Algorithmen für Planare Graphen Sommersemester 16 Dorothea Wagner, Benjamin Niedermann

Viertes Übungsblatt

Ausgabe: 30. Mai 2016 **Besprechung:** 06. Juni 2016

1 Schnitte, Kreise und Bäume im Dualgraph

Zeigen Sie:

- 1. Sei G = (V, E) ein planarer, zusammenhängender Graph mit Dualgraph G^* . Für eine Teilmenge $E' \subseteq E$ gilt, dass der Teilgraph (V, E') von G genau dann einen Kreis enthält, wenn der Teilgraph $(V^*, (E \setminus E')^*)$ von G^* unzusammenhängend ist.
- 2. Sei G = (V, E) ein planarer, zusammenhängender Graph mit Dualgraph $G^* = (V^*, E^*)$, und $E' \subseteq E$. Dann ist (V, E') ein aufspannender Baum von G genau dann, wenn $(V^*, (E \setminus E')^*)$ ein aufspannender Baum von G^* ist.

2 Große und kleine Matchings

Geben Sie für jede natürliche Zahl $n \geq 2$ einen zusammenhängenden Graphen mit n Knoten an, für den ein Matching maximaler Kardinalität genau

- 1. $\lfloor \frac{n}{2} \rfloor$ Kanten
- 2. eine Kante

enthält. Geben Sie jeweils an, wie ein solches kardinalitätsmaximales Matching aussieht.

3 Perfektes Matching

Ein Matching M zu einem Graphen G heißt perfekt, falls jeder Knoten von G zu einer Kante aus M inzident ist. Für welche $n \geq 1$ und $m \geq 1$ besitzen die folgenden Graphen jeweils ein perfektes Matching?

- 1. P_n (der Graph bestehend aus einem einfachen Weg mit n Knoten)
- 2. C_n (der Graph bestehend aus einem einfachen Kreis mit n Knoten)
- 3. Q_n
- $4. K_n$
- 5. $K_{n,m}$

4 Adjazenztest in planaren Graphen

Sei G ein planarer Graph mit n Knoten. Geben Sie eine Datenstruktur mit linearer Größe an, mit deren Hilfe nach linearer Vorberechnung Adjazenzen von Knoten in konstanter Zeit abgefragt werden können. Das heißt, gegeben zwei Knoten u und v von G, kann die Frage ob die Kante $\{u,v\}$ in G ist, in konstanter Zeit beantwortet werden.

Hinweis: Richten Sie die Kanten so, dass jeder Knoten höchstens fünf ausgehende Kanten hat.