
INSTITUT FÜR THEORETISCHE INFORMATIK · ALGORITHMIK · PROF. DR. DOROTHEA WAGNER

Algorithmen für Routenplanung
8. Sitzung, Sommersemester 2014

Ben Strasser | 12. Mai 2014

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

A Bit of History
Contraction Hierarchies (CH) are a speedup technique for
shortest paths in graphs.

”First” introduced by [GSSD08].
Exploits the edge weights.

Generalized to Weak CHs by [BCRW13].
Basis for edge weight independent CH.
Pure theoretic work.
Connection to speed up technique for Gaussian
Elimination [Geo73] discovered.

Customizable CH (CCH) by [DSW14].
Continuation of [BCRW13].

For didactic reasons in this course:
First CCH / weakCH
Then metric-dependent CH

Design

Exp
e

ri m
e

nt

I mplem e tn

A
na

ly
ze

Algorithmics

Ben Strasser – Algorithmen für Routenplanung

Slide 2 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

A Bit of History
Contraction Hierarchies (CH) are a speedup technique for
shortest paths in graphs.

”First” introduced by [GSSD08].
Exploits the edge weights.

Generalized to Weak CHs by [BCRW13].
Basis for edge weight independent CH.
Pure theoretic work.
Connection to speed up technique for Gaussian
Elimination [Geo73] discovered.

Customizable CH (CCH) by [DSW14].
Continuation of [BCRW13].

For didactic reasons in this course:
First CCH / weakCH
Then metric-dependent CH

Design

Exp
e

ri m
e

nt

I mplem e tn

A
na

ly
ze

Algorithmics

Ben Strasser – Algorithmen für Routenplanung

Slide 2 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex-Contraction

V

Contraction of vertex v : Replace v with a full clique.

Ben Strasser – Algorithmen für Routenplanung

Slide 3 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex-Contraction

Contraction of vertex v : Replace v with a full clique.

Ben Strasser – Algorithmen für Routenplanung

Slide 3 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

c
d e

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

d e

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

e

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

b

e

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

b

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

Order π: c, d, a, e, b

Contract vertices along the order π.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

c
d e

Order π: c, d, a, e, b c

a

d

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

d e

Order π: c, d, a, e, b c

a

d

e

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order
a

b

e

Order π: c, d, a, e, b c

a

d

e

b

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

b

e

Order π: c, d, a, e, b c

a

d

e

b

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

b

Order π: c, d, a, e, b c

a

d

e

b

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

Order π: c, d, a, e, b c

a

d

e

b

Build the search graph.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

Order π: c, d, a, e, b c

a

d

e

b

Definitions:

The search space of a vertex v is the subgraph of the search
graph induced by the vertices reachable from v .
The remaining graph is called the core.
π−1 is called rank.
Inserted arcs are called shortcuts.

Ben Strasser – Algorithmen für Routenplanung

Slide 4 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

a b c d e fV
e
r
t
e
x
-O

r
d
e
r

1 2 2 3 1
For each source-target-pair there is an up-down-path.

Ben Strasser – Algorithmen für Routenplanung

Slide 5 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

V
e
r
t
e
x
-O

r
d
e
r

a
b

c

d
e

f

1 2
2

3
1

For each source-target-pair there is an up-down-path.

Ben Strasser – Algorithmen für Routenplanung

Slide 5 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Contraction-Order

V
e
r
t
e
x
-O

r
d
e
r

a
b

c

d
e

f

1

4 3
1

2
2

For each source-target-pair there is an up-down-path.

Ben Strasser – Algorithmen für Routenplanung

Slide 5 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Dijkstra-Query

Question:
How to efficiently find an st-up-down-path?

Solution 1:
Run a bidirectional Dijkstra in the search-graph from s and t .

Stop Criterion:
The search in one direction can be stopped if its radius is larger than
the current shortest path.
Warning: This is weaker than the general stopping criterion, because
it is possible that t is in the search space of s and therefore the whole
up-down path is found by the forward search from s.

Ben Strasser – Algorithmen für Routenplanung

Slide 6 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.

Ben Strasser – Algorithmen für Routenplanung

Slide 7 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

0

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.

Ben Strasser – Algorithmen für Routenplanung

Slide 7 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

0
3

6

3
1

1

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.

Ben Strasser – Algorithmen für Routenplanung

Slide 7 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

0
3

6

3
1

1

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.

Ben Strasser – Algorithmen für Routenplanung

Slide 7 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

0

3
1

1

3

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.

Ben Strasser – Algorithmen für Routenplanung

Slide 7 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x
The search space of x .

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

Let parent(x) = y .
Assume that z is in the search space of x but not of y .

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

By construction this arc must exist.

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

z must be in the search space of y .

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Elimination-Tree-Query

While not at root:
If s comes before t in order:

Relax all outgoing arcs of s in the search graph.
s ← parent(s)

Else:
Relax all outgoing arcs of t in the search graph.
t ← parent(t)

Bonus:
No priority queue.
Works with negative weights.

Ben Strasser – Algorithmen für Routenplanung

Slide 9 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex Separators

Vertex Separator
A vertex separator S of a graph G = (V ,E) is a vertex subset such
that S’s removal divides G into two parts G1 = (V1,E1) and
G2 = (V2,E2).

Balanced Vertex Separator
For a balanced vertex separator we require |V1| ≤ 2

3 n and |V2| ≤ 2
3 n.

Recursive Balanced Vertex Separator
A graph G has recursive balanced vertex separators of size O(|V |α) if
G has a balanced vertex separator with at most O(|V |α) vertices and
G1 and G2 have recursive balanced vertex separators of sizes
O(|V1|α) and O(|V2|α).

Ben Strasser – Algorithmen für Routenplanung

Slide 10 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex Separators

Example

All planar graphs have O(n
1
2) recursive balanced vertex separators.

Proof: See planar separator theorem in lecture on planar graphs.

Ben Strasser – Algorithmen für Routenplanung

Slide 11 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex Separators

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

50

0 25,000 50,000 75,000 100,000 125,000
Vertices in graph

V
er

tic
es

 in
 s

ep
ar

at
or

Separators for road graph around Karlsruhe.
The blue function is y = 3

√
x .

Assumption: road graphs have O(3
√

x) recursive balanced
separators.

Ben Strasser – Algorithmen für Routenplanung

Slide 12 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Vertex Separators

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

50

0 25,000 50,000 75,000 100,000 125,000
Vertices in graph

V
er

tic
es

 in
 s

ep
ar

at
or

Separators for road graph around Karlsruhe.
The blue function is y = 3

√
x .

Assumption: road graphs have O(3
√

x) recursive balanced
separators.

Ben Strasser – Algorithmen für Routenplanung

Slide 12 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

Find a small balanced vertex separator.

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

The last vertices in the order are the separator.

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

Remove the separator.

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

Recurse on both parts.

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Order:

The contraction order.

Ben Strasser – Algorithmen für Routenplanung

Slide 13 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Search Space Sizes

At each dissection level the search space contains at most one
separator. The number of vertices in the search space is therefore
bounded by:

∞∑
i=0

O

 3

√(
2
3

)i

n


= O

 3
√

n ·
∞∑
i=0

(
3

√
2
3

)i


= O
(

3
√

n
)

Ben Strasser – Algorithmen für Routenplanung

Slide 14 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Nested Dissection

Approximation
Let G be a n-vertex graph with

a minimum balanced separator with Θ(nα) vertices
recursive minimum balanced separators with O(nα) vertices

then a ND-order approximates the average and maximum search
space in terms of vertices and arcs within a constant factor.

Key ideas:
The separators form full cliques in the CH.
The top level separator is the biggest and dominates all other
separators.

Detailed in Section 4 of [DSW14].

Ben Strasser – Algorithmen für Routenplanung

Slide 15 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph

Option 1:
Use a dynamic adjacency array (i.e. one where arcs can be inserted).

Works, but one can do better.

Ben Strasser – Algorithmen für Routenplanung

Slide 16 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph

Option 1:
Use a dynamic adjacency array (i.e. one where arcs can be inserted).

Works, but one can do better.

Ben Strasser – Algorithmen für Routenplanung

Slide 16 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.

Ben Strasser – Algorithmen für Routenplanung

Slide 17 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.

Ben Strasser – Algorithmen für Routenplanung

Slide 17 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.

Ben Strasser – Algorithmen für Routenplanung

Slide 17 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.

Ben Strasser – Algorithmen für Routenplanung

Slide 17 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.

Ben Strasser – Algorithmen für Routenplanung

Slide 17 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Triangles

Triangle
A triangle (x , y , z) is a subgraph such that edges {x , y}, {x , z} and
{y , z} exist.

Lower Triangle
A lower triangle (x , y , z) of the edge {x , y} is one where z has a rank
smaller than x and y .

Intermediate & Upper Triangles
Similar but z ’s rank is between those of x and y or the largest.

Ben Strasser – Algorithmen für Routenplanung

Slide 18 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

∞

Some arc in the CH.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

∞

4
4

For every lower triangle the triangle inequality must hold.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

4
4

8

For every lower triangle the triangle inequality must hold.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

8

For every arc enumerate all lower triangles.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

Iterate over all arcs increasing by level.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

Iterate over all arcs increasing by level.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

Iterate over all arcs increasing by level.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

Iterate over all arcs increasing by level.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

Iterate over all arcs increasing by level.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Normal Customization

CH-query now works.

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Perfect Customization

8

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Perfect Customization

83

3

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Customization

Perfect Customization

3

3

6

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).

Ben Strasser – Algorithmen für Routenplanung

Slide 19 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Enumerating all Lower Triangles

Option 1: Store for each arc a lower triangle list.
Problem: Needs a lot of memory.

Option 2:
Store the reverse search graph.
Order the outgoing arcs by head node ID.
To enumerate all lower triangles xyz of the arc xy do a
merge-sort-like scan over the outgoing arcs of x and y . If the
arcs xz and yz exist the a new triangle has been found.

Problem: Somewhat slower than Option 1.

Ben Strasser – Algorithmen für Routenplanung

Slide 20 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Path Unpacking

Basic Algorithm:
Extract an up-down path.
Iteratively replace all shortcuts with the original arcs.

Question: Which are the two original arcs of a shortcut?

Option 1: Store for each shortcut the pair of original arcs.
Problem: Depends on the metric.
Option 2: Enumerate for each arc the lower triangles, and pick
one such that the weights match.

Ben Strasser – Algorithmen für Routenplanung

Slide 21 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

One-Way Streets

To support one-way streets:
Store two metrics.
Use one in the forward search and the other one in the backward
search.
One-way streets have weight∞.
The search graph is stored only once. Each arc has 2 weights.

Ben Strasser – Algorithmen für Routenplanung

Slide 22 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1



Notice: 4 zeros in upper triangle part.

Ben Strasser – Algorithmen für Routenplanung

Slide 23 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 1 −2 −2 −1
0 −1 0 −1 1
0 0 −1 −1 0



Ben Strasser – Algorithmen für Routenplanung

Slide 23 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 − 1
2 − 3

2 − 1
2

0 0 −1 −1 0



Ben Strasser – Algorithmen für Routenplanung

Slide 23 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 0 −1 − 2
3

0 0 0 0 − 1
3



Notice: No zero left in upper triangle part. → :(

Ben Strasser – Algorithmen für Routenplanung

Slide 23 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1



Notice: All 4 zeros conserved→ :)

Ben Strasser – Algorithmen für Routenplanung

Slide 24 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 0 0 1
−2 1 0 0 1

0 0 −1 −1 1
0 0 −1 −2 −1
1 −1 1 1 1



Notice: All 4 zeros conserved→ :)

Ben Strasser – Algorithmen für Routenplanung

Slide 24 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 −1 −2 −1
0 0 1 1 0



Notice: All 4 zeros conserved→ :)

Ben Strasser – Algorithmen für Routenplanung

Slide 24 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 0 −1 −2
0 0 0 0 1



Notice: All 4 zeros conserved→ :)

Ben Strasser – Algorithmen für Routenplanung

Slide 24 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 0 −1 −2
0 0 0 0 1



Notice: All 4 zeros conserved→ :)

Ben Strasser – Algorithmen für Routenplanung

Slide 24 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Why does this work?

Ben Strasser – Algorithmen für Routenplanung

Slide 25 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1


0

1

2

3

4
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
0 2 −1 −1 −3
0 1 −2 −2 −1
0 −1 0 −1 1
0 0 −1 −1 0


1

2

3

4
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 − 1
2 − 3

2 − 1
2

0 0 −1 −1 0


2

3

4
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 0 −1 − 2
3

0 0 0 0 − 1
3


3

4
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 0 −1 − 2
3

0 0 0 0 − 1
3


4

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 0 0 1
−2 1 0 0 1

0 0 −1 −1 1
0 0 −1 −2 −1
1 −1 1 1 1


4

1

2

3

0
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 −1 −2 −1
0 0 1 1 0


4

1

2

3

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 −1 −2 −1
0 0 1 1 0


4

2

3

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 0 −1 −2
0 0 0 0 1


4

3

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 0 0 1
0 −1 0 0 3
0 0 −1 −1 1
0 0 0 −1 −2
0 0 0 0 1


4

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Are all shortcuts needed?

V

1

2
1

5
10

11

Insert an only if all paths through the core are longer.

Ben Strasser – Algorithmen für Routenplanung

Slide 27 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Are all shortcuts needed?

1

12

15

11
7

6

11

Insert an only if all paths through the core are longer.

Ben Strasser – Algorithmen für Routenplanung

Slide 27 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Are all shortcuts needed?

1

12

11
7

6

11

Insert an only if all paths through the core are longer.

Ben Strasser – Algorithmen für Routenplanung

Slide 27 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Are all shortcuts needed?

1

12

11
7

6

11

Insert an only if all paths through the core are longer.

Ben Strasser – Algorithmen für Routenplanung

Slide 27 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

WeakCH

Observation:

For a fixed metric not all search graph arcs are needed.

Definitions:
A weakCH is a CH that contains for a given order and metric at
least the arcs needed for query.
A maximum weakCH contain all arcs inserted for a given order.
Notice: A maximum weakCH is metric independent.
(This is what we computed up to now.)

For the rest of this lecture:

We merge preprocessing and customization.
In the preprocessing phase the metric and graph are known.

Ben Strasser – Algorithmen für Routenplanung

Slide 28 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

Algorithm:
Before inserting an arc (x , y) run a bidirectional Dijkstra
restricted to the core.
If the shortest xy -path is longer than the new arc’s weight, then
the new arc is not needed.

Optimization:
Stop the search after a fixed amount of steps.
CH bigger than needed but witness search is faster.
Common optimization, but the algorithm is feasible without.

Ben Strasser – Algorithmen für Routenplanung

Slide 29 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

Consider this graph.
Contract v .

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2100
101

v

2

v

Two potential shortcuts.
In which order should we test them?

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

Option 1: First the long arc then the short one.
No witness for the long one→ insert
No witness for the short one→ insert

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2100
101

v

Option 1: First the long arc then the short one.
No witness for the long one→ insert
No witness for the short one→ insert

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2100
101

v

2

v

Option 1: First the long arc then the short one.
No witness for the long one→ insert
No witness for the short one→ insert

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

2

v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

2

v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Witness Search

100

1
1

2
v

2

v

→ Test the arcs increasing by weight to insert as few arcs as possible.

Ben Strasser – Algorithmen für Routenplanung

Slide 30 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Metric-Dependent-Orders

Question: Can we get better orders for a fixed metric?

Intuition:
The node contracted first (last) is the least (most) important one.

Two approaches:
Bottom-Up [GSSD08]: Guess the least important vertex.
Top-Down [ADGW12]: Guess the most important vertex.

Ben Strasser – Algorithmen für Routenplanung

Slide 31 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Bottom-Up
For each vertex we define its importance as:

I(v) = `(v) +
|A(v)|
|D(v)| +

∑
a∈A(v) h(a)∑
a∈D(v) h(a)

where
`(v) is an estimate for the level of v in the search graph.
A(v) is the set of arcs inserted if we would contract v .
D(v) is the set of arcs removed if we would contract v .
h(a) is the number of original arcs in the path represented by the
shortcut a.

Details:
Initially `(v) = 0.
If v is contracted then for each neighbor u we do
`(u)← max(`(u), `(v) + 1).
To determine A(v) and D(v) we need to run witness searches.
Many other ”importance” heuristics exist.

Ben Strasser – Algorithmen für Routenplanung

Slide 32 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Bottom-Up

Algorithm:
Maintain a priority queue of vertices weighted by their
importance.
Pop the min vertex v .
Put v into the order.
Contract v .
Recompute the importances of all neighbors of v and
decrease/increase their key in the priority queue.
Repeat until the queue is empty.

Why does this work?
No one knows for sure. . .

but it works . . .
and scales to large road graphs.

Ben Strasser – Algorithmen für Routenplanung

Slide 33 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Bottom-Up

Algorithm:
Maintain a priority queue of vertices weighted by their
importance.
Pop the min vertex v .
Put v into the order.
Contract v .
Recompute the importances of all neighbors of v and
decrease/increase their key in the priority queue.
Repeat until the queue is empty.

Why does this work?
No one knows for sure. . .

but it works . . .
and scales to large road graphs.

Ben Strasser – Algorithmen für Routenplanung

Slide 33 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Top-Down
Idea:

The most important vertex is the one that is part of the most
shortest paths.
We say that v covers a st-shortest path if v is on the path.

Basic Algorithm:
Denote by U the set of uncovered paths.
(Initially U is the set of all shortest paths.)
Find the vertex v that covers the most paths in U.
Put v into the order.
Remove all paths from U covered by v .

Running Time:
Basic algorithm has running time in O(n3).
Can be improved to O(n2). (See [ADGW12])

Ben Strasser – Algorithmen für Routenplanung

Slide 34 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

One-Way Streets

To support one-way streets:
Some arcs are pruned only for the forward or the backward
search.
Store two different search graphs.

Ben Strasser – Algorithmen für Routenplanung

Slide 35 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Experiments
average travel-time metric query running times

CCH-Dijkstra : 0.81 ms
CCH-Stall : 0.85 ms
CCH-Tree : 0.41 ms
CH-Dijkstra : 0.28 ms
CH-Stall : 0.11 ms

average distance metric query running times
CCH-Dijkstra : 0.87 ms
CCH-Stall : 1.00 ms
CCH-Tree : 0.42 ms
CH-Dijkstra : 2.66 ms
CH-Stall : 0.54 ms

as always: instance is DIMACS Europe
sequential unless mentioned

Ben Strasser – Algorithmen für Routenplanung

Slide 36 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Experiments
customization

running time: 0.4s
parallelized with 16 cores and SIMD/SSE.
details not covered in this course, see [DSW14]

search graph construction time (no order)
dynamic adjacency array : 305.8 s
contraction graph : 15.5 s

as always: instance is DIMACS Europe
sequential unless mentioned

Ben Strasser – Algorithmen für Routenplanung

Slide 36 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Experiments
nested dissection order computation time

Depends on the partitioner used to do the bisection.
Metis is faster than KaHip but separators are larger.
KaHip: 2.8 days
Metis: 2.2 min
details not covered in this course, see [DSW14]

metric-dependent order computation time
Bottom-Up: 10-100 min (depending on importance heuristic)
Top-Down: 29.75 h (uses tricks not covered, see [ADGW12])

as always: instance is DIMACS Europe
sequential unless mentioned

Ben Strasser – Algorithmen für Routenplanung

Slide 36 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Overview

0.1 1 10 100 1,000 10,000

0.0001

0.001

0.01

0.1

1

10

100

1,000

Table Lookup
(PHAST)

Dijkstras Algorithmus
Bidirektionale Suche

Arc Flags

SHARC

CALT

ALT

ReachCRP(nur Customization)

CCH-Metis

CCH-KaHIP

Vorberechnungszeit [min]

A
nf
ra
ge
ze
it
[m

s]

Ben Strasser – Algorithmen für Routenplanung

Slide 37 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Overview

100 1,000 10,000 100,000

0.0001

0.001

0.01

0.1

1

10

100

1,000

Dijkstras Algorithmus

Bidirektionale Suche

Table Lookup
(> 1 000 000 GiB)

Arc Flags

SHARC

CALT

ALT
(nur Overlay)

(nur Metrik) CRP
Reach

CH

CCH
(nur Metrik)

Platzverbrauch [MiB]

A
nf
ra
ge
ze
it
[m

s]

Ben Strasser – Algorithmen für Routenplanung

Slide 37 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Literatur I

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
Hierarchical hub labelings for shortest paths.
In Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12),
volume 7501 of Lecture Notes in Computer Science, pages 24–35. Springer,
2012.

Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner.
Search-space size in contraction hierarchies.
In Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming (ICALP’13), volume 7965 of Lecture Notes in Computer
Science, pages 93–104. Springer, 2013.

Julian Dibbelt, Ben Strasser, and Dorothea Wagner.
Customizable contraction hierarchies.
Technical report, ITI Wagner, Department of Informatics, Karlsruhe Institute of
Technology (KIT), 2014.
Technical Report on arXiv.

Ben Strasser – Algorithmen für Routenplanung

Slide 38 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

Literatur II

Alan George.
Nested dissection of a regular finite element mesh.
SIAM Journal on Numerical Analysis, 1973.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction hierarchies: Faster and simpler hierarchical routing in road networks.
In Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer,
June 2008.

Ben Strasser – Algorithmen für Routenplanung

Slide 39 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner

