

Introduction

SUMMER SEMESTER 2014/2015

Tamara Mchedlidze – Martin Nöllenburg

Organization

Instructors

- Tamara Mchedlidze
- mched@iti.uka.de
- Office 307

- noellenburg@kit.edu
- Office 319

Class meetings

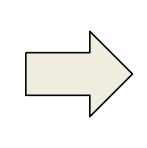
- Tuesday 11:30 13:00
- Room SR301
- Detailed plan of meetings on the webpage

Organization

Web-page

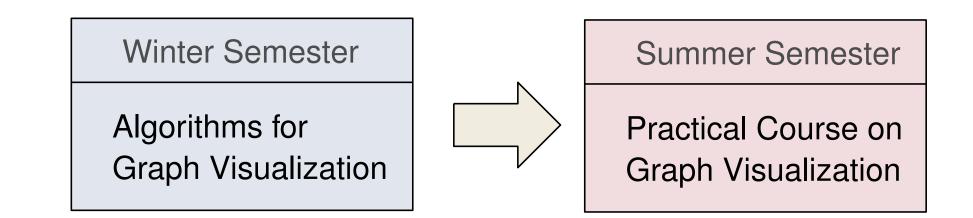
http://i11www.iti.uni-karlsruhe.de/teaching/sommer2015/graphvis/

Information on the web-page


- Meeting dates (subject to change)
- Deadlines and goals
- Literature and reading material (...)

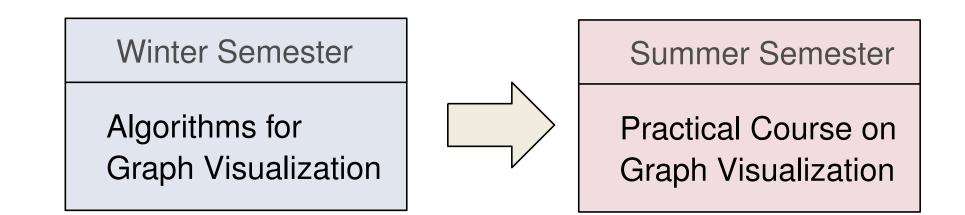
Winter Semester

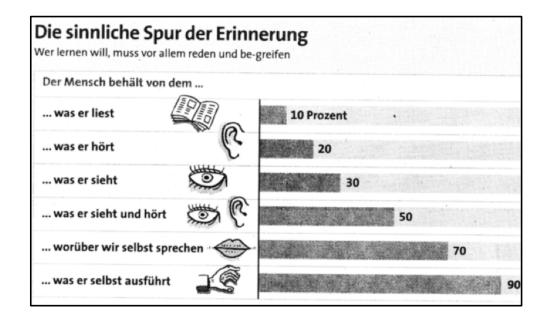
Algorithms for Graph Visualization



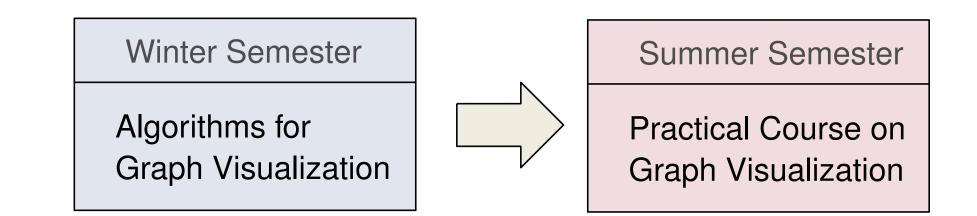
Summer Semester

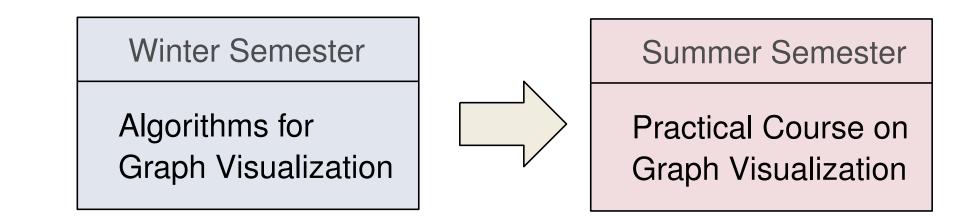
Practical Course on Graph Visualization





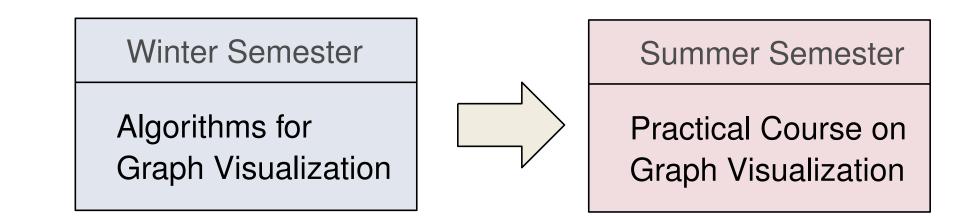
- Practical course is part of the module Theory and Practice of Graph Visualization (IN4INGTP)
- Module consists of the theory lecture (5 credits) and the practical course (5 credits)





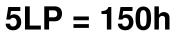
Learning outcome

- Deepen knowledge in Graph Visualization
- Concentrate on a particular topic
- Read, understand and apply scientific publications
- Adapt and combine existing algorithms
- Design new solutions exact or heuristical

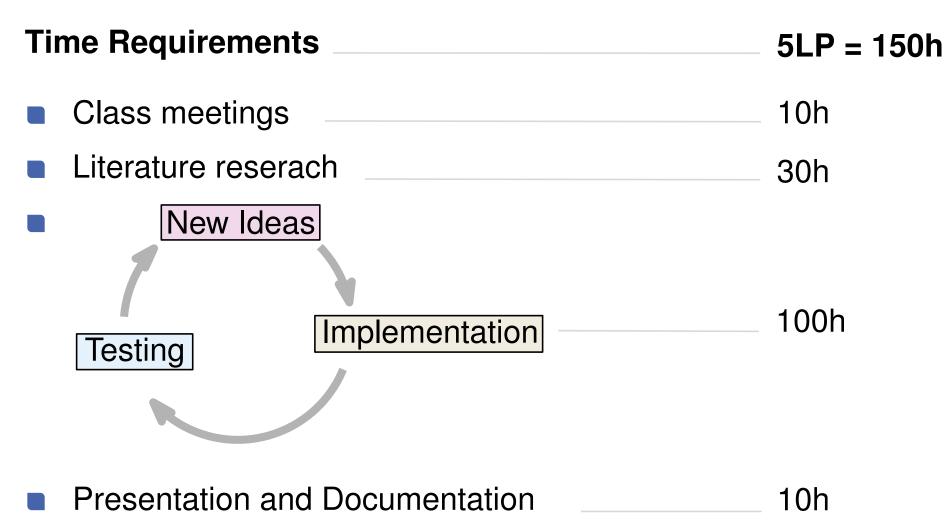


Learning outcome

- Implementation and evaluation of the developed solutions
- Create and manage a complex software project
- Work in a team


Motivating Goal

- Participation in Graph Drawing contest
- Holds during 23rd International Symposium on Graph Drawing and Network Visualization - September 24-26
- For more info: http://www.csun.edu/gd2015/



Time Requirements

April 14 (today)

Organization and Introduction to the topic

Search, read and understand related work

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	Discussion of the found work
	Search, read and understand related work

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	Discussion of the found work
	Search, read and understand related work
April 28	_Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	Discussion of the found work
	Search, read and understand related work
April 28	Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations
May 12	Presentations
	Develop approaches

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	_Discussion of the found work
	Search, read and understand related work
April 28	_Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations
May 12	_Presentations
	Develop approaches
May 26	– Discuss approaches
	Develop structure of the software

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	_Discussion of the found work
	Search, read and understand related work
April 28	_Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations
May 12	_Presentations
	Develop approaches
May 26	Discuss approaches
	Develop structure of the software
June 2	Discuss structure of the software
	Implementation - Testing

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	Discussion of the found work
	Search, read and understand related work
April 28	_Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations
May 12	_Presentations
	Develop approaches
May 26	– Discuss approaches
	Develop structure of the software
June 2	Discuss structure of the software
	Implementation - Testing
June 16	_Questions
	Implementation - Testing (till July 1) - Presentation preparation

April 14 (today)	Organization and Introduction to the topic
	Search, read and understand related work
April 21	_Discussion of the found work
	Search, read and understand related work
April 28	_Discussion of the found work, Distribution of topics
	Detailed study, preparation of presentations
May 12	_Presentations
	Develop approaches
May 26	– Discuss approaches
	Develop structure of the software
June 2	_ Discuss structure of the software
	Implementation - Testing
June 16	_Questions
	Implementation - Testing (till July 1) - Presentation preparation
July 7	_ Final Presentations
July 14	Software-final issues, Documentation _ Submit the software and the documentation

Grading

Scheme

- Successful completion of the project 70%
- Final presentation 20%
- Written documentation 10%

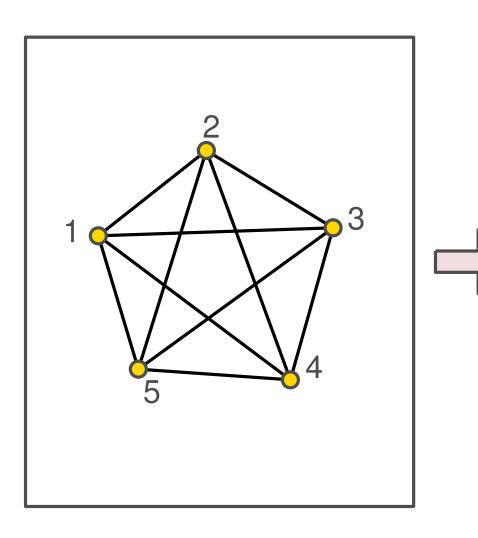
Grading

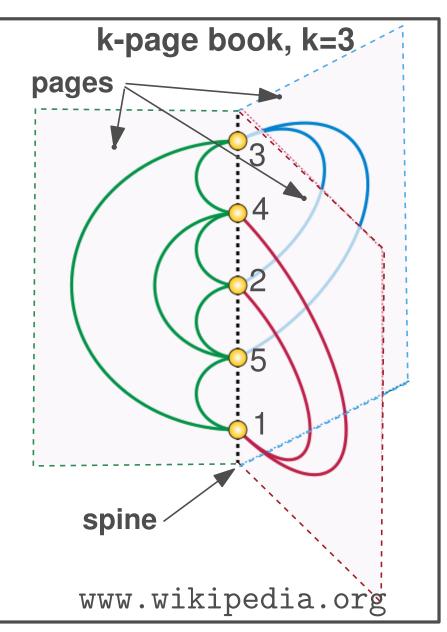
- Successful completion of the project 70%
- Final presentation 20%
- Written documentation 10%

Successful completetion of the project

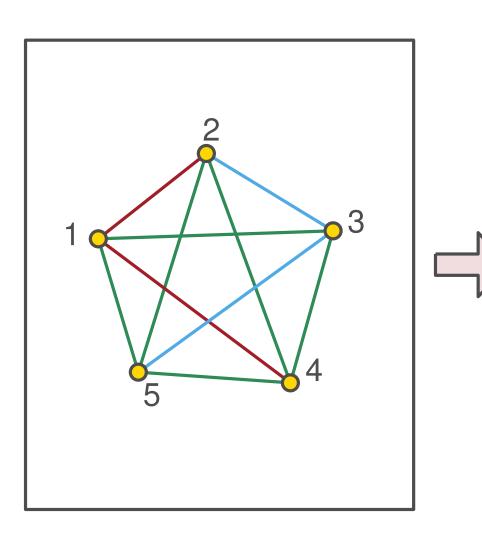
- Be present and active on meetings
- Contribute to literature search
- Contribute to discussions
- Contribute to coding
- Quality of the software
- Validity of the solution (all constraints are met)
- What if you do not ... ?

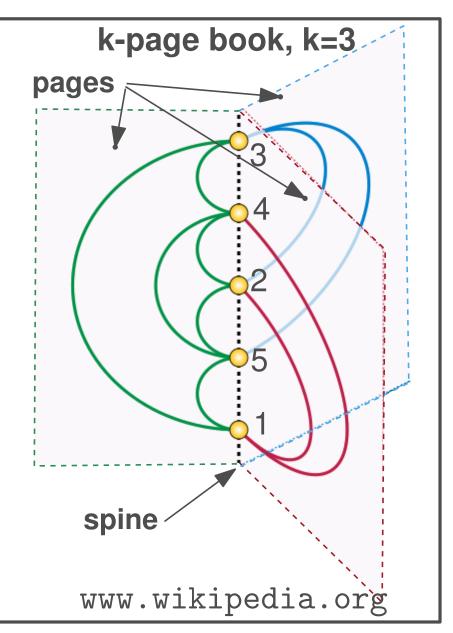
Topic



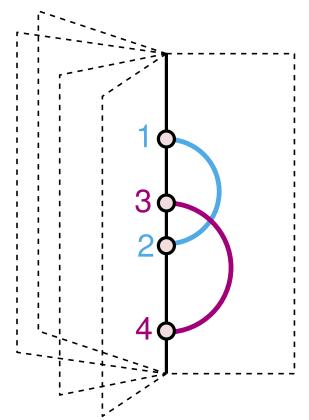

Crossing Minimization in Book Embedding

Book Embedding

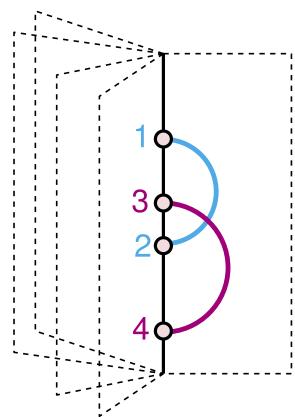




Book Embedding

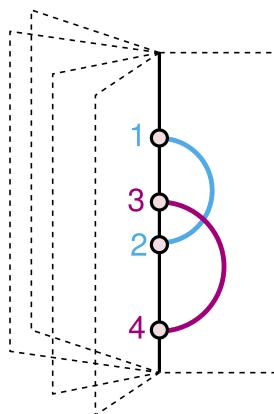


Book Embedding



Can I always get a crossing-free drawing?

Book Embedding

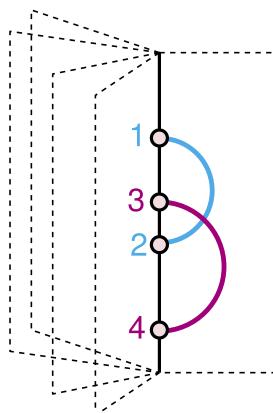


Can I always get a crossing-free drawing?

Obviously, not!

Book Embedding

Can I always get a crossing-free drawing?

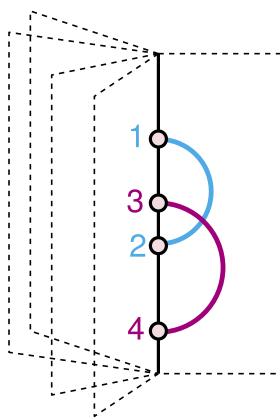

Obviously, not!

Crossing Minimization in Book Embedding:

Given: Graph *G* and an integer k > 0

Book Embedding

Can I always get a crossing-free drawing? Obviously, not!


Crossing Minimization in Book Embedding:

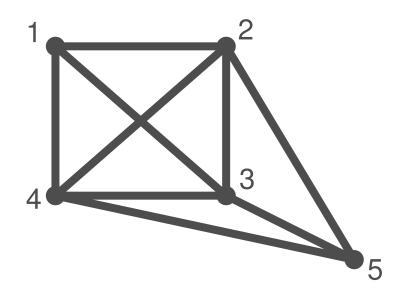
Given: Graph *G* and an integer k > 0**Find:** A k-page book embedding with minimum number of crossings

Book Embedding

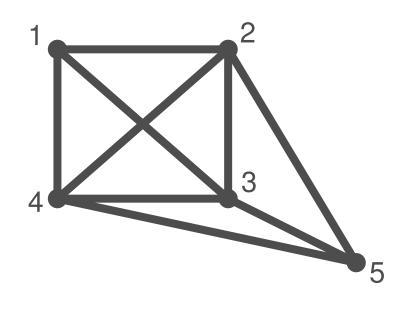
Can I always get a crossing-free drawing? Obviously, not!

Crossing Minimization in Book Embedding:

Given: Graph *G* and an integer k > 0**Find:** A k-page book embedding with minimum number of crossings

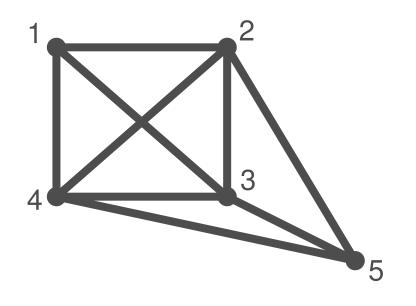

- Find a permutation of the nodes on the spine
- Find an assignment of the edges to the pages
- So that the total number of crossings is minimized

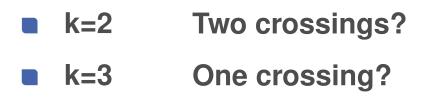
Examples



Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Examples





Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Examples

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Input (and Output) format

Lines starting with # are comments and ignored# First value is the number of nodes (N)

6

Second value is the number of pages (K)

2

Next N numbers describe a permutation of the nodes as they occur along the spine.

0

1

• • •

Remaining lines are the edges.

The first value is the source node.

The second value is the target node.

The third value is enclosed in rectangular brackets and describes the page to which that edge is assigned.

- 0 1 [1] # Edge between Node 0 and Node 1 on page 1
- 0 3 [0] # Edge between Node 0 and Node 3 on page 0

Literature Study

Summarize the key results (usually found in the abstract and introduction)

Literature Study

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?

Literature Study

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the methods and detailed content. Send us a link to the paper.

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the methods and detailed content. Send us a link to the paper.
- Do the results give theoretical insight into the problem, e.g., lower/upper bounds, computational complexity etc?

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the methods and detailed content. Send us a link to the paper.
- Do the results give theoretical insight into the problem, e.g., lower/upper bounds, computational complexity etc?
- Is there a constructive method included or is it a purely existential result?

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the methods and detailed content. Send us a link to the paper.
- Do the results give theoretical insight into the problem, e.g., lower/upper bounds, computational complexity etc?
- Is there a constructive method included or is it a purely existential result?
- Is this method or parts of it implementable (even if with worse asymptotic behavior)?

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the methods and detailed content. Send us a link to the paper.
- Do the results give theoretical insight into the problem, e.g., lower/upper bounds, computational complexity etc?
- Is there a constructive method included or is it a purely existential result?
- Is this method or parts of it implementable (even if with worse asymptotic behavior)?
- Is it tailored to a specific subproblem, e.g. 2-page book embeddings, fixed vertex order etc? Can it be generalized?

m

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the

ΙΟννει/υρρει νουπος, computational complexity εις:

- Is there a constructive method included or is it a purely existential result?
- Is this method or parts of it implementable (even if with worse asymptotic behavior)?
- Is it tailored to a specific subproblem, e.g. 2-page book embeddings, fixed vertex order etc? Can it be generalized?

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the

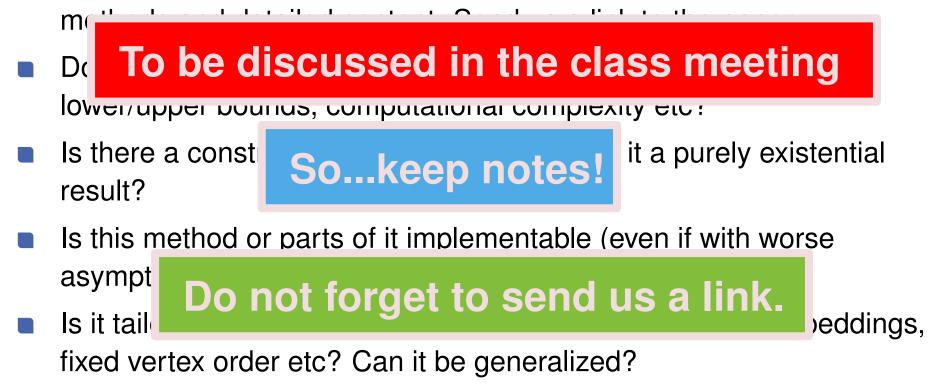
So...keep notes!

lower/upper vourios, computational complexity etc:

Is there a const result?

it a purely existential

- Is this method or parts of it implementable (even if with worse asymptotic behavior)?
- Is it tailored to a specific subproblem, e.g. 2-page book embeddings, fixed vertex order etc? Can it be generalized?





Institute of Theoretical Informatics

Prof. Dr. Dorothea Wagner

- Summarize the key results (usually found in the abstract and introduction)
- Are these results immediately relevant to our problem of crossing minimization in book embeddings?
- If no: continue with the next paper. If yes: get overview of the

How to start?

Tamara Mchedlidze – Practical Course on Graph Visualization

- How to start?
- Use Google Scholar!

- How to start?
- Use Google Scholar!
- What to google for?

- How to start?
- Use Google Scholar!
- What to google for?

crossing minimization in *k*-page book embedding *k*-page crossing number

- How to start?
- Use Google Scholar!
- What to google for?

Related problem: Book thickness of a graph

Given: A graph G

Find: Minimum k > 0, so that *G* has a *k*-page book embedding with zero crossings

- How to start?
- Use Google Scholar!
- What to google for?

Identical terms:

Planar k-book embedding = k-stack layout

Book thickness = pagenumber, stacknumber

 $k \leq 2$: Book embedding = arc diagram, circular layout

- How to start?
- Use Google Scholar!
- What to google for?

Testing whether there exists a planar 2-page book embedding **is equivalent to** testing whether the graph is **Planar Subhamiltonian**

Given: A planar graph *G* **Question:** Can we add edges to *G* to make it hamiltonian without destroying the planarity

- How to start?
- Use Google Scholar!
- What to google for?

Testing whether there exists a planar 2-page book embedding **is equivalent to** testing whether the graph is **Planar Subhamiltonian**

Given: A planar graph *G* **Question:** Can we add edges to *G* to make it hamiltonian without destroying the planarity

 $\mathcal{NP}\text{-complete}$

Wikipedia: http://en.wikipedia.org/wiki/Book embedding

Tamara Mchedlidze – Practical Course on Graph Visualization

- Wikipedia: http://en.wikipedia.org/wiki/Book embedding
- Improved lower bounds on book crossing numbers of complete graphs, by De Klerk et al. SIAM J. DISCRETE MATH., 2013

- Wikipedia: http://en.wikipedia.org/wiki/Book embedding
- Improved lower bounds on book crossing numbers of complete graphs, by De Klerk et al. SIAM J. DISCRETE MATH., 2013
- The Graph Crossing Number and its Variants: A Survey by Marcus Schaefer. Electronic journal of combinatorics, 2014.

- Wikipedia: http://en.wikipedia.org/wiki/Book embedding
- Improved lower bounds on book crossing numbers of complete graphs, by De Klerk et al. SIAM J. DISCRETE MATH., 2013
- The Graph Crossing Number and its Variants: A Survey by Marcus Schaefer. Electronic journal of combinatorics, 2014.
- Permutation procedure for minimizing the number of crossings in a network, by T. A. J. Nicholson. Proceedings of the Institution of Electrical Engineers, 1968.

- Wikipedia: http://en.wikipedia.org/wiki/Book embedding
- Improved lower bounds on book crossing numbers of complete graphs, by De Klerk et al. SIAM J. DISCRETE MATH., 2013
- The Graph Crossing Number and its Variants: A Survey by Marcus Schaefer. Electronic journal of combinatorics, 2014.
- Permutation procedure for minimizing the number of crossings in a network, by T. A. J. Nicholson. Proceedings of the Institution of Electrical Engineers, 1968.
- Crossing Minimisation Heuristics for 2-page Drawings, by H. He et al. Electronic Notes in Discrete Mathematics, 2005.

- Wikipedia: http://en.wikipedia.org/wiki/Book embedding
- Improved lower bounds on book crossing numbers of complete graphs, by De Klerk et al. SIAM J. DISCRETE MATH., 2013
- The Graph Crossing Number and its Variants: A Survey by Marcus Schaefer. Electronic journal of combinatorics, 2014.
- Permutation procedure for minimizing the number of crossings in a network, by T. A. J. Nicholson. Proceedings of the Institution of Electrical Engineers, 1968.
- Crossing Minimisation Heuristics for 2-page Drawings, by H. He et al. Electronic Notes in Discrete Mathematics, 2005.
- Algorithms for the fixed linear crossing number problem, by Robert Cimikowski. Discrete Applied Mathematics 2002.

Untill the next lecture - Literature search

Tamara Mchedlidze – Practical Course on Graph Visualization

- Untill the next lecture Literature search
- During the next meeting
 - Discuss the found results

- Untill the next lecture Literature search
- During the next meeting
 - Discuss the found results
 - 10 min brainstorming: "How to use what we have found?"

- Untill the next lecture Literature search
- During the next meeting
 - Discuss the found results
 - 10 min brainstorming: "How to use what we have found?"

