priority Queue verwaltet Label statt Knoten
- Prioritätsfunktion $k(x_1, \ldots, x_n)$
 - Meist: Linearkombination oder lexikographische Sortierung
- Dominanz von Labeln in L_u on-the-fly

Multi-Criteria Dijkstra (MCD)

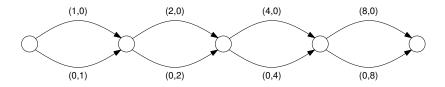

```
MLC(G = (V, E), s)
 1 L_u \leftarrow \emptyset for each u \in V; L_s \leftarrow \{(0, \dots, 0)\}
 2 Q.clear(); Q.insert(s, k(0,...,0))
 3 while !Q.empty() do
        u and \ell = (x_1, \dots, x_n) \leftarrow Q.deleteMin()
        for all edges e = (u, v) \in E do
 5
             \ell' \leftarrow (x_1 + \text{len}(e)_1, \dots, x_n + \text{len}(e)_n)
 6
             if \ell' is not dominated by any \ell'' \in L_{\nu} then
 7
                  L_{\nu}.insert(\ell')
 8
                  Remove non-Pareto-optimal labels from L_{\nu}
 9
                  Q.insert(v, k(\ell'))
10
```

Diskussion: MCD

- Falls extrahiertes Label immer Pareto-optimal (bzgl. aller $\ell \in Q$):
 - MCD label-setting (einmal extrahierte Labels werden nie dominiert) dafür muss die Längenfunktion natürlich auch positiv sein
 - Gilt für Linearkombination und lexikographische Sortierung
- Pareto-Mengen L_u sind dynamische Datenstrukturen → teuer!
- Sehr viele Queue-Operationen
- Testen der Dominanz in $\mathcal{O}(|L_u|)$ möglich
- Stoppkriterium?

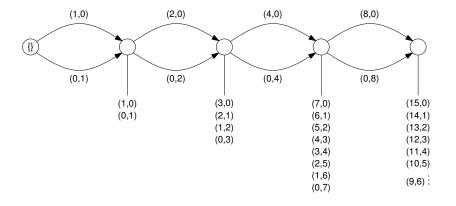
Exponentielle Laufzeit

Exponentiell wachsende Lösungsmenge bei zwei Kriterien:



Exponentielle Laufzeit

Exponentiell wachsende Lösungsmenge bei zwei Kriterien:



Verbesserungen

- Jedes L_u verwaltet bestes ungesettletes Label selbst
 ⇒ Priority Queue auf Knoten statt Labeln
- Hopping Reduction:

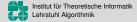
Relaxierung der Kante zum Parent-Knoten p unnötig teuer (kann keine Verbesserung bringen, kostet aber $\mathcal{O}(|L_p|)$ für Test)

- \Rightarrow Überspringe Kante zum Parent-Knoten von ℓ_u
- Target-Pruning:

Abbruchkriterium funktioniert nicht (sonst nur eine Lösung)

 \Rightarrow An Knoten u, verwerfe Label ℓ_u , wenn es bereits von der tentativen Pareto-Menge L_t am Ziel t dominiert wird

Worst-Case Laufzeit immer noch exponentiell (aber je nach Instanz schon signifikante Beschleunigung)



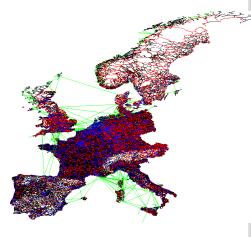
Eingabe

Straßengraphen von:

- Luxemburg
- Karlsruhe
- Europa

Metriken:

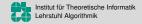
- Fahrzeiten schnelles Auto
- Fahrzeiten langsames Auto
- Kosten
- Distanzen
- Unit Metrik



Ähnliche Metriken: Europa

	target	#del.	time
metrics	labels	mins	[ms]
fast car (fc)	1.0	442 124	156.44
slow car (sc)	1.0	452 635	151.68
fast truck (ft)	1.0	433 834	139.51
slow truck (st)	1.0	440 273	136.85
fc + st	2.2	1 039 110	843.48
fc + ft	2.0	947 042	698.21
fc + sc	1.2	604750	369.31
sc + lt	1.9	876 998	577.05
sc + ft	1.7	784 459	474.77
ft + st	1.3	632 052	348.43
fc + sc +st	2.3	1 078 190	956.14
fc + sc + ft	2.0	940815	751.16
sc + ft +st	1.9	880 236	640.47
fc + sc + ft + st	2.5	1 084 780	1016.39

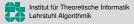
Beobachtungen: nicht viele zusätzliche Lösungen; Anzahl Lösungen und Queue Extracts korrelieren; Queryzeit steigt viel stärker: Dominanztests sind nicht-linear



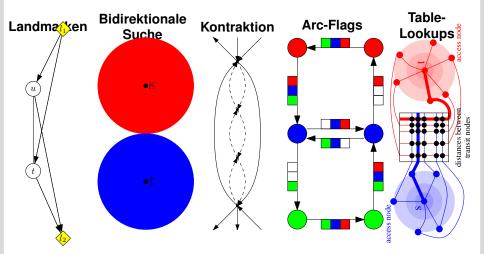
Verschiedene Metriken

	Luxemburg			Karlsruhe			
	target	#del.	time	target	#del.	time	
metrics	labels	mins	[ms]	labels	mins	[ms]	
fast car (fc)	1.0	15 469	2.89	1.0	39 001	8.2	
slow truck (st)	1.0	15384	2.80	1.0	38 117	7.1	
costs	1.0	15303	2.65	1.0	38 117	6.8	
distances	1.0	15 299	2.49	1.0	39 356	7.3	
unit	1.0	15777	2.54	1.0	39 001	8.2	
fc + st	2.0	30 026	8.70	1.9	77 778	28.7	
fc + costs	29.6	402 232	1704.28	52.7	1882930	14909.5	
fc + dist.	49.9	429 250	1585.23	99.4	2 475 650	30893.2	
fc + unit	25.7	281 894	573.51	27.0	1 030 490	3209.9	
costs + dist.	29.6	305 891	581.71	67.2	1 661 600	10815.1	

Je nach Kriterien kann Lösungsmenge stark ansteigen



Beschleunigungstechniken



Landmarken

Vorberechnung:

- Wähle eine Hand voll (≈ 16) Knoten als Landmarken
- Berechne Abstände von und zu allen Landmarken

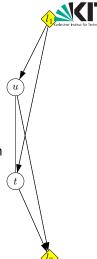
Anfrage:

 Benutze Landmarken und Dreiecksungleichung um eine untere Schranke für den Abstand zum Ziel zu bestimmen

$$d(s,t) \geq d(L_1,t) - d(L_1,s)$$

 $d(s,t) \geq d(s,L_2) - d(t,L_2)$

Verändert Reihenfolge der besuchten Knoten



Idee:

- Benutze einzelne Metriken zum Berechnen der Distanzen
- Für jeden Knoten u: Distanzvektor $(d_1(u, L_i)_1, \dots, d_n(u, L_i)_n)$ pro Landmarke L_i
- Liefert Potentiale π_1, \ldots, π_n
- Zielrichtung: Priorität eines Labels ist $(x_1 + \pi_1, \dots, x_n + \pi_n)$.
- Potential π_i liefert untere Schranke für $d_i(u,t)$ ⇒ Nutze $(x_1 + \pi_1, \dots, x_n + \pi_n)$ auch für Target Pruning

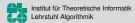
Idee:

- Benutze einzelne Metriken zum Berechnen der Distanzen
- Für jeden Knoten u: Distanzvektor $(d_1(u, L_i)_1, \dots, d_n(u, L_i)_n)$ pro Landmarke L_i
- Liefert Potentiale π_1, \ldots, π_n
- Zielrichtung: Priorität eines Labels ist $(x_1 + \pi_1, ..., x_n + \pi_n)$.
- Potential π_i liefert untere Schranke für $d_i(u, t)$ \Rightarrow Nutze $(x_1 + \pi_1, \dots, x_n + \pi_n)$ auch für Target Pruning

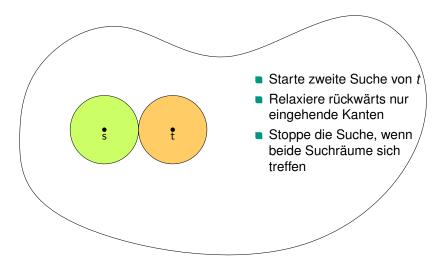
Modifikation:

Berechne zur Queryzeit $(d_1(u,t)_1,\ldots,d_n(u,t)_n)$

- Nutze t als einzige "perfekte" Landmarke
- Kosten von n Dijkstras (meist) unerheblich für Gesamtlaufzeit
- Keine Vorberechnung



Bidirektionale Suche



Idee:

Rückwärtssuche kein Problem (analog)

Idee:

Rückwärtssuche kein Problem (analog)

Offenes Problem:

- Abbruchkriterium?
- Analog Target-Pruning: Dominanztest mit tentativer
 Pareto-Menge; teuer zu verwalten: Kombination der Lösungen aus Vorwärts- und Rückwärtssuche an Mittelknoten
- Lohnt nicht recht

Kontraktion

Knoten-Reduktion:

- Entferne diese Knoten iterativ
- Füge neue Kanten (Abkürzungen) hinzu, um die Abstände zwischen verbleibenden Knoten zu erhalten

Kanten-Reduktion:

- Behalte nur relevante Shortcuts
- Lokale Suche w\u00e4hrend oder nach Knoten-reduktion

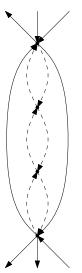
Kontraktion

Knoten-Reduktion:

- Entferne diese Knoten iterativ
- Füge neue Kanten (Abkürzungen) hinzu, um die Abstände zwischen verbleibenden Knoten zu erhalten

Kanten-Reduktion:

- Behalte nur relevante Shortcuts
- Lokale Suche w\u00e4hrend oder nach Knoten-reduktion



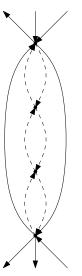
Anpassung Knoten-Reduktion

Beobachtung:

- Verfahren unabhängig von Metrik
- Shortcut muss dem (entfernten) Pfad entsprechen

Somit:

Anpassung ohne Probleme



Anpassung Kanten-Reduktion

Unikriteriell:

- Lösche Kante (u, v), wenn (u, v) nicht Teil des kürzesten Weges von u nach v ist, also len(u, v) < d(u, v)
- Lokale Dijkstra-Suche von u

Multikriteriell:

Anpassung Kanten-Reduktion

Unikriteriell:

- Lösche Kante (u, v), wenn (u, v) nicht Teil des kürzesten Weges von u nach v ist, also len(u, v) < d(u, v)
- Lokale Dijkstra-Suche von u

Multikriteriell:

- Lösche Kante (u, v), wenn (u, v) nicht Teil eines Pareto-Weges von u nach v ist
- Lokale multi-kriterielle Suche
- Kann zu (Pareto-optimalen) Multikanten führen
- Problem: "Explosion" der Anzahl der Routen

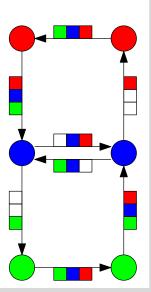
Arc-Flags

Idee:

- Partitioniere den Graph in k Zellen
- Hänge ein Label mit k Bits an jede Kante
- Zeigt ob e wichtig für die Zielzelle ist
- Modifizierter Dijkstra überspringt unwichtige Kanten

Beobachtung:

- Partition wird auf ungewichtetem Grahen durchgeführt
- Flaggen müssen allerdings aktualisiert werden



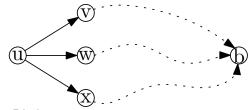
Idee:

- Andere Intuition einer gesetzten Flagge
- Konzept bleibt gleich: Eine Flagge pro Kante und Region
- Setze Flagge
 - Multikriteriell: wenn Kante für einen Pareto-Pfad "wichtig" ist

Idee:

- Ändere Intuition einer gesetzten Flagge
- Konzept bleibt gleich: Eine Flagge pro Kante und Region
- Setze Flagge
 - Multikriteriell: wenn Kante für einen Pareto-Pfad "wichtig" ist

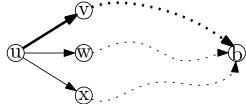
- Für alle Randknoten b und alle Knoten u:
- Berechne Pareto-Abstände D(u, b)
- Setze Flagge wenn gilt (u, v)
 zugehörige Kante eines Pareto-Pfades



Idee:

- Ändere Intuition einer gesetzten Flagge
- Konzept bleibt gleich: Eine Flagge pro Kante und Region
- Setze Flagge
 - Multikriteriell: wenn Kante für einen Pareto-Pfad "wichtig" ist

- Für alle Randknoten b und alle Knoten u:
- Berechne Pareto-Abstände D(u, b)
- Setze Flagge wenn gilt (u, v)
 zugehörige Kante eines Pareto-Pfades

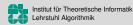


Idee:

- Ändere Intuition einer gesetzten Flagge
- Konzept bleibt gleich: Eine Flagge pro Kante und Region
- Setze Flagge
 - Multikriteriell: wenn Kante für einen Pareto-Pfad "wichtig" ist

- Für alle Randknoten b und alle Knoten u:
- Berechne Pareto-Abstände D(u, b)
- Setze Flagge wenn gilt (u, v)
 zugehörige Kante eines Pareto-Pfades





Idee:

- Ändere Intuition einer gesetzten Flagge
- Konzept bleibt gleich: Eine Flagge pro Kante und Region
- Setze Flagge
 - Multikriteriell: wenn Kante für einen Pareto-Pfad "wichtig" ist

- Für alle Randknoten b und alle Knoten u:
- Berechne Pareto-Abstände D(u, b)
- Setze Flagge wenn gilt (u, v)
 zugehörige Kante eines Pareto-Pfades

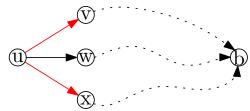
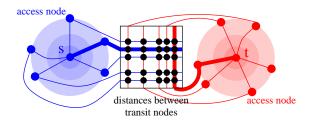


Table-Lookups

Idee:

- Speichere Distanztabellen
- Nur für "wichtige" Teile des Graphen
- Suchen laufen nur bis zur Tabelle
- Harmoniert gut mir hierarchischen Techniken

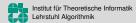


Beobachtung:

- Distanz-Tabelle muss Pareto-Abstände abspeichern
- Massiver Anstieg der Größe der Tabellen
- Pfadstruktur nicht mehr so gutmütig
- Deutlich mehr Access-Nodes?

Also:

Speicherverbrauch deutlich zu groß?



Diskussion Basismodule

Basismodule:

- ? Bidirektionale Suche
- + Landmarken / A*
- + Kontraktion
- + arc-flags
- ? Table Look-ups

Experimente

Pareto-SHARC (nur als Beispiel)

1	Luxemburg					Ш	Karlsruhe				
	PREPRO		QUE	RY		lii	PREPRO		QUE	RY	
	time	target	#del.	time	spd	Ш	time	target	#del.	time	spd
metrics	[h:m]	labels	mins	[ms]	up	Ш	[h:m]	labels	mins	[ms]	up
fast car (fc)	< 0:01	1.0	138	0.03	114	Ш	< 0:01	1.0	206	0.04	188
slow truck (st)	< 0:01	1.0	142	0.03	111	Ш	< 0:01	1.0	212	0.04	178
costs	< 0:01	1.0	151	0.03	96	Ш	< 0:01	1.0	244	0.05	129
distances	< 0:01	1.0	158	0.03	87	Ш	< 0:01	1.0	261	0.06	119
unit	< 0:01	1.0	149	0.03	96	Ш	< 0:01	1.0	238	0.05	147
fc + st	0:01	2.0	285	0.09	100	Ш	0:01	1.9	797	0.26	108
fc + costs	0:04	29.6	4 149	6.49	263	Ш	1:30	52.7	15912	80.88	184
fc + dist.	0:14	49.9	8 348	20.21	78	Ш	3:58	99.4	31 279	202.15	153
fc + unit	0:06	25.7	4 923	5.13	112	Ш	0:17	27.0	11319	16.04	200
costs + dist.	0:02	29.6	3 947	4.87	119	Ш	1:11	67.2	19775	67.75	160

Zusammenfassung

- Berechnung der (exponentiell großen) Pareto-Menge nicht effizient möglich
- Auch mit Beschleunigungstechniken daher exponentielle Laufzeit
- Laufzeit in der Praxis stark abhängig von
 - Anzahl der Kriterien
 - Korrelation der Metriken
- Praktikable Laufzeit somit oft nur mit Heuristiken möglich
 - Relaxierung der Dominanz
 - Ausdünnen von Pareto-Mengen während der Query
 - Mehr dazu später...
- Nur konvexe Hülle (⇒ linear Kombination, Parametric Shortest Path Problem)

Constrained Shortest Paths

Ziel:

- Finde kürzeste Route die bestimmtes Gewicht nicht überschreitet
- Zwei Metriken auf den Kanten: Länge und Gewicht
- Optimiere die Länge und beschränke das Gewicht

Ziel:

- Finde kürzeste Route die bestimmtes Gewicht nicht überschreitet
- Zwei Metriken auf den Kanten: Länge und Gewicht
- Optimiere die Länge und beschränke das Gewicht

Definition: Constrained Shortest Path Problem

Gegeben: G = (V, E), Länge $\ell : E \to \mathbb{N}_0$, Gewicht $\omega : E \to \mathbb{N}_0$,

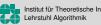
Start und Ziel $s, t \in V$ sowie Schranken $L, W \in \mathbb{N}_0$

Problem: Existiert ein einfacher Pfad *P* von *s* nach *t* in *G*,

für den $\ell(P) \leq L$ und $\omega(P) \leq W$ gelten?

Anmerkung: Das entsprechende Optimierungsproblem lautet:

■ Finde einen s-t-Pfad P mit minimalem $\ell(P)$ und $\omega(P) \leq W$



Theorem

Constrained Shortest Path Problem ist (schwach) \mathcal{NP} -vollständig

Theorem

Constrained Shortest Path Problem ist (schwach) \mathcal{NP} -vollständig

Beweis:

1: CSP Problem $\in \mathcal{NP}$

- Für ein Pfad P kann in polynomieller Zeit geprüft werden, ob:
 - P benutzt nur Kanten aus G
 - P hat passende Länge: $\ell(P) = L$
 - P hat passendes Gewicht: $\omega(P) = W$

2: CSP Problem ist \mathcal{NP} -schwer

Beweis durch Reduktion von Partition

PARTITION

Definition: PARTITION

Gegeben: Endliche Menge A sowie Größe $s: A \to \mathbb{N}_0$ **Problem:** Existiert ein Teilmenge $A' \subseteq A$ für die gilt:

$$\sum_{a\in A'} s(a) = \sum_{a\in A\setminus A'} s(a)$$

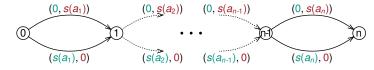
Anmerkung:

- In Karps 21 NP-vollständigen Problemen enthalten
- PARTITION ist (schwach) NP-vollständig [Karp '71]
 - lacktriangleright \mathcal{NP} -schwere Beweis benötigt exponentiell große Zahlen
 - In pseudopolynomieller Zeit lösbar (Dynamische Programmierung)
 - Pseudopolynomielle Laufzeit: Abhängig von Eingabegröße + Werten

Beweis: CSP ist \mathcal{NP} -vollständig

Reduktion von Partition:

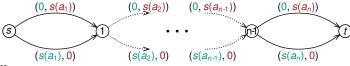
- Sei $\Pi = (A = \{a_1, \dots, a_n\}, s)$ eine Partition-Instanz
- Nonstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, ..., n\})$
- Knoten *i* -1 und *i* sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht s(ai)
 - Die andere Kante hat Länge $s(a_i)$ und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum_{a \in A} s(a)$



Beweis: CSP ist \mathcal{NP} -vollständig

Reduktion von Partition:

- Sei $\Pi = (A = \{a_1, \dots, a_n\}, s)$ eine Partition-Instanz
- Konstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, \ldots, n\})$
- Knoten *i* -1 und *i* sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht s(ai)
 - Die andere Kante hat Länge s(ai) und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum s(a)$



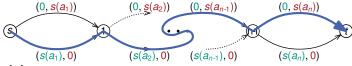
Es gilt:

■ Π ist Partition Ja-Inst. \Leftrightarrow $(G, \ell, \omega, L, W, s, t)$ ist CSP Ja-Inst.

Beweis: CSP ist \mathcal{NP} -vollständig

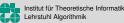
Reduktion von Partition:

- Sei $\Pi = (A = \{a_1, \dots, a_n\}, s)$ eine Partition-Instanz
- Nonstruiere Graph G = (V, E) mit n + 1 Knoten $(V = \{0, 1, ..., n\})$
- Knoten *i* -1 und *i* sind jeweils durch zwei Kanten verbunden
 - Eine Kante hat Länge 0 und Gewicht s(ai)
 - Die andere Kante hat Länge $s(a_i)$ und Gewicht 0
- Setze s = 0, t = n und $L = W = \frac{1}{2} \sum_{a \in A} s(a)$



Beispiel:

• s-t-Pfad P entspricht: $a_1 \notin A'$, $a_2 \notin A'$, ..., $a_{n-1} \in A'$, $a_n \in A'$



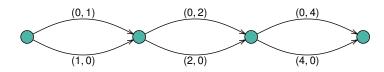
CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen
 - Verwerfe Label mit Gewicht > W

CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen
 - Verwerfe Label mit Gewicht > W

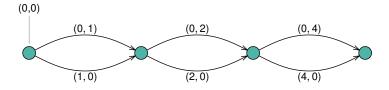
- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen
 - Verwerfe Label mit Gewicht > W

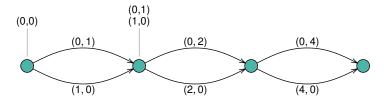
- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen
 - Verwerfe Label mit Gewicht > W

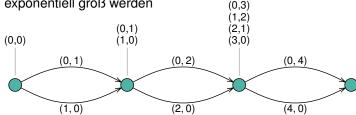
- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen
 - Verwerfe Label mit Gewicht > W

- MCD hält pro Knoten Menge Pareto-optimaler Pfade
- Pareto-Mengen können exponentiell groß werden



CSP kann mit Multi-Criteria Dijkstra (MCD) gelöst werden

- Bikriterieller Ansatz mit Metriken: Länge & Gewicht
- Nutze Constraints zum prunen

(1,0)

Verwerfe Label mit Gewicht > W

Erinnerung:

MCD h	MCD hält pro Knoten Menge Pareto-optimaler Pfade					
Pareto-Mengen können						
expone	entiell groß we	rden	(0,3)		(3,4) (4,3)	
(0,0)	(0, (1,	,	(1,2) (2,1) (3,0)		(5,2) (6,1) (7,0)	
	(0, 1)	(0, 2)		(0, 4)		

(2, 0)

(4, 0)

(0,7)

Schnellste zulässige Route

Verbesserungen: Standard Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target Pruning

Schnellste zulässige Route

Verbesserungen: Standard Beschleunigungen von MCD übertragbar:

- Hopping Reduction
- Nur ein Label pro Knoten in Queue
- Target Pruning

Beobachtung: Wir brauchen nicht alle Pareto-Optima an *t*:

- Sind nur an kürzester zulässiger Route interessiert
- Stoppe sobald erstes Label an t aus Queue genommen (Queue ist nach L\u00e4nge sortiert)

Zusammenfassung

- Dynamische Szenarien
 - Berücksichtigung von aktuellen Staus
 - Anpassung von Beschleunigungstechniken
- Turn-Costs
 - Expandiertes Modell vs Turn-Tabellen
 - Anpassung von CRP/CH
- Multikriterielle Optimierung
 - Verallgemeinerung zu Multi Criteria Dijkstra
 - Anpassung von Beschleunigungstechniken
- Constrained Shortest Paths
 - NP-schwer
 - Anpassung MC-Dijkstra

Ende

Literatur:

- Robert Geisberger, Christian Vetter **Efficient Routing in Road Networks with Turn Costs** In: Proceedings of the 10th International Symposium on Experimental Algorithms (SEA'11), pages 100-111, 2011.
- Daniel Delling and Andrew V. Goldberg and Thomas Pajor and Renato F Werneck Customizable Route Planning in Road Networks Transportation Science, 2015.
- Daniel Delling, Dorothea Wagner Pareto Paths with SHARC In: Proceedings of the 8th International Symposium on

Experimental Algorithms (SEA'09), pages 125-136, 2009.