
Algorithms for Route Planning
KIT (SS 2016)

Lecture: Time Dependent Route Planning – I

Christos Zaroliagis
zaro@ceid.upatras.gr

Dept. of Computer Engineering & Informatics
University of Patras, Greece

Computer Technology Institute & Press
“Diophantus”

Raw traffic (speed probe) data

70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data

70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Raw traffic (speed probe) data
70 Million contributing users

4 Billion measurements per day

5 Trillion measurements over 140 Billion Km

every road segment measured 2000 times on average

measured speeds in 5-min intervals

Main Issue: time-dependence

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [2 / 25]

Time DependentTime Dependent
Shortest Paths – IShortest Paths – I

a more realistic and more involved problema more realistic and more involved problem

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [3 / 25]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior

Graph elements added/removed in real-time /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior /∗ Stochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0, 1] in a predetermined fashion /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion
/∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to
periodic maintenance, saving consumption of resources, etc), for
predetermined unavailability time-intervals (discrete domain)

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued variable
(functions with continuous domain, but not necessarily continuous
range)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [4 / 25]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior

Graph elements added/removed in real-time /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior /∗ Stochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0, 1] in a predetermined fashion /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion
/∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to
periodic maintenance, saving consumption of resources, etc), for
predetermined unavailability time-intervals (discrete domain)

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued variable
(functions with continuous domain, but not necessarily continuous
range)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [4 / 25]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior

Graph elements added/removed in real-time /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior /∗ Stochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0, 1] in a predetermined fashion /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion
/∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to
periodic maintenance, saving consumption of resources, etc), for
predetermined unavailability time-intervals (discrete domain)

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued variable
(functions with continuous domain, but not necessarily continuous
range)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [4 / 25]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior

Graph elements added/removed in real-time /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior /∗ Stochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0, 1] in a predetermined fashion /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined fashion
/∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due to
periodic maintenance, saving consumption of resources, etc), for
predetermined unavailability time-intervals (discrete domain)

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued variable
(functions with continuous domain, but not necessarily continuous
range)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [4 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

0.9

0.1

0.3

2.1

2

1

0

0.1

0.4

1.3

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)? Eg: to = 0

to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

8.1

2.1

9.3

5.1

3

1

1

3.1

4

8.2

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)? Eg:

to = 0

to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for a given
departure time (from o)?

Eg: to = 0to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0, 0.03]
yellow path, if to ∈ [0.03, 2.9]
purple path, if to ∈ [2.9,+∞)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [5 / 25]

TDSP :: EXAMPLE 2 (Waiting Times)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions of
departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present at o at
time to < 1. Otherwise, traverse od immediately.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [6 / 25]

TDSP :: EXAMPLE 2 (Waiting Times)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions of
departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present at o at
time to < 1. Otherwise, traverse od immediately.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [6 / 25]

TDSP :: EXAMPLE 2 (Waiting Times)

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions of
departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present at o at
time to < 1. Otherwise, traverse od immediately.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [6 / 25]

TDSP :: EXAMPLE 2 (Waiting Times)

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions of
departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present at o at
time to < 1. Otherwise, traverse od immediately.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [6 / 25]

Waiting Policies

Unrestricted Waiting (UW) Unlimited waiting is allowed at every node
along an od-path

Origin Waiting (OW) Unlimited waiting is only allowed at the origin node of
each od-path

Forbidden Waiting (FW) No waiting is allowed at any node of each
od-path

Depending on the waiting policy, the scheduler has to decide
not only for an optimal connecting path (ensuring earliest arrival
at destination), but also for the appropriate optimal waiting times
at the nodes along this path

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [7 / 25]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay

o d
δ 3 − δ
o u o d
δ 1+δ

2
3+δ

4 3 − 3+δ
4 > 2

o u o u o d
δ 1+δ

2
3+δ

4
7+δ

8
15+δ

16 3 − 15+δ
16 > 2

o u o presence at o after k ↑ ∞ visits of u d
δ 1+δ

2
3+δ

4 limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaran-
teed for TDSP, if waiting-at-nodes is forbidden

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [8 / 25]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?
A3 An infinite, non-simple TD shortest od-path with finite delay

o d
δ 3 − δ

o u o d
δ 1+δ

2
3+δ

4 3 − 3+δ
4 > 2

o u o u o d
δ 1+δ

2
3+δ

4
7+δ

8
15+δ

16 3 − 15+δ
16 > 2

o u o presence at o after k ↑ ∞ visits of u d
δ 1+δ

2
3+δ

4 limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaran-
teed for TDSP, if waiting-at-nodes is forbidden

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [8 / 25]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?
A3 An infinite, non-simple TD shortest od-path with finite delay

o d
δ 3 − δ

o u o d
δ 1+δ

2
3+δ

4 3 − 3+δ
4 > 2

o u o u o d
δ 1+δ

2
3+δ

4
7+δ

8
15+δ

16 3 − 15+δ
16 > 2

o u o presence at o after k ↑ ∞ visits of u d
δ 1+δ

2
3+δ

4 limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaran-
teed for TDSP, if waiting-at-nodes is forbidden

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [8 / 25]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?
A3 An infinite, non-simple TD shortest od-path with finite delay

o d
δ 3 − δ
o u o d
δ 1+δ

2
3+δ

4 3 − 3+δ
4 > 2

o u o u o d
δ 1+δ

2
3+δ

4
7+δ

8
15+δ

16 3 − 15+δ
16 > 2

o u o presence at o after k ↑ ∞ visits of u d
δ 1+δ

2
3+δ

4 limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaran-
teed for TDSP, if waiting-at-nodes is forbidden

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [8 / 25]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?
A3 An infinite, non-simple TD shortest od-path with finite delay

o d
δ 3 − δ
o u o d
δ 1+δ

2
3+δ

4 3 − 3+δ
4 > 2

o u o u o d
δ 1+δ

2
3+δ

4
7+δ

8
15+δ

16 3 − 15+δ
16 > 2

o u o presence at o after k ↑ ∞ visits of u d
δ 1+δ

2
3+δ

4 limk↑∞
22k−1+δ

22k = 1 td ↓ 2

Subpath optimality and shortest path simplicity are not guaran-
teed for TDSP, if waiting-at-nodes is forbidden

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [8 / 25]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions
are at least equal to (greater than) −1

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferable to wait for some period at
the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)
(slower) local train

FIFO arc delay example Non-FIFO arc delay example

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [9 / 25]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions
are at least equal to (greater than) −1

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferable to wait for some period at
the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)
(slower) local train

FIFO arc delay example Non-FIFO arc delay example

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [9 / 25]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions
are at least equal to (greater than) −1

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferable to wait for some period at
the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)
(slower) local train

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

FIFO arc delay example

Non-FIFO arc delay example

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [9 / 25]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions
are at least equal to (greater than) −1

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferable to wait for some period at
the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately available)
(slower) local train

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

FIFO arc delay example Non-FIFO arc delay example
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [9 / 25]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

Sweeping a line with slope −1 from right to left suffices

I Shortcircuit pieces of the arc-delay function lying above the line of
slope −1

Identical arrival-times in Non-FIFO+UW and FIFO instances

Need to consider latest departures given the arrival times, in order to
compute the optimal waiting times in the original Non-FIFO+UW
instance

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [10 / 25]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

Sweeping a line with slope −1 from right to left suffices

I Shortcircuit pieces of the arc-delay function lying above the line of
slope −1

Identical arrival-times in Non-FIFO+UW and FIFO instances

Need to consider latest departures given the arrival times, in order to
compute the optimal waiting times in the original Non-FIFO+UW
instance

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [10 / 25]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

Sweeping a line with slope −1 from right to left suffices

I Shortcircuit pieces of the arc-delay function lying above the line of
slope −1

Identical arrival-times in Non-FIFO+UW and FIFO instances

Need to consider latest departures given the arrival times, in order to
compute the optimal waiting times in the original Non-FIFO+UW
instance

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [10 / 25]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

Sweeping a line with slope −1 from right to left suffices

I Shortcircuit pieces of the arc-delay function lying above the line of
slope −1

Identical arrival-times in Non-FIFO+UW and FIFO instances

Need to consider latest departures given the arrival times, in order to
compute the optimal waiting times in the original Non-FIFO+UW
instance

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [10 / 25]

Non-FIFO+UW Arc⇔ FIFO Arc

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

Sweeping a line with slope −1 from right to left suffices

I Shortcircuit pieces of the arc-delay function lying above the line of
slope −1

Identical arrival-times in Non-FIFO+UW and FIFO instances

Need to consider latest departures given the arrival times, in order to
compute the optimal waiting times in the original Non-FIFO+UW
instance

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [10 / 25]

Variants of Time-Dependent Shortest Path

Time-Dependent Shortest Path

Directed graph G = (V ,A) with
arc-travel-time function D[uv](t), ∀uv ∈ A
Arr[uv](t) = t + D[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions:
Arr[p](t) = Arr[ak] ◦ · · · ◦ Arr[a1](t) (composition)
D[p](t) = Arr[p](t) − t

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d](t) = minp∈Po,d

{
Arr[p](t)

}
D[o, d](t) = Arr[o, d](t) − t

GOAL1: For departure-time to from o, determine td = Arr[o, d](to)
GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d])

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [11 / 25]

Variants of Time-Dependent Shortest Path

Time-Dependent Shortest Path

Directed graph G = (V ,A) with
arc-travel-time function D[uv](t), ∀uv ∈ A
Arr[uv](t) = t + D[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions:
Arr[p](t) = Arr[ak] ◦ · · · ◦ Arr[a1](t) (composition)
D[p](t) = Arr[p](t) − t

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d](t) = minp∈Po,d

{
Arr[p](t)

}
D[o, d](t) = Arr[o, d](t) − t

GOAL1: For departure-time to from o, determine td = Arr[o, d](to)
GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d])

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [11 / 25]

Variants of Time-Dependent Shortest Path

Time-Dependent Shortest Path

Directed graph G = (V ,A) with
arc-travel-time function D[uv](t), ∀uv ∈ A
Arr[uv](t) = t + D[uv](t)

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Po,d : od-paths; p = (a1, . . . , ak) ∈ Po,d

Path arrival / travel-time functions:
Arr[p](t) = Arr[ak] ◦ · · · ◦ Arr[a1](t) (composition)
D[p](t) = Arr[p](t) − t

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d](t) = minp∈Po,d

{
Arr[p](t)

}
D[o, d](t) = Arr[o, d](t) − t

GOAL1: For departure-time to from o, determine td = Arr[o, d](to)
GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d])

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [11 / 25]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the
entire distance function D[o, d] allows for easy answers (e.g., via
look-ups) in several queries for varying departure times, or even
finding the minimum travel / ealriest-arrival time within a window of
possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in large-scale nets, for
arbitrary departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time responses to
queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires to
precompute functions instead of scalars.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [12 / 25]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the
entire distance function D[o, d] allows for easy answers (e.g., via
look-ups) in several queries for varying departure times, or even
finding the minimum travel / ealriest-arrival time within a window of
possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in large-scale nets, for
arbitrary departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time responses to
queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires to
precompute functions instead of scalars.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [12 / 25]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the
entire distance function D[o, d] allows for easy answers (e.g., via
look-ups) in several queries for varying departure times, or even
finding the minimum travel / ealriest-arrival time within a window of
possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in large-scale nets, for
arbitrary departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time responses to
queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires to
precompute functions instead of scalars.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [12 / 25]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)! Possessing the
entire distance function D[o, d] allows for easy answers (e.g., via
look-ups) in several queries for varying departure times, or even
finding the minimum travel / ealriest-arrival time within a window of
possible departure times.

2 Need to respond efficiently (theory: in sublinear time; practice: in
micro/milliseconds) to arbitrary queries in large-scale nets, for
arbitrary departure-times and od−pairs.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time responses to
queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires to
precompute functions instead of scalars.

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [12 / 25]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW
networks (given that optimal waiting times exist). The same applies
for FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise
continuous with negative discontinuities1, then the solution
(path+waiting policy) in non-FIFO+UW network induces a solution in
non-FIFO+OW network using the same path and appropriate waiting
time only at the origin.

[Kontogiannis-Zaroliagis (2014)] In strict-FIFO networks, (general) subpath
optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d] is
non-decreasing (increasing).

1This means that: ∀tu,D[uv](tu) ≥ limt↓tu D[uv](t))

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [13 / 25]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW
networks (given that optimal waiting times exist). The same applies
for FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise
continuous with negative discontinuities1, then the solution
(path+waiting policy) in non-FIFO+UW network induces a solution in
non-FIFO+OW network using the same path and appropriate waiting
time only at the origin.

[Kontogiannis-Zaroliagis (2014)] In strict-FIFO networks, (general) subpath
optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d] is
non-decreasing (increasing).

1This means that: ∀tu,D[uv](tu) ≥ limt↓tu D[uv](t))

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [13 / 25]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW
networks (given that optimal waiting times exist). The same applies
for FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise
continuous with negative discontinuities1, then the solution
(path+waiting policy) in non-FIFO+UW network induces a solution in
non-FIFO+OW network using the same path and appropriate waiting
time only at the origin.

[Kontogiannis-Zaroliagis (2014)] In strict-FIFO networks, (general) subpath
optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d] is
non-decreasing (increasing).

1This means that: ∀tu,D[uv](tu) ≥ limt↓tu D[uv](t))
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [13 / 25]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW
networks (given that optimal waiting times exist). The same applies
for FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise
continuous with negative discontinuities1, then the solution
(path+waiting policy) in non-FIFO+UW network induces a solution in
non-FIFO+OW network using the same path and appropriate waiting
time only at the origin.

[Kontogiannis-Zaroliagis (2014)] In strict-FIFO networks, (general) subpath
optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d] is
non-decreasing (increasing).

1This means that: ∀tu,D[uv](tu) ≥ limt↓tu D[uv](t))
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [13 / 25]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW
networks (given that optimal waiting times exist). The same applies
for FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise
continuous with negative discontinuities1, then the solution
(path+waiting policy) in non-FIFO+UW network induces a solution in
non-FIFO+OW network using the same path and appropriate waiting
time only at the origin.

[Kontogiannis-Zaroliagis (2014)] In strict-FIFO networks, (general) subpath
optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d] is
non-decreasing (increasing).

1This means that: ∀tu,D[uv](tu) ≥ limt↓tu D[uv](t))
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [13 / 25]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
FIFO networks, and in non-FIFO+UW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay functions are
evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in non-FIFO+FW networks. Determining existence of a
finite-hop solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial in the number of “elementary” functional
operations. i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so “elementary” operations after all (see next slides)!

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [14 / 25]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
FIFO networks, and in non-FIFO+UW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay functions are
evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in non-FIFO+FW networks. Determining existence of a
finite-hop solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial in the number of “elementary” functional
operations. i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so “elementary” operations after all (see next slides)!

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [14 / 25]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
FIFO networks, and in non-FIFO+UW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay functions are
evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in non-FIFO+FW networks. Determining existence of a
finite-hop solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial in the number of “elementary” functional
operations. i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so “elementary” operations after all (see next slides)!

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [14 / 25]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dijkstra and Bellman-Ford algorithms work correctly in
FIFO networks, and in non-FIFO+UW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay functions are
evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT work
correctly in non-FIFO+FW networks. Determining existence of a
finite-hop solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial in the number of “elementary” functional
operations. i.e., (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so “elementary” operations after all (see next slides)!

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [14 / 25]

Algorithms for TDSPAlgorithms for TDSP
... in FIFO, continuous, pwl instances... in FIFO, continuous, pwl instances

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [15 / 25]

Input/Output DataInput/Output Data

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [16 / 25]

PWL Arc Delays
Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [17 / 25]

PWL Arc Delays
Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

arrival tv at head[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48 50-2-4

ooo

ooo
0

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [17 / 25]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R,
−→
D [uv](tu) =



4
3 tu + 1, 0 ≤ tumod T ≤ 3

5, 3 ≤ tumod T ≤ 5

2tu − 5, 5 ≤ tumod T ≤ 7

− 8
13 tu + 173

13 , 7 ≤ tumod T ≤ 20

1, 20 ≤ tumod T ≤ 24

Representation: Array of (slope, constant, dep.time UB) triples

(dep.time,delay) pairs

equipped with advanced (binary/predecessor) search capabilities(
4
3 , 1, 3

)
(0, 5, 5) (2,−5, 7)

(
− 8

13 ,
173
13 , 20

)
(0, 1, 24)

(0, 1) (3, 5) (5, 5) (7, 9) (20, 1)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [18 / 25]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R,
−→
D [uv](tu) =



4
3 tu + 1, 0 ≤ tumod T ≤ 3

5, 3 ≤ tumod T ≤ 5

2tu − 5, 5 ≤ tumod T ≤ 7

− 8
13 tu + 173

13 , 7 ≤ tumod T ≤ 20

1, 20 ≤ tumod T ≤ 24

Representation: Array of

(slope, constant, dep.time UB) triples

(dep.time,delay) pairs
equipped with advanced (binary/predecessor) search capabilities

(
4
3 , 1, 3

)
(0, 5, 5) (2,−5, 7)

(
− 8

13 ,
173
13 , 20

)
(0, 1, 24)

(0, 1) (3, 5) (5, 5) (7, 9) (20, 1)
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [18 / 25]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b ′e from head[e] at which
D[e] changes slope (assume K ∈ O(m) PBs in total)

Primitive Image (PI): Latest departure-time be from origin o s.t.
earliest-arrival-time b ′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e]

Minimization Breakpoint (MB): Departure-time bv from origin o s.t.
Arr[o, v] changes slope due to application of MIN

Periodicity of arc-delays implies periodicity of earliest-arrival function
Arr[o, d]

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [19 / 25]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b ′e from head[e] at which
D[e] changes slope (assume K ∈ O(m) PBs in total)

Primitive Image (PI): Latest departure-time be from origin o s.t.
earliest-arrival-time b ′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e]

Minimization Breakpoint (MB): Departure-time bv from origin o s.t.
Arr[o, v] changes slope due to application of MIN

Periodicity of arc-delays implies periodicity of earliest-arrival function
Arr[o, d]

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [19 / 25]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b ′e from head[e] at which
D[e] changes slope (assume K ∈ O(m) PBs in total)

Primitive Image (PI): Latest departure-time be from origin o s.t.
earliest-arrival-time b ′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e]

Minimization Breakpoint (MB): Departure-time bv from origin o s.t.
Arr[o, v] changes slope due to application of MIN

Periodicity of arc-delays implies periodicity of earliest-arrival function
Arr[o, d]

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [19 / 25]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b ′e from head[e] at which
D[e] changes slope (assume K ∈ O(m) PBs in total)

Primitive Image (PI): Latest departure-time be from origin o s.t.
earliest-arrival-time b ′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e]

Minimization Breakpoint (MB): Departure-time bv from origin o s.t.
Arr[o, v] changes slope due to application of MIN

Periodicity of arc-delays implies periodicity of earliest-arrival function
Arr[o, d]

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [19 / 25]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-travel-time) functions

I Convenient for handling artificial arcs (representing shortest-travel-time
functions) in overlay abstractions of the road network

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or
D[o, d]), even for linear arc-delays and very sparse graphs

We need only O
(

1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,
piecewise-linear arc-delays

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [20 / 25]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-travel-time) functions

I Convenient for handling artificial arcs (representing shortest-travel-time
functions) in overlay abstractions of the road network

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or
D[o, d]), even for linear arc-delays and very sparse graphs

We need only O
(

1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,
piecewise-linear arc-delays

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [20 / 25]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions and
earliest-arrival (or shortest-travel-time) functions

I Convenient for handling artificial arcs (representing shortest-travel-time
functions) in overlay abstractions of the road network

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d] (or
D[o, d]), even for linear arc-delays and very sparse graphs

We need only O
(

1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε) upper

approximation D[o, d] of D[o, d], for the case of continuous,
piecewise-linear arc-delays

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [20 / 25]

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [21 / 25]

Why Do We Need an Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have
from/to any origin/destination vertex

2 We may need to compute exact distance summaries for special pairs
of vertices (eg, from/to hubs, all superhub-to-superhub connections,
etc)

3 Interesting to discover whether the complexity of the earliest-arrival
functions is indeed so bad in real (e.g., road) networks

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [22 / 25]

Why Do We Need an Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have
from/to any origin/destination vertex

2 We may need to compute exact distance summaries for special pairs
of vertices (eg, from/to hubs, all superhub-to-superhub connections,
etc)

3 Interesting to discover whether the complexity of the earliest-arrival
functions is indeed so bad in real (e.g., road) networks

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [22 / 25]

Why Do We Need an Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have
from/to any origin/destination vertex

2 We may need to compute exact distance summaries for special pairs
of vertices (eg, from/to hubs, all superhub-to-superhub connections,
etc)

3 Interesting to discover whether the complexity of the earliest-arrival
functions is indeed so bad in real (e.g., road) networks

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [22 / 25]

Why Do We Need an Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to have
from/to any origin/destination vertex

2 We may need to compute exact distance summaries for special pairs
of vertices (eg, from/to hubs, all superhub-to-superhub connections,
etc)

3 Interesting to discover whether the complexity of the earliest-arrival
functions is indeed so bad in real (e.g., road) networks

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [22 / 25]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in
the graph is at most 2

Given an arbitrary point in time (“current time”)
t0 ≥ 0 as departure time from origin o, compute a
TDSP tree

Discover until when the TDSP tree is valid:

I ∀v ∈ V , two short alternatives when departing
from o at time t0: Earliest-arrival to each parent,
plus delay of corresponding incoming arc

I Minimization (vertex) Certificate tfail[v]: Earliest departure time from
o at which the two alternatives of v become equivalent

I Primitive (arc) Certificate tfail[e]: Primitive image of the next (ie, after
t0) breakpoint of the arc to come

All (m + n) certificates temporarily stored in a priority queue

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [23 / 25]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in
the graph is at most 2

Given an arbitrary point in time (“current time”)
t0 ≥ 0 as departure time from origin o, compute a
TDSP tree

Discover until when the TDSP tree is valid:

I ∀v ∈ V , two short alternatives when departing
from o at time t0: Earliest-arrival to each parent,
plus delay of corresponding incoming arc

0

0
0

x2

x3

x1

v

I Minimization (vertex) Certificate tfail[v]: Earliest departure time from
o at which the two alternatives of v become equivalent

I Primitive (arc) Certificate tfail[e]: Primitive image of the next (ie, after
t0) breakpoint of the arc to come

All (m + n) certificates temporarily stored in a priority queue

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [23 / 25]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in
the graph is at most 2

Given an arbitrary point in time (“current time”)
t0 ≥ 0 as departure time from origin o, compute a
TDSP tree

Discover until when the TDSP tree is valid:

I ∀v ∈ V , two short alternatives when departing
from o at time t0: Earliest-arrival to each parent,
plus delay of corresponding incoming arc

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time from
o at which the two alternatives of v become equivalent

I Primitive (arc) Certificate tfail[e]: Primitive image of the next (ie, after
t0) breakpoint of the arc to come

All (m + n) certificates temporarily stored in a priority queue

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [23 / 25]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in
the graph is at most 2

Given an arbitrary point in time (“current time”)
t0 ≥ 0 as departure time from origin o, compute a
TDSP tree

Discover until when the TDSP tree is valid:

I ∀v ∈ V , two short alternatives when departing
from o at time t0: Earliest-arrival to each parent,
plus delay of corresponding incoming arc

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time from
o at which the two alternatives of v become equivalent

I Primitive (arc) Certificate tfail[e]: Primitive image of the next (ie, after
t0) breakpoint of the arc to come

All (m + n) certificates temporarily stored in a priority queue

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [23 / 25]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in
the graph is at most 2

Given an arbitrary point in time (“current time”)
t0 ≥ 0 as departure time from origin o, compute a
TDSP tree

Discover until when the TDSP tree is valid:

I ∀v ∈ V , two short alternatives when departing
from o at time t0: Earliest-arrival to each parent,
plus delay of corresponding incoming arc

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time from
o at which the two alternatives of v become equivalent

I Primitive (arc) Certificate tfail[e]: Primitive image of the next (ie, after
t0) breakpoint of the arc to come

All (m + n) certificates temporarily stored in a priority queue

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [23 / 25]

The Output-Sensitive Algorithm (II)

When current time t1 > t0 matches the earliest failure-time of a certificate
in the priority queue:

if minimization-certificate failure,
at node v ∈ V :

then (1) Update shortest ov−path
/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and tfail[x],
∀x ∈ Tv

(3) Update tfail[e],
∀e ∈ E : x = tail[e] ∈ Tv

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail[y], ∀y ∈ Tx

(2) Update tfail[e′], ∀e′ ∈ E : tail[e′] ∈ Tx

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [24 / 25]

The Output-Sensitive Algorithm (II)

When current time t1 > t0 matches the earliest failure-time of a certificate
in the priority queue:

if minimization-certificate failure,
at node v ∈ V :

then (1) Update shortest ov−path
/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and tfail[x],
∀x ∈ Tv

(3) Update tfail[e],
∀e ∈ E : x = tail[e] ∈ Tv

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail[y], ∀y ∈ Tx

(2) Update tfail[e′], ∀e′ ∈ E : tail[e′] ∈ Tx

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [24 / 25]

The Output-Sensitive Algorithm (III)

What to keep in memory:
I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating

the parent)
I Advanced search structures, if number of BPs is large
I Only temporarily store certificates in a priority queue

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec | · log n). Ec is the set of arcs whose tails are in Tc , or Thead[c].
Logarithmic factor is due to priority-queue operations

I In the original graph (in worst-case): O
(
m × log2 n

)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN
operator at a particular node, upon emergence of a single certificate
failure

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2 n × (PRIMBPs + MINBPs)

)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [25 / 25]

The Output-Sensitive Algorithm (III)

What to keep in memory:
I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating

the parent)
I Advanced search structures, if number of BPs is large
I Only temporarily store certificates in a priority queue

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec | · log n). Ec is the set of arcs whose tails are in Tc , or Thead[c].
Logarithmic factor is due to priority-queue operations

I In the original graph (in worst-case): O
(
m × log2 n

)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN
operator at a particular node, upon emergence of a single certificate
failure

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2 n × (PRIMBPs + MINBPs)

)

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [25 / 25]

The Output-Sensitive Algorithm (III)

What to keep in memory:
I Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating

the parent)
I Advanced search structures, if number of BPs is large
I Only temporarily store certificates in a priority queue

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec | · log n). Ec is the set of arcs whose tails are in Tc , or Thead[c].
Logarithmic factor is due to priority-queue operations

I In the original graph (in worst-case): O
(
m × log2 n

)
. Second logarithmic

factor is due to updates of tournament trees implementing the MIN
operator at a particular node, upon emergence of a single certificate
failure

Worst-case time-complexity of output-sensitive algorithm:

O
(
m × log2 n × (PRIMBPs + MINBPs)

)
C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –I [25 / 25]

	Time Dependent Shortest Path Examples
	Problem Statements

	Algorithms for TDSP on FIFO, Continuous, Pwl Instances
	Input/Output Data
	An Exact (output-sensitive) Algorithm for Arr[o,]

