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A Bit of History
Contraction Hierarchies (CH) are a speedup technique for
shortest paths in graphs.

”First” introduced by [GSSD08].
Exploits the edge weights.

Generalized to Weak CHs by [BCRW13].
Basis for edge weight independent CH.
Pure theoretic work.
Connection to speed up technique for Gaussian
Elimination [Geo73] discovered.

Customizable CH (CCH) by [DSW14].
Continuation of [BCRW13].

For didactic reasons in this course:
First CCH / weakCH
Then metric-dependent CH
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Vertex-Contraction

V

Contraction of vertex v : Replace v with a full clique.
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Contraction-Order
a

b

c
d e

Order π: c, d, a, e, b

Contract vertices along the order π.
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Contraction-Order
a

b

e

Order π: c, d, a, e, b

Contract vertices along the order π.
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Contraction-Order

b

e

Order π: c, d, a, e, b

Contract vertices along the order π.
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Contraction-Order

b

Order π: c, d, a, e, b

Contract vertices along the order π.
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Contraction-Order

Order π: c, d, a, e, b

Contract vertices along the order π.
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Contraction-Order
a

b

c
d e

Order π: c, d, a, e, b c

a

d

Build the search graph.
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Contraction-Order

b

e

Order π: c, d, a, e, b c
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d

e

b

Build the search graph.
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Contraction-Order

b
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Contraction-Order
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Contraction-Order

Order π: c, d, a, e, b c

a

d

e

b

Definitions:

The search space of a vertex v is the subgraph of the search
graph induced by the vertices reachable from v .
The remaining graph is called the core.
π−1 is called rank.
Inserted arcs are called shortcuts.
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Contraction-Order

a b c d e fV
e
r
t
e
x
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1 2 2 3 1
For each source-target-pair there is an up-down-path.
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Contraction-Order
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Dijkstra-Query

Question:
How to efficiently find an st-up-down-path?

Solution 1:
Run a bidirectional Dijkstra in the search-graph from s and t .

Stop Criterion:
The search in one direction can be stopped if its radius is larger than
the current shortest path.
Warning: This is weaker than the general stopping criterion, because
it is possible that t is in the search space of s and therefore the whole
up-down path is found by the forward search from s.
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Stall-on-Demand

Observation:
Some tentative distances are larger than needed.

3
3

31 1
1 1

1 1 12
2

2

Optimization:
Denote by d(v) the tentative distances and by x the vertex removed
from the queue. Do not relax the outgoing arcs if an arc (x , y) exists
for which

∃(x , y) ∈ search graph : d(x) > w(x , y) + d(y)

holds.
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Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner



Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x
The search space of x .

Ben Strasser – Algorithmen für Routenplanung

Slide 8 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner



Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

Let parent(x) = y .
Assume that z is in the search space of x but not of y .
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Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

By construction this arc must exist.
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Elimination-Tree
The elimination-tree is defined as following:

parent(x) = arg min
(x, y) is in search graph

(
π−1(y)

)
Ancestors of x = vertices reachable from x in the search graph.

Proof by contraction:

x

y

z

z must be in the search space of y .
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Elimination-Tree-Query

While not at root:
If s comes before t in order:

Relax all outgoing arcs of s in the search graph.
s ← parent(s)

Else:
Relax all outgoing arcs of t in the search graph.
t ← parent(t)

Bonus:
No priority queue.
Works with negative weights.
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Vertex Separators

Vertex Separator
A vertex separator S of a graph G = (V ,E) is a vertex subset such
that S’s removal divides G into two parts G1 = (V1,E1) and
G2 = (V2,E2).

Balanced Vertex Separator
For a balanced vertex separator we require |V1| ≤ 2

3 n and |V2| ≤ 2
3 n.

Recursive Balanced Vertex Separator
A graph G has recursive balanced vertex separators of size O(|V |α) if
G has a balanced vertex separator with at most O(|V |α) vertices and
G1 and G2 have recursive balanced vertex separators of sizes
O(|V1|α) and O(|V2|α).
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Vertex Separators

Example

All planar graphs have O(n
1
2 ) recursive balanced vertex separators.

Proof: See planar separator theorem in lecture on planar graphs.
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Vertex Separators

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●
●
●●●
●●

●●

●
●

●
●●

●

●

●

●●

●
●●●●

●●●
●

●●
●
●
●
●●●●
●
●●●

●

●●●
●

●

●●●

●●●

●
●
●
●
●

●

●

●●●
●

●

●

●
●
●
●
●
●
●

●●
●
●
●
●●
●

●
●
●

●●
●

●
●●

●

●

●●

●
●

●

●
●

●●

●●●●

●

●
●
●
●
●
●●●●●●
●

●

●●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●
●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●
●●
●●
●
●
●

●

●●
●
●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●
●
●●●
●
●

●
●
●

●

●●

●
●●
●

●●
●
●
●●

●

●

●

●●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●
●●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●●

●●
●●
●
●
●
●
●

●

●

●

●
●

●

●

●
●●
●●
●●
●
●●●
●●

●

●

●●●

●

●
●

●

●
●

●

●●
●

●

●
●

●●

●

●
●
●
●
●

●●●●

●
●
●●
●

●●
●
●

●

●
●
●
●
●●

●●
●

●
●
●
●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●

●
●
●●
●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●
●●
●
●

●
●

●

●

●
●
●

●●

●●
●
●

●

●
●

●●

●

●

●●
●
●
●●

●

●
●

●

●
●

●

●
●
●

●●
●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●●

●

●●●
●

●●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●

●

●●
●
●
●●
●
●

●

●

●
●

●
●
●

●

●
●

●
●
●
●
●

●

●

●●

●
●

●

●●
●

●

●●

●

●
●

●
●
●●●●

●
●

●

●
●●●

●
●
●

●
●●
●●

●

●

●

●

●●
●
●
●

●●
●

●
●

●

●

●●
●

●●

●●

●

●

●
●●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●
●●

●
●

●

●
●
●
●

●

●
●

●●
●

●
●
●●
●●

●

●
●●
●

●
●
●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●
●
●

●

●
●

●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●
●
●
●
●●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●●
●

●●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●

●
●
●
●●
●
●●
●●

●
●

●
●

●

●
●●
●●●
●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●
●●
●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●●●●

●

●
●

●
●
●

●
●
●
●

●

●

●
●

●
●

●●●

●

●●
●
●

●
●

●●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●
●●
●
●

●

●●●●

●

●
●
●●
●
●
●●
●

●●
●

●●

●

●
●●
●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●●

●

●
●●
●
●

●

●

●

●

●

●

●●●

●●

●
●
●
●●
●●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●●●●●

●

●

●●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●

●
●●
●

●

●●●

●

●
●

●
●●

●

●
●

●

●
●●

●

●●●
●
●

●

●●●●

●
●

●●

●
●

●
●
●
●●

●●

●
●
●

●

●
●

●●

●
●●
●
●●●●●
●

●

●

●
●
●
●
●●●●●●●
●
●●

●

●
●
●●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●●

●
●

●

●●●
●

●
●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●
●
●
●

●●

●
●

●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●
●

●●
●
●●
●
●
●
●
●
●●

●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●
●

●●
●
●
●

●
●●

●

●

●
●
●

●
●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●

●
●●●
●

●
●
●
●

●

●●

●
●●●

●
●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●
●

●●●●

●●

●

●
●
●

●

●
●

●

●
●
●●

●

●●
●

●●

●
●
●
●

●

●
●
●

●
●
●●

●

●

●
●
●●
●

●

●

●

●
●
●
●
●

●●●
●●
●●

●
●
●

●
●
●●

●
●

●●
●

●●

●

●

●●

●●

●
●●

●
●

●
●●●

●

●

●
●
●
●●●

●

●
●
●

●

●

●
●
●●
●

●

●
●

●

●
●●
●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●
●●

●

●
●
●

●

●
●●

●

●●

●●
●
●
●
●
●●●
●
●●

●●●

●●

●

●

●

●

●●

0

10

20

30

40

50

0 25,000 50,000 75,000 100,000 125,000
Vertices in graph

V
er

tic
es

 in
 s

ep
ar

at
or

Separators for road graph around Karlsruhe.
The blue function is y = 3

√
x .

Assumption: road graphs have O( 3
√

x) recursive balanced
separators.

Ben Strasser – Algorithmen für Routenplanung

Slide 12 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner



Vertex Separators
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√
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Nested Dissection

Order:
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Nested Dissection

Order:

Find a small balanced vertex separator.
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Nested Dissection

Order:

The last vertices in the order are the separator.
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Nested Dissection

Order:

Remove the separator.
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Nested Dissection

Order:

Recurse on both parts.
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Nested Dissection

Order:

The contraction order.
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Search Space Sizes

At each dissection level the search space contains at most one
separator. The number of vertices in the search space is therefore
bounded by:

∞∑
i=0

O

 3

√(
2
3

)i

n


= O

 3
√

n ·
∞∑
i=0

(
3

√
2
3

)i


= O
(

3
√

n
)
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Nested Dissection

Approximation
Let G be a n-vertex graph with

a minimum balanced separator with Θ(nα) vertices
recursive minimum balanced separators with O(nα) vertices

then a ND-order approximates the average and maximum search
space in terms of vertices and arcs within a constant factor.

Key ideas:
The separators form full cliques in the CH.
The top level separator is the biggest and dominates all other
separators.

Detailed in Section 4 of [DSW14].
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Constructing the Search Graph

Option 1:
Use a dynamic adjacency array (i.e. one where arcs can be inserted).

Works, but one can do better.
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Constructing the Search Graph
Option 2: Maintain an independent set of virtually contracted
vertices. The neighborhood of v in the core is the union of v ’s actual
neighborhood and the neighborhoods of all virtually contracted
neighbors of v .

When two virtual vertices become neighbors, then remove one and
rewire the edges. Advantage: Faster than Option 1 and linear
memory usage as no edges are inserted.
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Triangles

Triangle
A triangle (x , y , z) is a subgraph such that edges {x , y}, {x , z} and
{y , z} exist.

Lower Triangle
A lower triangle (x , y , z) of the edge {x , y} is one where z has a rank
smaller than x and y .

Intermediate & Upper Triangles
Similar but z ’s rank is between those of x and y or the largest.
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Customization

Normal Customization

∞

Some arc in the CH.
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Customization

Normal Customization

∞

4
4

For every lower triangle the triangle inequality must hold.
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Customization

Normal Customization

4
4

8

For every lower triangle the triangle inequality must hold.
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Customization

Normal Customization

8

For every arc enumerate all lower triangles.
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Customization

Normal Customization

Iterate over all arcs increasing by level.
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Customization

Normal Customization

Iterate over all arcs increasing by level.
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Customization

Normal Customization

CH-query now works.
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Customization

Perfect Customization

8

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).
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Customization

Perfect Customization

83

3

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).
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Customization

Perfect Customization

3

3

6

For every arc enumerate all intermediate & upper triangles.
Iterate over all arcs decreasing by level.

If there is an arc, its weight is the shortest path.
(A perfect customization is not needed for correct queries).
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Enumerating all Lower Triangles

Option 1: Store for each arc a lower triangle list.
Problem: Needs a lot of memory.

Option 2:
Store the reverse search graph.
Order the outgoing arcs by head node ID.
To enumerate all lower triangles xyz of the arc xy do a
merge-sort-like scan over the outgoing arcs of x and y . If the
arcs xz and yz exist the a new triangle has been found.

Problem: Somewhat slower than Option 1.
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Path Unpacking

Basic Algorithm:
Extract an up-down path.
Iteratively replace all shortcuts with the original arcs.

Question: Which are the two original arcs of a shortcut?

Option 1: Store for each shortcut the pair of original arcs.
Problem: Depends on the metric.
Option 2: Enumerate for each arc the lower triangles, and pick
one such that the weights match.
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One-Way Streets

To support one-way streets:
Store two metrics.
Use one in the forward search and the other one in the backward
search.
One-way streets have weight∞.
The search graph is stored only once. Each arc has 2 weights.
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Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1



Notice: 4 zeros in upper triangle part.
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Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 1 −2 −2 −1
0 −1 0 −1 1
0 0 −1 −1 0


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Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 − 1
2 − 3

2 − 1
2

0 0 −1 −1 0


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Sparse Matrices

Goal: Upper triangle matrix using Gauß elinimation
1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
2

1
2

0 0 0 −1 − 2
3

0 0 0 0 − 1
3



Notice: No zero left in upper triangle part. → :(
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Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1



Notice: All 4 zeros conserved→ :)
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Sparse Matrices

Idea: Reorder first and last column and row.
1 −1 0 0 1
−2 1 0 0 1

0 0 −1 −1 1
0 0 −1 −2 −1
1 −1 1 1 1
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Sparse Matrices

Why does this work?
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Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
1 1 0 0 −2
1 0 −1 −1 0
−1 0 −1 −2 0

1 −1 0 0 1


0

1

2

3

4
Column elimination↔ Vertex contraction

Every shortcut destroys a zero.
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Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.
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Interpret every non-zero as edge of an adjacency matrix.


1 −1 1 1 1
0 2 −1 −1 −3
0 0 − 3

2 − 3
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1
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0 0 − 1
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Sparse Matrices

Interpret every non-zero as edge of an adjacency matrix.
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0 0 −1 −1 1
0 0 0 −1 −2
0 0 0 0 1


4

Column elimination↔ Vertex contraction
Every shortcut destroys a zero.

Ben Strasser – Algorithmen für Routenplanung

Slide 26 – 12. Mai 2014

Institute for Theoretical Informatics
Chair Algorithmics Wagner



Are all shortcuts needed?

V

1

2
1

5
10

11

Insert an only if all paths through the core are longer.
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Are all shortcuts needed?
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12
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11
7

6
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Insert an only if all paths through the core are longer.
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WeakCH

Observation:

For a fixed metric not all search graph arcs are needed.

Definitions:
A weakCH is a CH that contains for a given order and metric at
least the arcs needed for query.
A maximum weakCH contain all arcs inserted for a given order.
Notice: A maximum weakCH is metric independent.
(This is what we computed up to now.)

For the rest of this lecture:

We merge preprocessing and customization.
In the preprocessing phase the metric and graph are known.
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Witness Search

Algorithm:
Before inserting an arc (x , y) run a bidirectional Dijkstra
restricted to the core.
If the shortest xy -path is longer than the new arc’s weight, then
the new arc is not needed.

Optimization:
Stop the search after a fixed amount of steps.
CH bigger than needed but witness search is faster.
Common optimization, but the algorithm is feasible without.
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Witness Search

100

1
1

2
v

Consider this graph.
Contract v .
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Witness Search

100

1
1

2100
101

v

2

v

Two potential shortcuts.
In which order should we test them?
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Witness Search

100

1
1

2
v

Option 1: First the long arc then the short one.
No witness for the long one→ insert
No witness for the short one→ insert
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Witness Search

100

1
1

2
v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune
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Witness Search

100

1
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2
v

2

v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune
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Witness Search

100

1
1

2
v

2

v

Option 2: First the short arc then the long one.
No witness for the short one→ insert

Witness found for the long one→ prune
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Witness Search

100

1
1

2
v

2

v

→ Test the arcs increasing by weight to insert as few arcs as possible.
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Metric-Dependent-Orders

Question: Can we get better orders for a fixed metric?

Intuition:
The node contracted first (last) is the least (most) important one.

Two approaches:
Bottom-Up [GSSD08]: Guess the least important vertex.
Top-Down [ADGW12]: Guess the most important vertex.
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Bottom-Up
For each vertex we define its importance as:

I(v) = `(v) +
|A(v)|
|D(v)| +

∑
a∈A(v) h(a)∑
a∈D(v) h(a)

where
`(v) is an estimate for the level of v in the search graph.
A(v) is the set of arcs inserted if we would contract v .
D(v) is the set of arcs removed if we would contract v .
h(a) is the number of original arcs in the path represented by the
shortcut a.

Details:
Initially `(v) = 0.
If v is contracted then for each neighbor u we do
`(u)← max(`(u), `(v) + 1).
To determine A(v) and D(v) we need to run witness searches.
Many other ”importance” heuristics exist.
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Bottom-Up

Algorithm:
Maintain a priority queue of vertices weighted by their
importance.
Pop the min vertex v .
Put v into the order.
Contract v .
Recompute the importances of all neighbors of v and
decrease/increase their key in the priority queue.
Repeat until the queue is empty.

Why does this work?
No one knows for sure. . .

but it works . . .
and scales to large road graphs.
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Top-Down
Idea:

The most important vertex is the one that is part of the most
shortest paths.
We say that v covers a st-shortest path if v is on the path.

Basic Algorithm:
Denote by U the set of uncovered paths.
(Initially U is the set of all shortest paths.)
Find the vertex v that covers the most paths in U.
Put v into the order.
Remove all paths from U covered by v .

Running Time:
Basic algorithm has running time in O(n3).
Can be improved to O(n2). (See [ADGW12])
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One-Way Streets

To support one-way streets:
Some arcs are pruned only for the forward or the backward
search.
Store two different search graphs.
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Experiments
average travel-time metric query running times

CCH-Dijkstra : 0.81 ms
CCH-Stall : 0.85 ms
CCH-Tree : 0.41 ms
CH-Dijkstra : 0.28 ms
CH-Stall : 0.11 ms

average distance metric query running times
CCH-Dijkstra : 0.87 ms
CCH-Stall : 1.00 ms
CCH-Tree : 0.42 ms
CH-Dijkstra : 2.66 ms
CH-Stall : 0.54 ms

as always: instance is DIMACS Europe
sequential unless mentioned
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Experiments
customization

running time: 0.4s
parallelized with 16 cores and SIMD/SSE.
details not covered in this course, see [DSW14]

search graph construction time (no order)
dynamic adjacency array : 305.8 s
contraction graph : 15.5 s

as always: instance is DIMACS Europe
sequential unless mentioned
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Experiments
nested dissection order computation time

Depends on the partitioner used to do the bisection.
Metis is faster than KaHip but separators are larger.
KaHip: 2.8 days
Metis: 2.2 min
details not covered in this course, see [DSW14]

metric-dependent order computation time
Bottom-Up: 10-100 min (depending on importance heuristic)
Top-Down: 29.75 h (uses tricks not covered, see [ADGW12])

as always: instance is DIMACS Europe
sequential unless mentioned
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Overview
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