

Vorlesung Algorithmische Kartografie Linienvereinfachung II

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

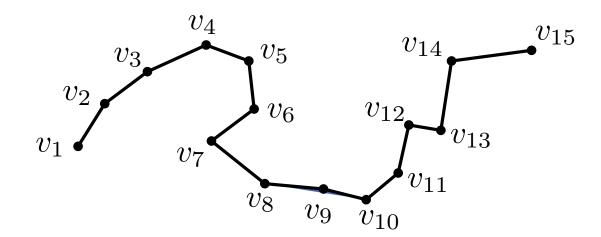
Benjamin Niedermann · **Martin Nöllenburg** 21.04.2015

Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.

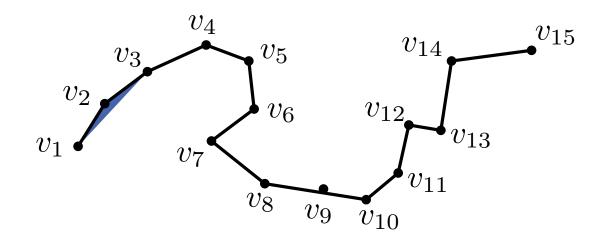
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



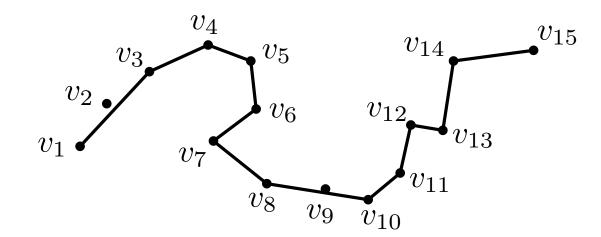
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



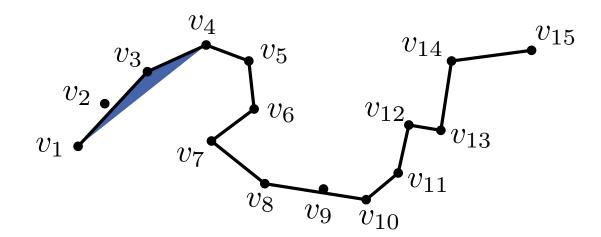
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



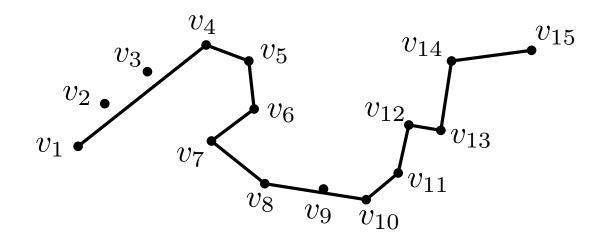
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



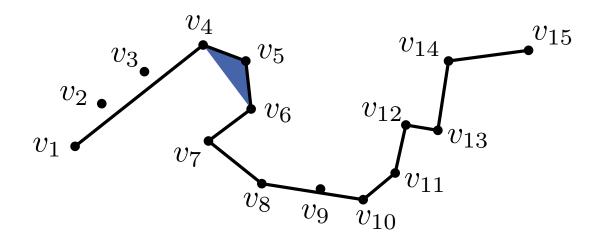
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



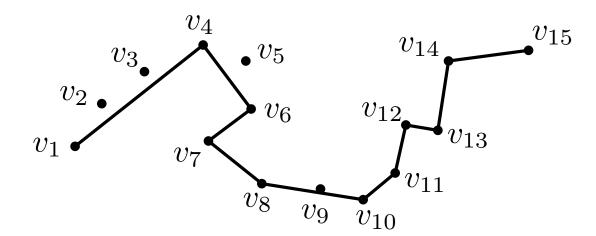
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



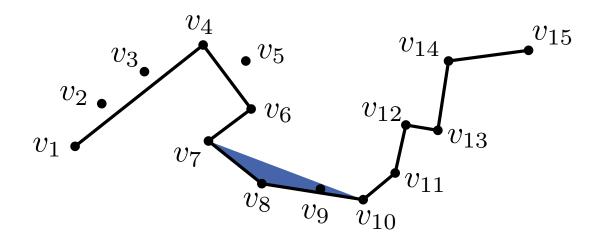
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



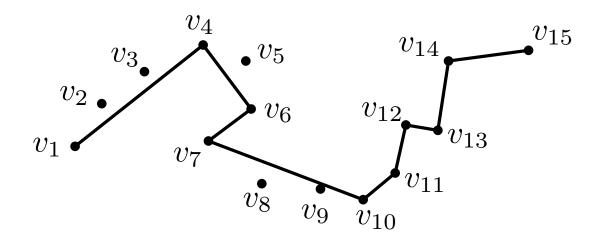
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



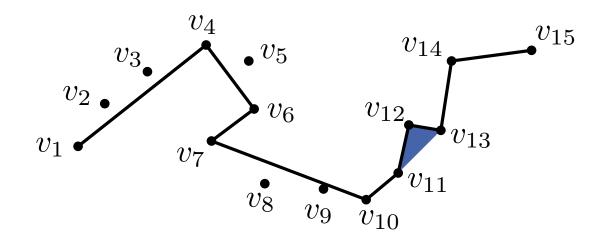
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



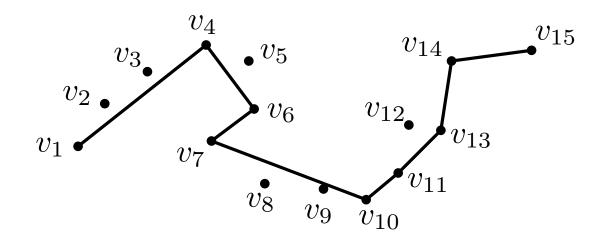
Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

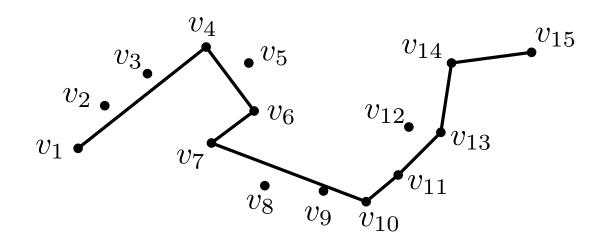
Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.



Entferntesten Punkt wie bei DP zu behalten kann Ausreißer betonen.

Betrachte stattdessen **effektive Fläche** jedes Knotens und entferne iterativ Knoten mit kleinster Fläche.

[Visvalingam, Whyatt '93]



Implementierung, Laufzeit?

Bisherige Algorithmen liefern heuristisch gute Approximationen an die Eingabe, jedoch nicht notwendig eine optimale Lösung.

Formulierung als Graphenproblem:

Fall 1: feste Maximallänge, minimiere Fehler

Bisherige Algorithmen liefern heuristisch gute Approximationen an die Eingabe, jedoch nicht notwendig eine optimale Lösung.

Formulierung als Graphenproblem:

Fall 1: feste Maximallänge, minimiere Fehler

- vollständiger, gewichteter DAG G auf $\{v_1,\ldots,v_n\}$ mit Kante (v_i,v_j) für alle i< j
- Kosten c_{ij} für das Ersetzen des Teilpfads $(v_i, v_{i+1}, \dots, v_j)$ durch Kante (v_i, v_j)
- finde kostenminimalen (kürzesten) Weg von v_1 nach v_n in G mit maximal k Kanten

Bisherige Algorithmen liefern heuristisch gute Approximationen an die Eingabe, jedoch nicht notwendig eine optimale Lösung.

Formulierung als Graphenproblem:

Fall 1: feste Maximallänge, minimiere Fehler

- vollständiger, gewichteter DAG G auf $\{v_1,\ldots,v_n\}$ mit Kante (v_i,v_j) für alle i< j
- Kosten c_{ij} für das Ersetzen des Teilpfads $(v_i, v_{i+1}, \dots, v_j)$ durch Kante (v_i, v_j)
- finde kostenminimalen (kürzesten) Weg von v_1 nach v_n in G mit maximal k Kanten

Solche "constrained shortest path" Probleme sind i. Allg. NP-schwer, hier jedoch nicht.

→ mehr dazu gleich!

Bisherige Algorithmen liefern heuristisch gute Approximationen an die Eingabe, jedoch nicht notwendig eine optimale Lösung.

Formulierung als Graphenproblem:

Fall 2: fester maximaler Fehler, minimiere Länge [Imai, Iri '88]

Bisherige Algorithmen liefern heuristisch gute Approximationen an die Eingabe, jedoch nicht notwendig eine optimale Lösung.

Formulierung als Graphenproblem:

Fall 2: fester maximaler Fehler, minimiere Länge [Imai, Iri '88]

- DAG G=(V,A) mit $V=\{v_1,\ldots,v_n\}$ und Kante $(v_i,v_j)\in A,\ i< j,$ gdw. Fehler $(\overline{v_iv_j})<\varepsilon$
- finde kürzesten Weg von v_1 nach v_n in G
- topologisches Sortieren in linearer Zeit
- lacksquare Berechnung von A naiv in $O(n^3)$, optimal in $\Theta(n^2)$

[Chan, Chin '92]

Übungen

1) Der Douglas-Peucker-Algorithmus garantiert, dass bei der Vereinfachung eines Polygonzugs $P=(p_1,\ldots,p_n)$ in einen Polygonzug Q, der Abstand zwischen P und Q höchstens ε ist. Berechnet der Algorithmus dabei immer ein Q mit minimal vielen Segmenten?

Übungen

- 1) Der Douglas-Peucker-Algorithmus garantiert, dass bei der Vereinfachung eines Polygonzugs $P=(p_1,\ldots,p_n)$ in einen Polygonzug Q, der Abstand zwischen P und Q höchstens ε ist. Berechnet der Algorithmus dabei immer ein Q mit minimal vielen Segmenten?
- 2) Gegeben sei ein azyklischer, gerichteter Graph G=(V,E) mit Gewichtsfunktion $w\colon E\to\mathbb{R}$. Ein gerichteter st-Pfad $(s=v_0,\ldots,v_\ell=t)$ in G heißt k-minimal, falls $\ell\le k$ und für alle anderen st-Pfade $(s=v_0',\ldots,v_{\ell'}'=t)$ mit $\ell'\le k$ gilt: $\sum_{j=1}^\ell w((v_{j-1},v_j))\le \sum_{j=1}^{\ell'} w((v_{j-1}',v_j'))$.

Entwerfen und analysieren Sie einen möglichst effizienten Algorithmus zur Berechnung von k-minimalen st-Pfaden.