

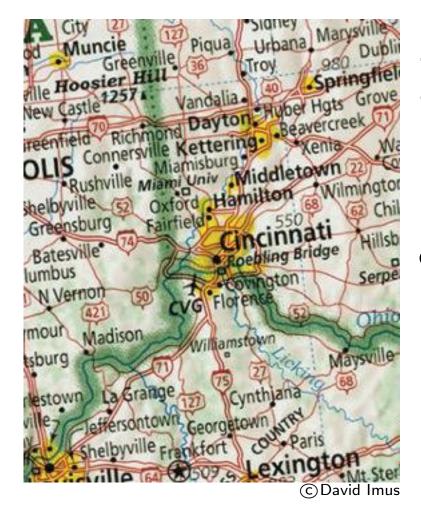
Vorlesung Algorithmische Kartografie Punktbeschriftung in Landkarten

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Benjamin Niedermann · **Martin Nöllenburg** 21./26.05.2015

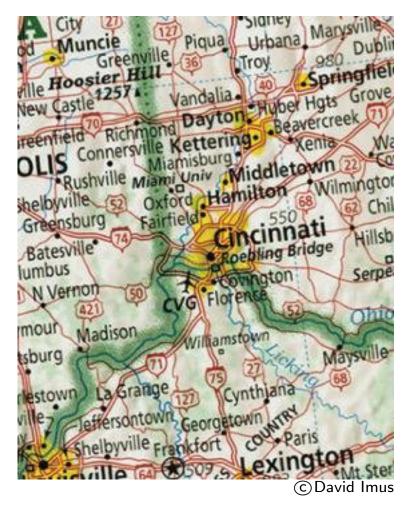
Wo sind wir gerade?

Ebene	Block	Termine	Themen
Karteninhalt	Linienzüge	3	Einführung
			Linienvereinfachung
			Konsistente Vereinfachung von Kantenzügen
	Flächen	5-6	Flächenaggregation
			Vereinfachung von Gebäudeumrissen
			Flächenkartogramme
Beschriftung	Statisch	2	Punktbeschriftung
			Straßenbeschriftung
	Dynamisch	4	Zoomen
			Rotieren
			Trajektorienbasierte Beschriftung
Geovisualisierung	Annotation	3	Beschriftung von bewegten Punkten
			Randbeschriftung
	Diagramme	1	Proportional Symbol Maps



"Poor, sloppy, amateurisch type placement is irresponsible; it spoils even the best image and impedes reading." (E. Imhof '75)

Kartografie hat lange Erfahrung mit manueller Beschriftung in Karten. einige Richtlinien:

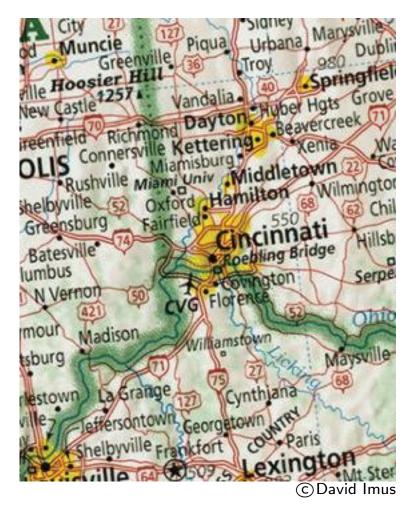


"Poor, sloppy, amateurisch type placement is irresponsible; it spoils even the best image and impedes reading." (E. Imhof '75)

Kartografie hat lange Erfahrung mit manueller Beschriftung in Karten.

einige Richtlinien:

- neben, über oder unter dem Objekt
- am besten oben rechts
- Uberlappungen und Uberdeckungen vermeiden
- eindeutige grafische Zuordnung



"Poor, sloppy, amateurisch type placement is irresponsible; it spoils even the best image and impedes reading." (E. Imhof '75)

Kartografie hat lange Erfahrung mit manueller Beschriftung in Karten.

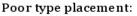
- einige Richtlinien:
 - neben, über oder unter dem Objekt
 - am besten oben rechts
 - Uberlappungen und Uberdeckungen vermeiden
 - eindeutige grafische Zuordnung
 - ...
- ightarrow lässt sich leicht in ein Problem der algorithmischen Geometrie zur automatischen Platzierung von Labeln übersetzen

"Poor, sloppy, amateurisch type placement is irresponsible; it spoils even the best image and impedes reading." (E. Imhof '75)

Viele andere Eigenschaften tragen zur Beschriftungsqualität bei:

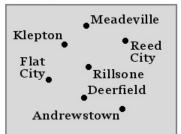
- Font, Farbe
- **fett**/*kursiv* etc.
- Größe, Zeichenabstand

Hier: nur geometrische Platzierung



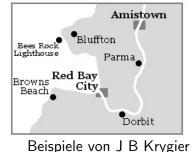


Good type placement:



Poor type placement:

Good type placement:



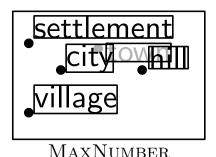
 \rightarrow lässt sich leicht in ein Problem der algorithmischen Geometrie zur automatischen Platzierung von Labeln übersetzen

Geg: *n* Punkte in der Ebene und für jeden Punkt ein Label

repräsentiert als Rechteck (bounding box)

Ges: finde zulässige* Beschriftung für eine **maximale Teilmenge** der

Punkte, so dass sich keine zwei Label schneiden (MAXNUMBER)



Geg: n Punkte in der Ebene und für jeden Punkt ein Label

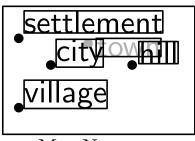
repräsentiert als Rechteck (bounding box)

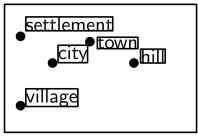
Ges: finde zulässige* Beschriftung für eine **maximale Teilmenge** der

Punkte, so dass sich keine zwei Label schneiden (MAXNUMBER)

oder finde zulässige* Beschriftung aller Label, so dass sich keine zwei

Label schneiden und die Schriftgröße maximal ist (MAXSIZE)





MAXSIZE

Geg: n Punkte in der Ebene und für jeden Punkt ein Label

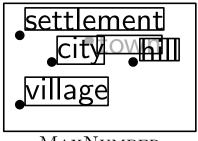
repräsentiert als Rechteck (bounding box)

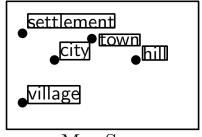
Ges: finde zulässige* Beschriftung für eine **maximale Teilmenge** der

Punkte, so dass sich keine zwei Label schneiden (MAXNUMBER)

oder finde zulässige* Beschriftung aller Label, so dass sich keine zwei

Label schneiden und die Schriftgröße maximal ist (MAXSIZE)





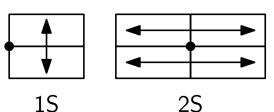
MAXSIZE

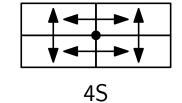
* Was ist eine **zulässige** Beschriftung?

diskrete Modelle

1P 2P 4P

Slider-Modelle





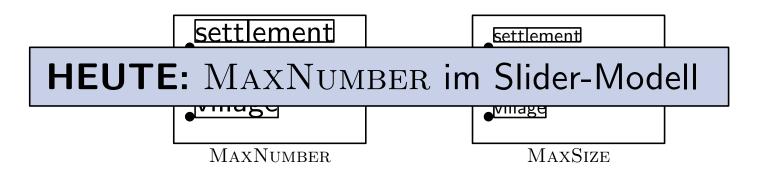
Geg: *n* Punkte in der Ebene und für jeden Punkt ein Label

repräsentiert als Rechteck (bounding box)

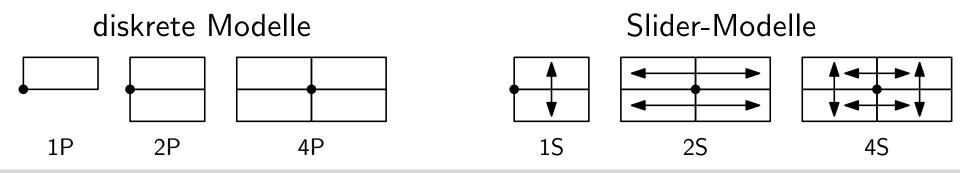
Ges: finde zulässige* Beschriftung für eine **maximale Teilmenge** der

Punkte, so dass sich keine zwei Label schneiden (MAXNUMBER)

oder finde zulässige* Beschriftung aller Label, so dass sich keine zwei Label schneiden und die Schriftgröße maximal ist (MAXSIZE)



* Was ist eine **zulässige** Beschriftung?



Teil 1: Komplexität

Ziel: Das 4-Slider MaxNumber Beschriftungsproblem ist NP-vollständig.

Idee: Reduktion von einer speziellen geometrischen 3-SAT Variante, sog. PLANARES 3-SAT

Planares 3-Sat

Erinnerung 3-Sat:

Gegeben eine Boolesche Formel $\varphi=c_1\wedge\cdots\wedge c_m$ in konjunktiver Normalform mit drei Literalen pro Klausel $c_i=x\vee y\vee z$ ist es NP-vollständig zu entscheiden, ob φ eine erfüllende Belegung besitzt.

Planares 3-Sat

Erinnerung 3-Sat:

Gegeben eine Boolesche Formel $\varphi=c_1\wedge\cdots\wedge c_m$ in konjunktiver Normalform mit drei Literalen pro Klausel $c_i=x\vee y\vee z$ ist es NP-vollständig zu entscheiden, ob φ eine erfüllende Belegung besitzt.

Def: Eine 3-Sat Formel φ heißt **planar**, falls der induzierte Variablen-Klausel-Graph $H_{\varphi}=(V,E)$ planar ist:

- V: Menge der Klauseln und Variablen
- E: Vorkommnisse von Variablen in Klauseln

Planares 3-Sat

Erinnerung 3-Sat:

Gegeben eine Boolesche Formel $\varphi=c_1\wedge\cdots\wedge c_m$ in konjunktiver Normalform mit drei Literalen pro Klausel $c_i=x\vee y\vee z$ ist es NP-vollständig zu entscheiden, ob φ eine erfüllende Belegung besitzt.

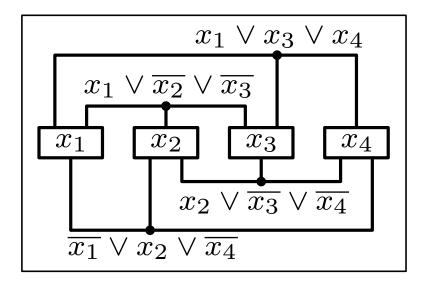
Def: Eine 3-Sat Formel φ heißt **planar**, falls der induzierte Variablen-Klausel-Graph $H_{\varphi} = (V, E)$ planar ist:

- V: Menge der Klauseln und Variablen
- E: Vorkommnisse von Variablen in Klauseln

Satz: Das 3-Sat Problem für planare Boolesche Formeln ist weiterhin NP-vollständig. (Lichtenstein '82)

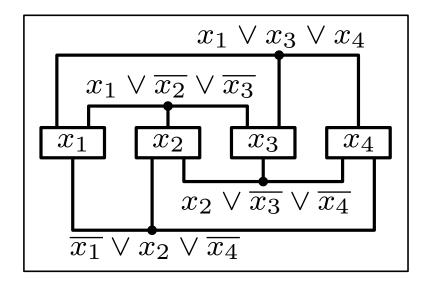
Zeichnung von H_{φ}

 H_{φ} besitzt eine planare Zeichnung, bei der die Variablen auf einer Horizontalen angeordnet sind und die Klauseln E-förmig von oben oder unten zu den Variablen verbunden sind.



Zeichnung von H_{φ}

 H_{φ} besitzt eine planare Zeichnung, bei der die Variablen auf einer Horizontalen angeordnet sind und die Klauseln E-förmig von oben oder unten zu den Variablen verbunden sind.

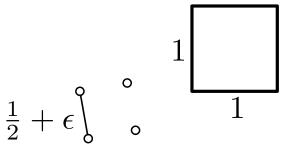


Reduktionsidee:

finde spezielle Punkt- und Labelmengen als **Gadgets** für Variablen und Klauseln in der Zeichnung, so dass gilt φ erfüllbar \Leftrightarrow alle Punkte in Labelinginstanz beschriftbar

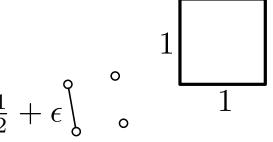
Karlsruhe Institute of Technology

- \bullet 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2+\epsilon$
- Label sind Quadrate der Länge 1



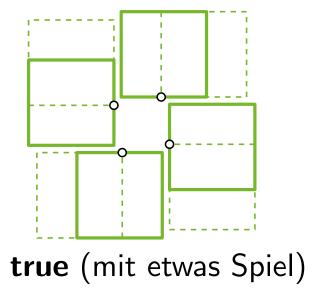
Karlsruhe Institute of Technology

- 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2 + \epsilon$
- Label sind Quadrate der Länge 1



Wie könnte man die vier Punkte beschriften?

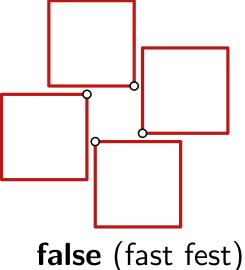
- 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2 + \epsilon$
- Label sind Quadrate der Länge 1
- zwei fundamental verschiedene Beschriftungen möglich
- Kodierung der Wahrheitswerte



- 4 Punkte als Quadratecken,
- Label sind Quadrate der Länge 1

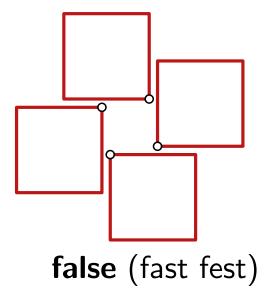
leicht gedreht, Seitenlänge $1/2 + \epsilon$

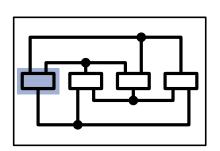
- zwei fundamental verschiedene Beschriftungen möglich
- Kodierung der Wahrheitswerte



Karlsruhe Institute of Technology

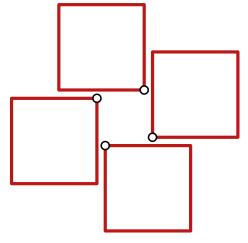
- 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2 + \epsilon$
- Label sind Quadrate der Länge 1
- zwei fundamental verschiedene Beschriftungen möglich
- Kodierung der Wahrheitswerte
- Variablen-Gadgets im zick-zack Muster



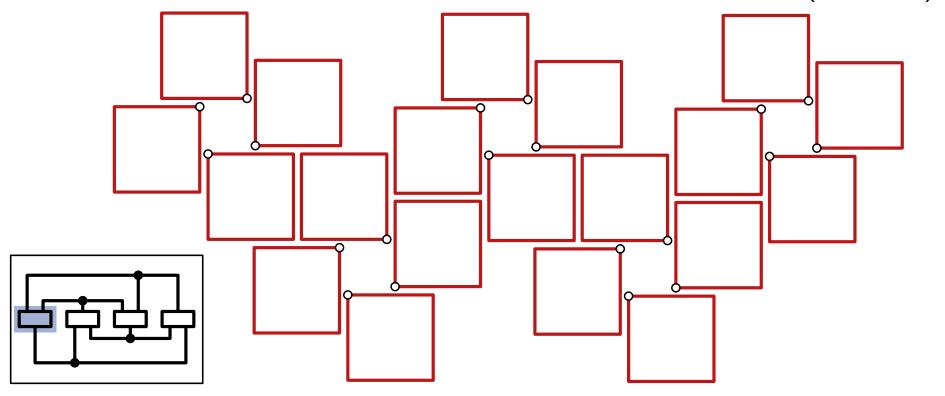


Karlsruhe Institute of Technology

- 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2 + \epsilon$
- Label sind Quadrate der Länge 1
- zwei fundamental verschiedene Beschriftungen möglich
- Kodierung der Wahrheitswerte
- Variablen-Gadgets im zick-zack Muster

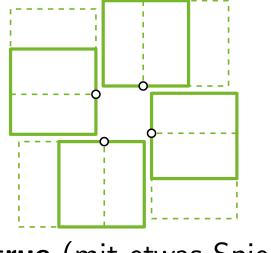


false (fast fest)

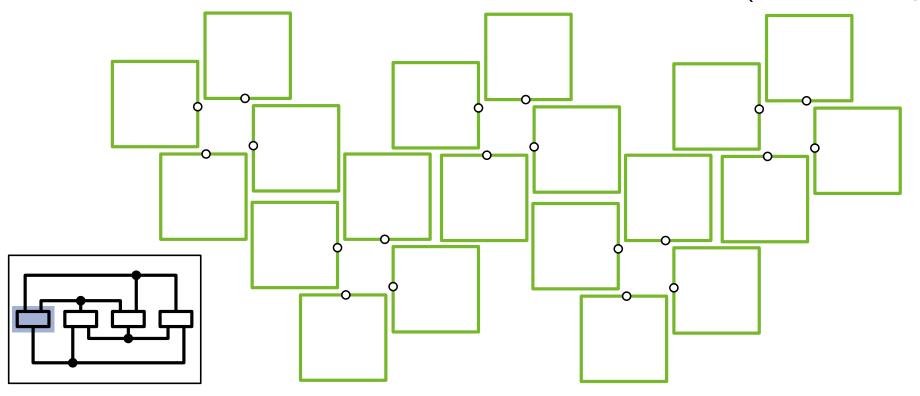


Karlsruhe Institute of Technology

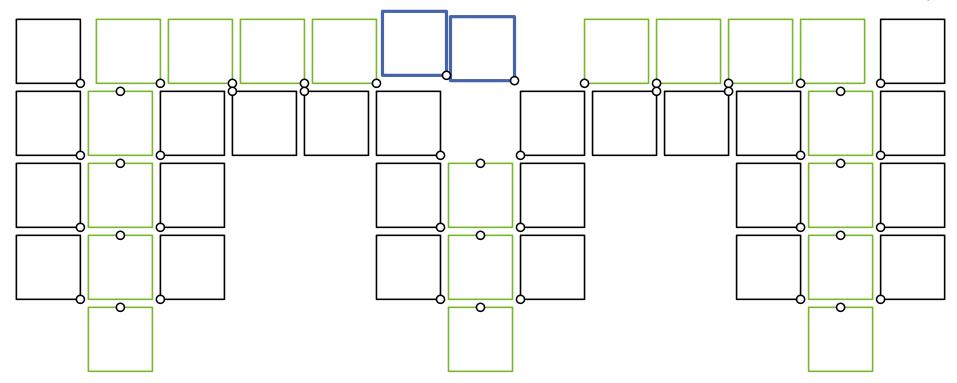
- 4 Punkte als Quadratecken, leicht gedreht, Seitenlänge $1/2 + \epsilon$
- Label sind Quadrate der Länge 1
- zwei fundamental verschiedene Beschriftungen möglich
- Kodierung der Wahrheitswerte
- Variablen-Gadgets im zick-zack Muster



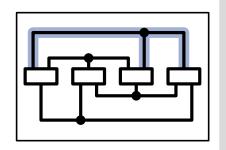
true (mit etwas Spiel)



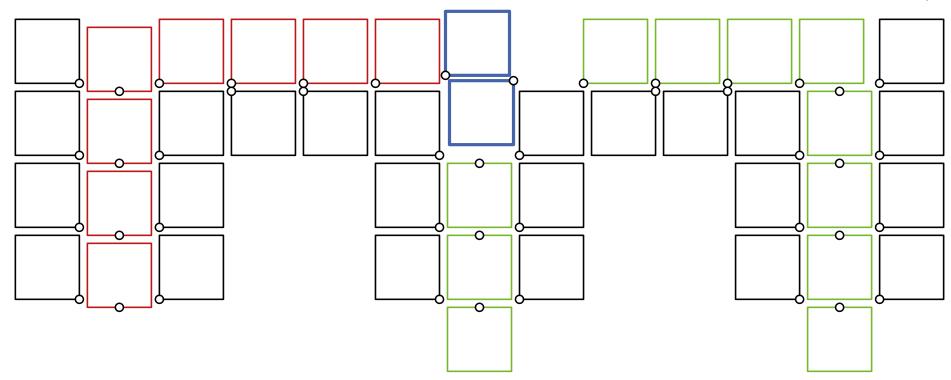
Nachbildung der E-Form der Klauseln aus Zeichnung von H_{arphi}



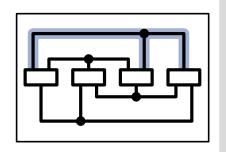
- falsche Literale "drücken" Labelkette nach oben
- wahre Literale ohne Druck
- zwei Label im Klauselzentrum selektieren wahres Literal
- Selektoren schneiden sich ⇔ alle Literale falsch



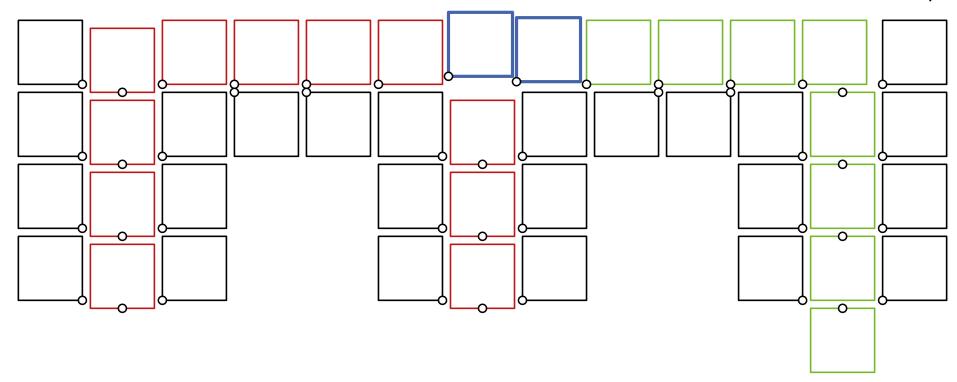
Nachbildung der E-Form der Klauseln aus Zeichnung von H_{arphi}



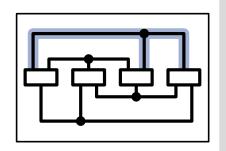
- falsche Literale "drücken" Labelkette nach oben
- wahre Literale ohne Druck
- zwei Label im Klauselzentrum selektieren wahres Literal
- Selektoren schneiden sich ⇔ alle Literale falsch



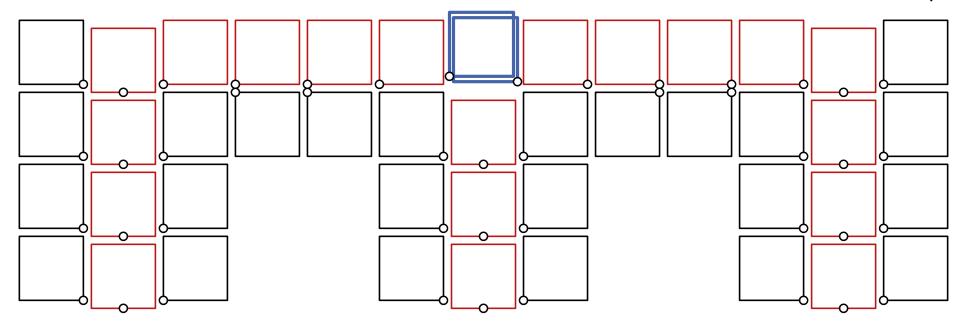
Nachbildung der E-Form der Klauseln aus Zeichnung von H_{arphi}



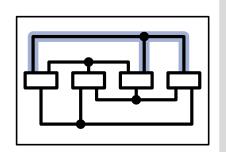
- falsche Literale "drücken" Labelkette nach oben
- wahre Literale ohne Druck
- zwei Label im Klauselzentrum selektieren wahres Literal
- Selektoren schneiden sich ⇔ alle Literale falsch



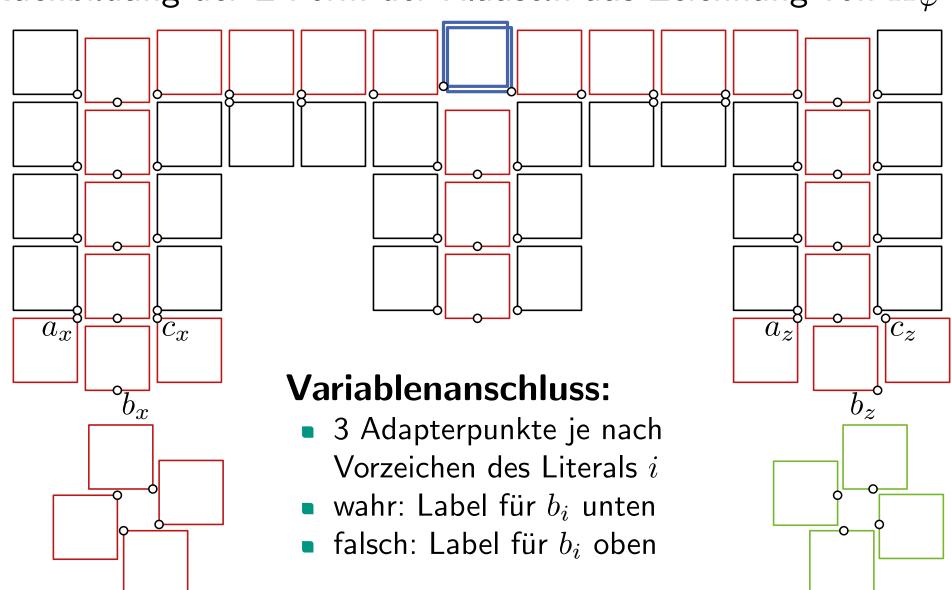
Nachbildung der E-Form der Klauseln aus Zeichnung von H_{arphi}



- falsche Literale "drücken" Labelkette nach oben
- wahre Literale ohne Druck
- zwei Label im Klauselzentrum selektieren wahres Literal
- Selektoren schneiden sich ⇔ alle Literale falsch

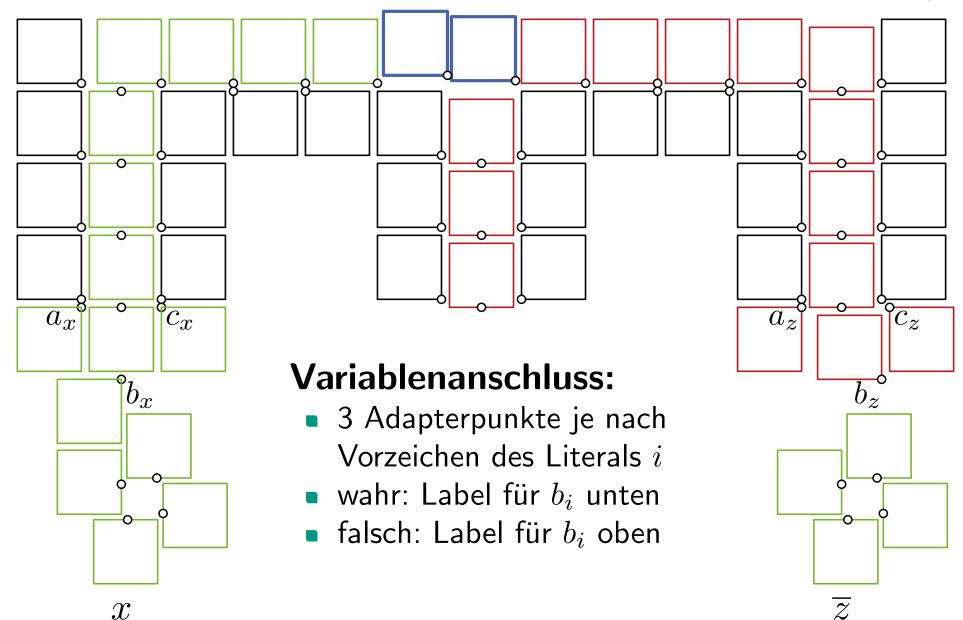


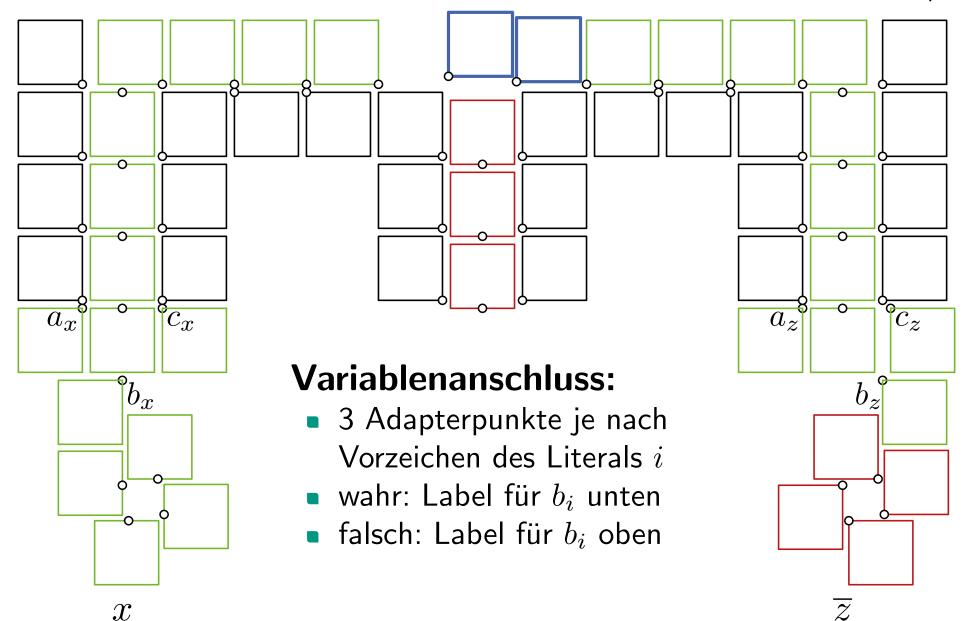
Nachbildung der E-Form der Klauseln aus Zeichnung von H_{arphi}

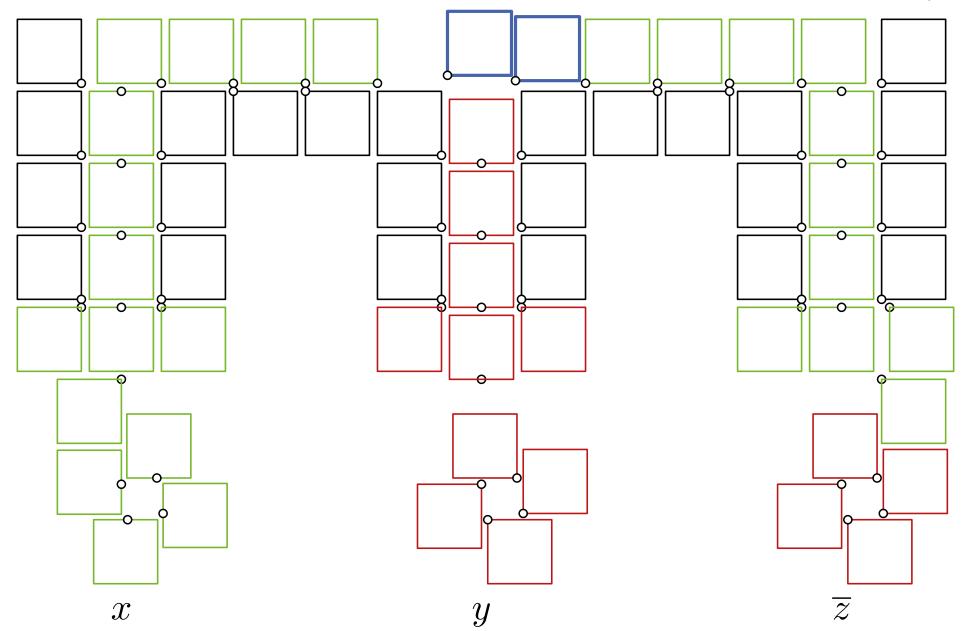


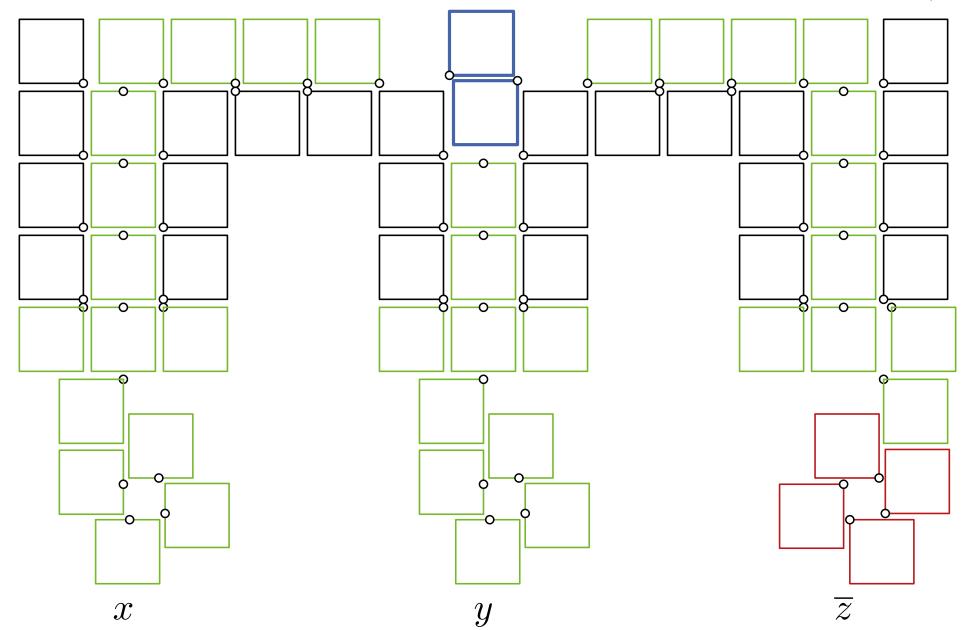
 \mathcal{X}

 \overline{z}









Satz 1: Es ist NP-vollständig zu entscheiden, ob in einer gegebenen Instanz I im 4-Slider Modell alle Punkte beschriftet werden können, selbst wenn alle Label Einheitsquadrate sind. (van Kreveld, Strijk, Wolff '99)

Satz 1: Es ist NP-vollständig zu entscheiden, ob in einer gegebenen Instanz I im 4-Slider Modell alle Punkte beschriftet werden können, selbst wenn alle Label Einheitsquadrate sind. (van Kreveld, Strijk, Wolff '99)

Beweis:

- nach Konstruktion gilt Formel φ erfüllbar \Leftrightarrow Instanz I_{φ} beschriftbar
- ullet Größe von I_{arphi} quadratisch in Klauselanzahl

Satz 1: Es ist NP-vollständig zu entscheiden, ob in einer gegebenen Instanz I im 4-Slider Modell alle Punkte beschriftet werden können, selbst wenn alle Label Einheitsquadrate sind. (van Kreveld, Strijk, Wolff '99)

Beweis:

- nach Konstruktion gilt Formel φ erfüllbar \Leftrightarrow Instanz I_{φ} beschriftbar
- ullet Größe von I_{arphi} quadratisch in Klauselanzahl

Warum liegt das Problem in \mathcal{NP} ?

Teil 2: Approximationsalgorithmen

Greedy-Algorithmus

Geg: Punktmenge $P = \{p_1, \dots, p_n\}$, Menge rechteckiger Label $L = \{l_1, \dots l_n\}$ mit Höhe 1 und variabler Breite

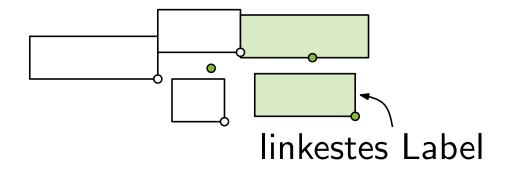
Modell: 4-Slider

Greedy-Algorithmus

Geg: Punktmenge $P = \{p_1, \dots, p_n\}$, Menge rechteckiger Label $L = \{l_1, \dots l_n\}$ mit Höhe 1 und variabler Breite

Modell: 4-Slider

Def: Für Menge P' von Punkten mit bereits platzierten Labeln heißt Label l für Punkt $p \in P \setminus P'$ linkestes Label (in $P \setminus P'$), falls seine rechte Kante unter allen noch konfliktfrei platzierbaren Labeln am weitesten links liegt.

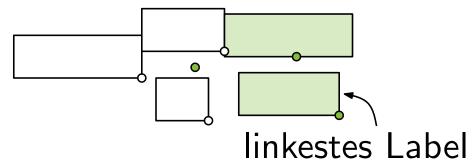


Greedy-Algorithmus

Geg: Punktmenge $P = \{p_1, \dots, p_n\}$, Menge rechteckiger Label $L = \{l_1, \dots l_n\}$ mit Höhe 1 und variabler Breite

Modell: 4-Slider

Def: Für Menge P' von Punkten mit bereits platzierten Labeln heißt Label l für Punkt $p \in P \setminus P'$ linkestes Label (in $P \setminus P'$), falls seine rechte Kante unter allen noch konfliktfrei platzierbaren Labeln am weitesten links liegt.



Algorithmus Greedy4S(P,L)

while linkestes Label l existiert **do** platziere l linkest möglich

Übungen

Algorithmus Greedy4S(P,L)

while linkestes Label l existiert do platziere l linkest möglich

1) Bestimmen Sie den Approximationsfaktor von Greedy4S für Label mit Einheitshöhe 1.

Übungen

Algorithmus Greedy4S(P,L)

while linkestes Label l existiert do platziere l linkest möglich

- 1) Bestimmen Sie den Approximationsfaktor von Greedy4S für Label mit Einheitshöhe 1.
- 2) Nehmen Sie nun an, dass die Label unterschiedliche Höhen besitzen, wobei h_{\min} die kleinste Höhe und h_{\max} die größte Höhe bezeichnet. Welchen Approximationsfaktor liefert Greedy4S unter dieser Annahme?

Übungen

Algorithmus Greedy4S(P,L)

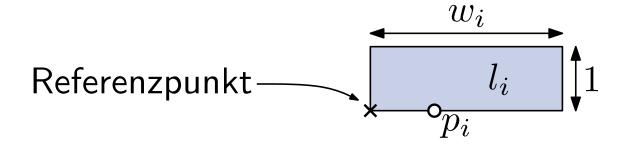
while linkestes Label l existiert **do** platziere l linkest möglich

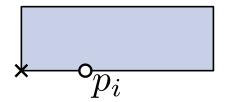
- 1) Bestimmen Sie den Approximationsfaktor von Greedy4S für Label mit Einheitshöhe 1.
- 2) Nehmen Sie nun an, dass die Label unterschiedliche Höhen besitzen, wobei h_{\min} die kleinste Höhe und h_{\max} die größte Höhe bezeichnet. Welchen Approximationsfaktor liefert Greedy4S unter dieser Annahme?
- **Lemma 1:** Greedy4S berechnet eine Faktor-1/2 Approximation für Label mit Einheitshöhe und allgemein eine Faktor- $(\lceil h_{\max}/h_{\min} \rceil + 1)^{-1}$ Approximation.

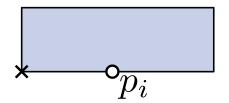
Laufzeit

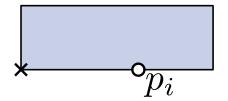
Eine naive Implementierung von Greedy4S benötigt $O(n^3)$ Zeit.

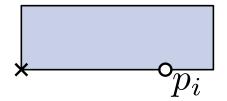
Ziel: Nutze geeignete geometrische Datenstrukturen um die Laufzeit auf $O(n \log n)$ zu senken.

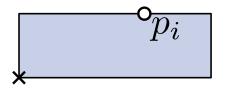


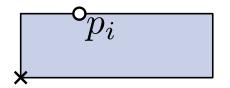


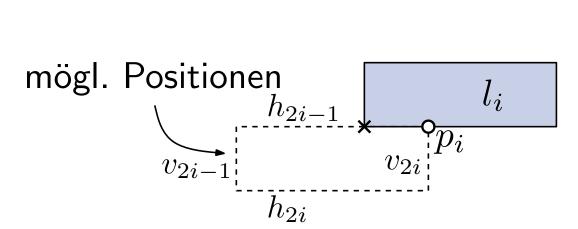


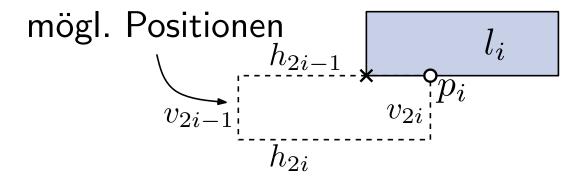


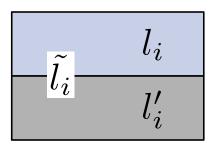






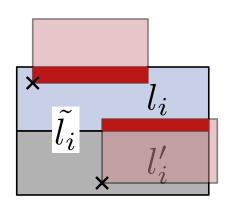






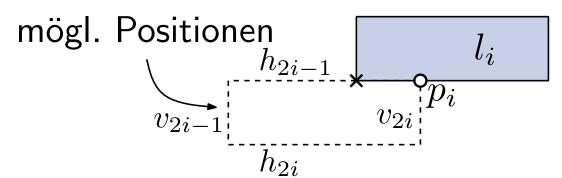
Label l_i und erweitertes Label $\tilde{l_i}$

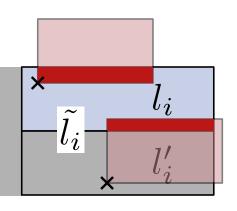
mögl. Positionen l_i v_{2i-1} v_{2i} p_i h_{2i}



Label l_i und erweitertes Label $\tilde{l_i}$

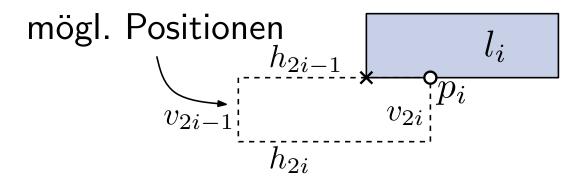
lacktriangle kein Referenzpunkt darf in $ilde{l_i}$ liegen

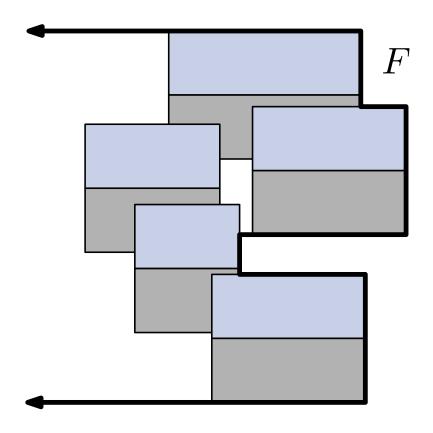




Label l_i und erweitertes Label $\widetilde{l_i}$

- lacktriangle kein Referenzpunkt darf in $ilde{l_i}$ liegen
- da immer linkestes Label platziert wird, kein Referenzpunkt links von $ilde{l_i}$

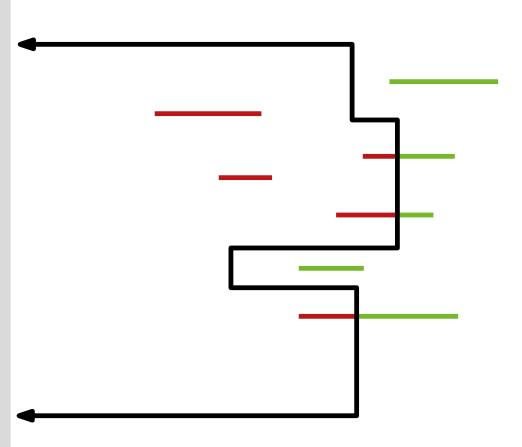




Grenze F als right envelope der platzierten erweiterten Label

Grenze und linkestes Label

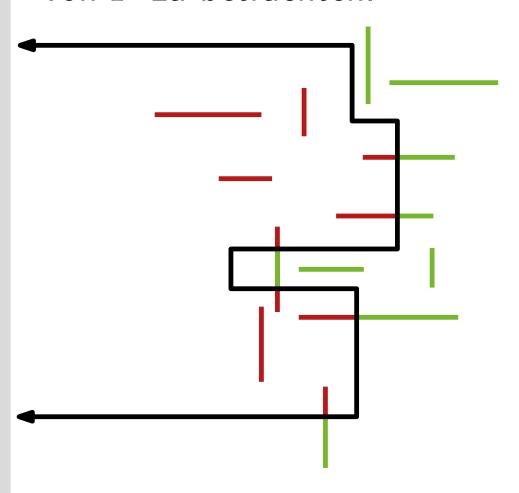
Zur Bestimmung des nächsten linkesten Labels genügt es F und die Strecken $h_{2i-1}, h_{2i}, v_{2i-1}, v_{2i}$ für alle Punkte p_i rechts von F zu betrachten.



- Menge H der horizontalen Strecken
- ullet Menge V der vertikalen Strecken
- $H_{\mathsf{right}} \subseteq H$: rechts von F
- $H_{\text{int}} \subseteq H$: schneiden F

Grenze und linkestes Label

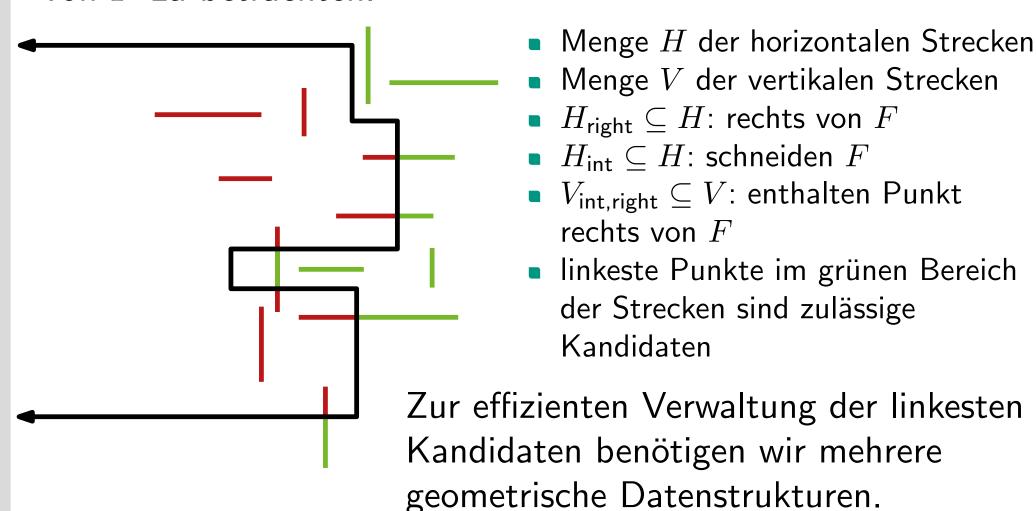
Zur Bestimmung des nächsten linkesten Labels genügt es F und die Strecken $h_{2i-1}, h_{2i}, v_{2i-1}, v_{2i}$ für alle Punkte p_i rechts von F zu betrachten.



- Menge H der horizontalen Strecken
- ullet Menge V der vertikalen Strecken
- $H_{\mathsf{right}} \subseteq H$: rechts von F
- $H_{\mathsf{int}} \subseteq H$: schneiden F
- $V_{\text{int,right}} \subseteq V$: enthalten Punkt rechts von F
- linkeste Punkte im grünen Bereich der Strecken sind zulässige Kandidaten

Grenze und linkestes Label

Zur Bestimmung des nächsten linkesten Labels genügt es F und die Strecken $h_{2i-1}, h_{2i}, v_{2i-1}, v_{2i}$ für alle Punkte p_i rechts von F zu betrachten.



1) Red-Black Trees

- ullet selbstbalancierender binärer Suchbaum der Größe O(n)
- Suchen, Einfügen, Löschen, Auftrennen, Konkatenieren in $O(\log n)$ Zeit

1) Red-Black Trees

- ullet selbstbalancierender binärer Suchbaum der Größe O(n)
- Suchen, Einfügen, Löschen, Auftrennen, Konkatenieren in $O(\log n)$ Zeit

2) Heaps

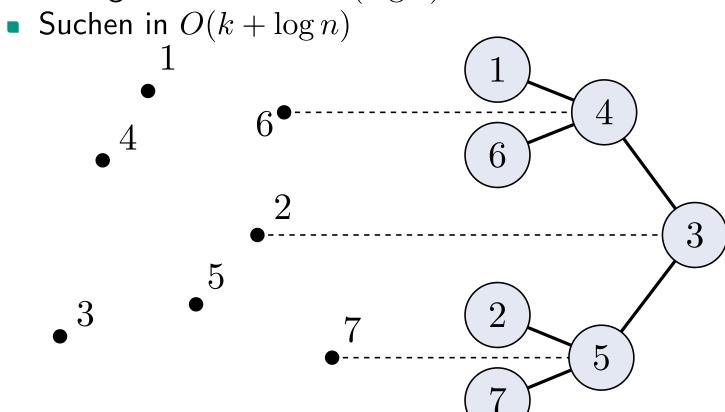
- baumbasierte Datenstruktur mit heap-Eigenschaft
- $\text{key}(\text{parent}(A)) \leq \text{key}(A)$ für alle A
- Größe O(n)
- find-min in O(1)
- delete-min, Einfügen, Löschen in $O(\log n)$

- 3) Priority Search Trees (PST) (s. Kap. 10.2 in [BCKO08])

 - Datenstruktur für Bereichsabfragen der Form $[-\infty, x] \times [y, y']$

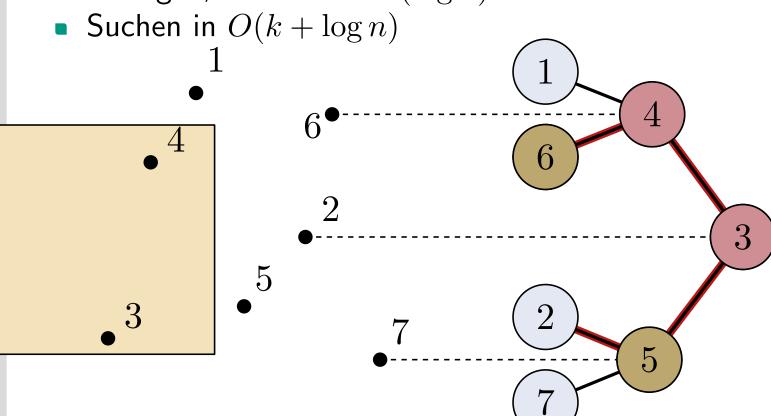
- 3) Priority Search Trees (PST) (s. Kap. 10.2 in [BCKO08])

 - Datenstruktur für Bereichsabfragen der Form $[-\infty, x] \times [y, y']$
 - Heap-Eigenschaft für x
 - Suchbaum für y
 - Größe O(n)
 - Einfügen, Löschen in $O(\log n)$



- 3) Priority Search Trees (PST) (s. Kap. 10.2 in [BCKO08])

 - Datenstruktur für Bereichsabfragen der Form $[-\infty, x] \times [y, y']$
 - Heap-Eigenschaft für x
 - Suchbaum für y
 - Größe O(n)
 - Einfügen, Löschen in $O(\log n)$



Horizontale Strecken

1) Menge H_{right}

- speichere für jede Strecke in H_{right} deren rechten Endpunkt (= linkest mögliche Position der rechten Labelseite)
- Datenstruktur: min-Heap \mathcal{H}_{right}

Horizontale Strecken

1) Menge H_{right}

- speichere für jede Strecke in $H_{\rm right}$ deren rechten Endpunkt (= linkest mögliche Position der rechten Labelseite)
- Datenstruktur: min-Heap \mathcal{H}_{right}

2) Menge H_{int}

- lacktriangle Red-Black Tree \mathcal{T}_i für jedes vertikale Segment f_i von F
- speichere Strecken aus H_{int} , die f_i schneiden sortiert nach y-Koordinaten in den Blättern von \mathcal{T}_i
- speichere zusätzlich Labelbreite an jedem Blatt
- an inneren Knoten minimale Labelbreite im Teilbaum
- lacksquare min-Heap $\mathcal{H}_{\mathsf{int}}$ für linkestes Label in jedem \mathcal{T}_i

Vertikale Strecken

3) Menge $V_{\text{int,right}}$

- speichere Obermenge V' mit $V_{\mathsf{int,right}} \subseteq V'$
- min-Heap \mathcal{H}_V der Menge V' geordnet nach x-Koordinaten der rechten Labelgrenzen
- falls Minimum in \mathcal{H}_V nicht in $V_{\mathsf{int},\mathsf{right}}$ liegt, verwerfe es und wähle nächstes Minimum (lazy Strategie)

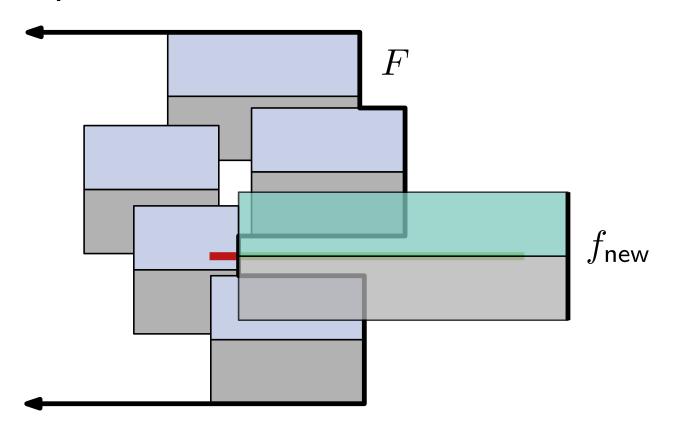
Vertikale Strecken

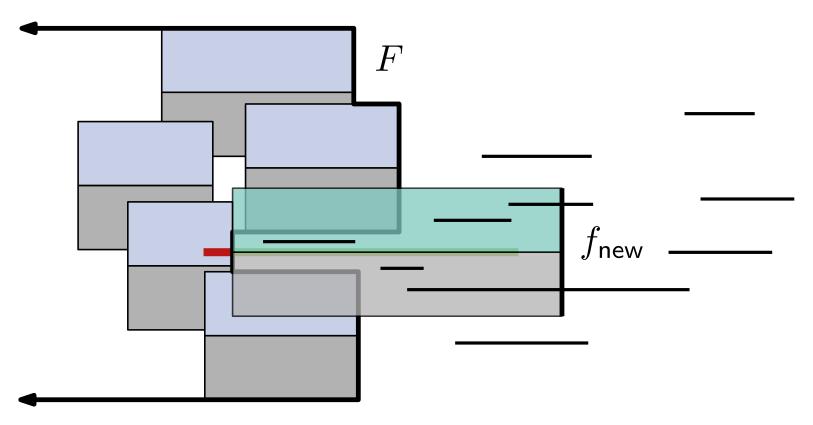
3) Menge $V_{\text{int,right}}$

- speichere Obermenge V' mit $V_{\mathsf{int,right}} \subseteq V'$
- min-Heap \mathcal{H}_V der Menge V' geordnet nach x-Koordinaten der rechten Labelgrenzen
- falls Minimum in \mathcal{H}_V nicht in $V_{\mathsf{int},\mathsf{right}}$ liegt, verwerfe es und wähle nächstes Minimum (lazy Strategie)

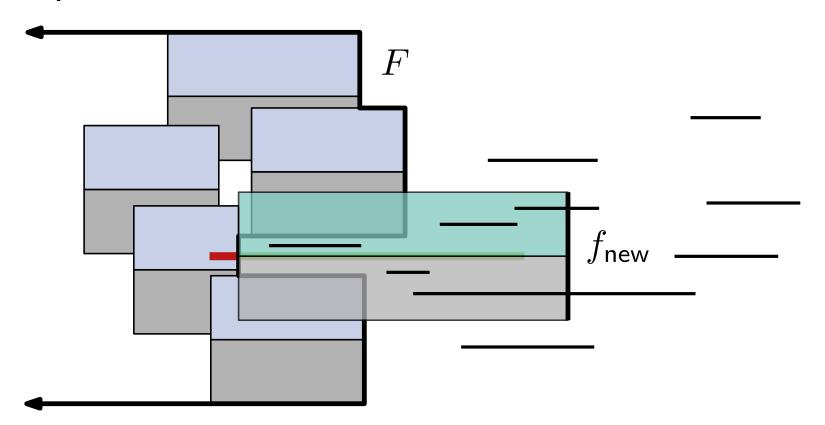
Das linkeste Label für den Greedy-Algorithmus ist eines der drei Minima von \mathcal{H}_{right} , \mathcal{H}_{int} und \mathcal{H}_{V}

Updates

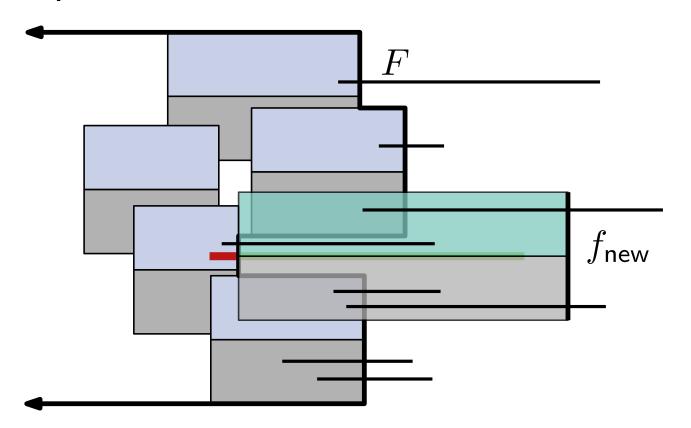




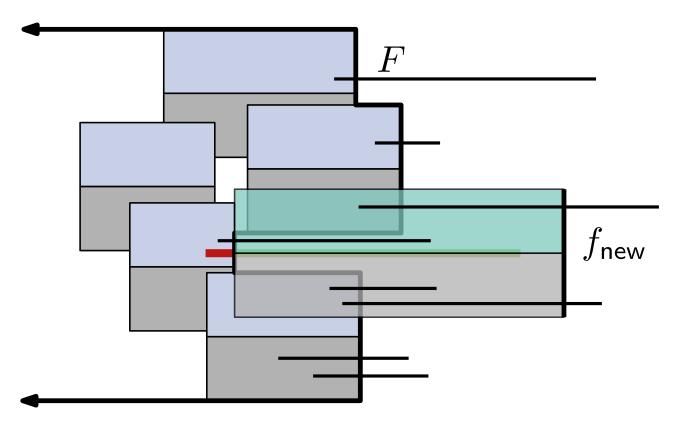
1) Updates von H_{right}



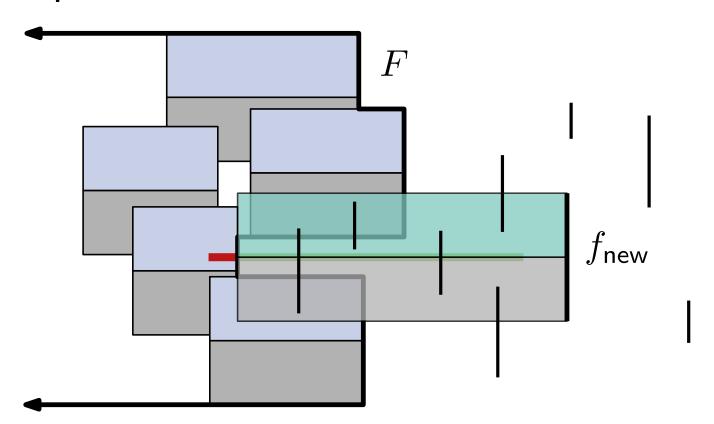
1) Updates von $H_{\mathsf{right}} \ o$ nutze PST für linke Endpunkte der Strecken



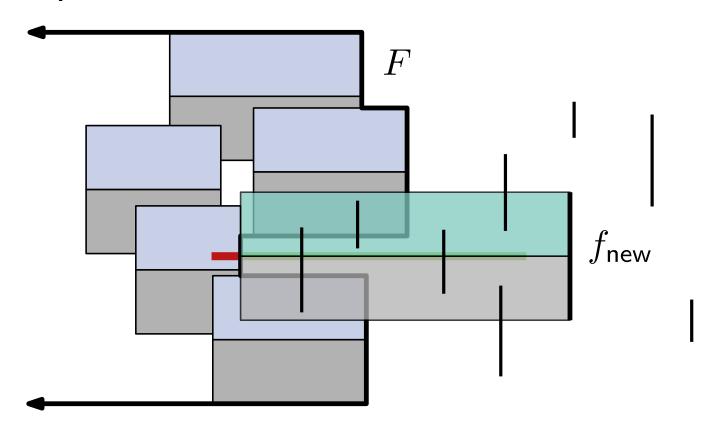
- 1) Updates von $H_{\mathsf{right}} \hspace{0.1cm} o \hspace{0.1cm} \mathsf{nutze} \hspace{0.1cm} \mathsf{PST} \hspace{0.1cm} \mathsf{für} \hspace{0.1cm} \mathsf{linke} \hspace{0.1cm} \mathsf{Endpunkte} \hspace{0.1cm} \mathsf{der} \hspace{0.1cm} \mathsf{Strecken}$
- 2) Updates von H_{int}



- 1) Updates von $H_{\mathsf{right}} \ o$ nutze PST für linke Endpunkte der Strecken
- 2) Updates von $H_{\mathsf{int}} \to \mathsf{nutze} \; \mathsf{PST} \; \mathsf{für} \; \mathsf{rechte} \; \mathsf{Endpunkte} \; \mathsf{der} \; \mathsf{Strecken} \; \to \mathsf{red} \; \mathsf{black} \; \mathsf{trees} \; \mathsf{und} \; \mathcal{H}_{\mathsf{int}} \; \mathsf{an} \; \mathsf{neues} \; F \; \mathsf{anpassen}$



- 1) Updates von $H_{\mathsf{right}} \hspace{0.1cm} o \hspace{0.1cm} \mathsf{nutze} \hspace{0.1cm} \mathsf{PST} \hspace{0.1cm} \mathsf{für} \hspace{0.1cm} \mathsf{linke} \hspace{0.1cm} \mathsf{Endpunkte} \hspace{0.1cm} \mathsf{der} \hspace{0.1cm} \mathsf{Strecken}$
- 2) Updates von $H_{\text{int}} \to \text{nutze PST für rechte Endpunkte der Strecken} \to \text{red black trees und } \mathcal{H}_{\text{int}}$ an neues F anpassen
- 3) Updates von $V_{\text{int,right}}$ bzw. von V'



- 1) Updates von $H_{\mathsf{right}} \hspace{0.1cm} o$ nutze PST für linke Endpunkte der Strecken
- 2) Updates von $H_{\text{int}} \to \text{nutze PST für rechte Endpunkte der Strecken} \to \text{red black trees und } \mathcal{H}_{\text{int}}$ an neues F anpassen
- 3) Updates von $V_{\text{int,right}}$ bzw. von V' \rightarrow lazy deletion in V', aber red black tree \mathcal{T}_V für vertikale Strecken von F mit min. x-Wert in Teilbäumen zur Entscheidung, ob $v \in V_{\text{int,right}}$

Algorithmus von Van Kreveld, Strijk, Wolff


```
while \mathcal{H}_{\mathsf{right}}, \mathcal{H}_{\mathsf{int}} oder \mathcal{H}_V nicht leer do
       v \leftarrow \mathsf{find}\text{-}\mathsf{min}(\mathcal{H}_V)
       while v links von F do
             delete-min(\mathcal{H}_V); v \leftarrow \text{find-min}(\mathcal{H}_V)
       l_i \leftarrow \text{linkestes Label aus } \mathcal{H}_{\text{right}}, \, \mathcal{H}_{\text{int}} \, \, \text{und} \, \, \mathcal{H}_V
       füge l_i zur Beschriftung hinzu
       f_{\text{new}} \leftarrow \text{rechte Kante von } l_i
       update F und \mathcal{T}_V mit f_{\text{new}}
      suche mit der Region links von f_{\mathsf{new}} in \mathcal{P}_{\mathsf{left}} und \mathcal{P}_{\mathsf{right}} und update
      \mathcal{H}_{right}, \mathcal{P}_{left}, \mathcal{H}_{int}, \mathcal{T}_i's und \mathcal{P}_{right} wie beschrieben
       entferne alle Verweise auf p_i aus den Datenstrukturen
```

Algorithmus von Van Kreveld, Strijk, Wolff


```
while \mathcal{H}_{\mathsf{right}}, \mathcal{H}_{\mathsf{int}} oder \mathcal{H}_V nicht leer do
       v \leftarrow \mathsf{find}\text{-}\mathsf{min}(\mathcal{H}_V)
       while v links von F do
             delete-min(\mathcal{H}_V); v \leftarrow \text{find-min}(\mathcal{H}_V)
       l_i \leftarrow \text{linkestes Label aus } \mathcal{H}_{\text{right}}, \, \mathcal{H}_{\text{int}} \, \, \text{und} \, \, \mathcal{H}_V
       füge l_i zur Beschriftung hinzu
       f_{\text{new}} \leftarrow \text{rechte Kante von } l_i
       update F und \mathcal{T}_V mit f_{\text{new}}
       suche mit der Region links von f_{\text{new}} in \mathcal{P}_{\text{left}} und \mathcal{P}_{\text{right}} und update
      \mathcal{H}_{right}, \mathcal{P}_{left}, \mathcal{H}_{int}, \mathcal{T}_i's und \mathcal{P}_{right} wie beschrieben
       entferne alle Verweise auf p_i aus den Datenstrukturen
```

Satz 2: Der Algorithmus Greedy4S(P, L) lässt sich mit $O(n \log n)$ Zeitbedarf und O(n) Platzbedarf implementieren. Die Lösung enthält mindestens halb so viele Label wie die optimale Lösung.

Übungen

1) Überlegen Sie sich, wie man den $O(n \log n)$ -Algorithmus auf Label mit unterschiedlichen Höhen anpassen kann. Ändert sich dadurch die Laufzeit?

Übungen

1) Überlegen Sie sich, wie man den $O(n \log n)$ -Algorithmus auf Label mit unterschiedlichen Höhen anpassen kann. Ändert sich dadurch die Laufzeit?

2) Betrachten Sie nun ein beliebiges fixed-position Modell für Label mit Einheitshöhe. Modifizieren Sie den Algorithmus für diesen Fall. Ändern sich dadurch Laufzeit und/oder Approximationsfaktor?

Ausblick

Van Kreveld, Strijk und Wolff geben auch ein polynomielles Approximationsschema (PTAS) für das Beschriften im Slider-Modell an.

Für Approximationsgüte $(1-\varepsilon)$ ist die Laufzeit $O(n^{4/\varepsilon^2})$.

Ausblick

Van Kreveld, Strijk und Wolff geben auch ein polynomielles Approximationsschema (PTAS) für das Beschriften im Slider-Modell an.

Für Approximationsgüte $(1-\varepsilon)$ ist die Laufzeit $O(n^{4/\varepsilon^2})$.

Ähnliche Ergebnisse (NP-vollständig, Approximation, PTAS) gelten auch für fixed-position-Modelle, z.B. (Agarwal et al. '98)

Ausblick

Van Kreveld, Strijk und Wolff geben auch ein polynomielles Approximationsschema (PTAS) für das Beschriften im Slider-Modell an.

Für Approximationsgüte $(1-\varepsilon)$ ist die Laufzeit $O(n^{4/\varepsilon^2})$.

Ähnliche Ergebnisse (NP-vollständig, Approximation, PTAS) gelten auch für fixed-position-Modelle, z.B. (Agarwal et al. '98)

Slider-Modelle erlauben in realen Instanzen bis zu 15% mehr platzierte Labels als ein 4-Positionen-Modell.

