
KIT - INSTITUTE OF THEORETICAL INFORMATICS - CHAIR PROF. DR. WAGNER

Connection Scan

Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner |

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

Bruchsal 9:19
RB

39086
9:25

RE
38879
9:37

RB
38928
10:04

Heidelberg
Hbf

9:46
RE

39653
9:52

9:54
RE

39652
10:00

SE
33211
10:12

DNR
81481
10:35

Mannheim
Hbf

10:02 10:19 10:23 10:54 10:54

Karlsruhe
Hbf

RB
36638
9:08

http://www.kit.edu

What is a Timetable?

Karlsruhe

Mannheim

8:00→ 8:31

Frankfurt

8:31→ 9:08

Rome

Milan

8:31→ 11:00

Ben Strasser – Connection Scan 2/35

What is a Timetable?

Karlsruhe

Mannheim

8:00→ 8:31

Frankfurt

8:31→ 9:08

Rome

Milan

8:31→ 11:00

Ben Strasser – Connection Scan 2/35

What is a Timetable?

Karlsruhe

Mannheim

8:00→ 8:31

Frankfurt

8:31→ 9:08

Rome

Milan

8:31→ 11:00

Ben Strasser – Connection Scan 2/35

What is a Timetable?

Karlsruhe

Mannheim

8:00→ 8:31

Frankfurt

8:31→ 9:08

Rome

Milan

8:31→ 11:00

Ben Strasser – Connection Scan 2/35

What is a Timetable?

Screenshot of Google Maps

A train station

Ben Strasser – Connection Scan 3/35

What is a Timetable?

Screenshot of Google Maps

Can the user do this instantely?

Ben Strasser – Connection Scan 3/35

What is a Timetable?

10 min

Screenshot of Google Maps

One stop with minimum change time 10 min

Ben Strasser – Connection Scan 3/35

What is a Timetable?

Screenshot of Google Maps

Many stops with footpaths
No minimum change times

Ben Strasser – Connection Scan 3/35

What is a Timetable?

Screenshot of Google Maps

Mix change times and footpaths

Ben Strasser – Connection Scan 3/35

What is a Timetable?

Karlsruhe

Mannheim

8:00→ 8:31

Frankfurt

8:31→ 9:08

Rome

Milan

8:31→ 11:00

Karlsruhe HBf Vorplatz / 5 min

12min

For simplicity: We ignore footpaths in this lecture.

Ben Strasser – Connection Scan 4/35

What is a Timetable?

Karlsruhe / 10 min

Mannheim / 9 min

8:00→ 8:31

Frankfurt / 12 min

8:31→ 9:08

Rome / 10 min

Milan / 12 min

8:31→ 11:00

Karlsruhe HBf Vorplatz / 5 min

12min

For simplicity: We ignore footpaths in this lecture.

Ben Strasser – Connection Scan 4/35

What is a Timetable?

Karlsruhe / 10 min

Mannheim / 9 min

8:00→ 8:31

Frankfurt / 12 min

8:31→ 9:08

Rome / 10 min

Milan / 12 min

8:31→ 11:00

Karlsruhe HBf Vorplatz / 5 min

12min

For simplicity: We ignore footpaths in this lecture.

Ben Strasser – Connection Scan 4/35

What is a Timetable?

Karlsruhe / 10 min

Mannheim / 9 min

8:00→ 8:31

Frankfurt / 12 min

8:31→ 9:08

Rome / 10 min

Milan / 12 min

8:31→ 11:00

Karlsruhe HBf Vorplatz / 5 min

12min

For simplicity: We ignore footpaths in this lecture.

Ben Strasser – Connection Scan 4/35

What is a Timetable?
A timetable contains stops, connections, trips.
A connection is a train that drives from one stop to another one
without intermediate halt.
A trip is a sequence of connections operated by the same train.
A connection has a departure and arrival time and a departure and
arrival stop and a trip ID.
The timetable is aperiodic: Connections do not repeat.

A path through a timetable is called journey.

Switching between trains of different trips is a transfer.
Transfers require time. This is formalized as following:

Stops have a minimum change time.
Each transfer(within the stop) needs at least this amount of time.
Footpaths exist with a constant walking time between adjacent stops.
(The footpath graph usually is highly disconnected, i.e., main station
platforms are connected to subway platforms, but not neighbouring
tram stops on the same line.)

Ben Strasser – Connection Scan 5/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

d
ep

ti
m
e

ar
rt
im

e

d
ep

st
o
p

a
rr
st
o
p

d
ep

ti
m
e

ar
rt
im

e

d
ep

st
o
p

ar
rs
to
p

d
ep

ti
m
e

a
rr
ti
m
e

d
ep

st
o
p

a
rr
st
o
p

tr
ip
id

tr
ip
id

tr
ip
id

FF

+∞ +∞+∞ +∞ +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FF

+∞ +∞+∞ +∞ +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FF

+∞ +∞8:00 +∞ +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FF

+∞ +∞8:00 +∞ +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FT

+∞ +∞8:00 9:25 +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FT

+∞ +∞8:00 9:25 +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FT

+∞ +∞8:00 9:25 +∞

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FT

+∞ +∞8:00 9:25 9:55

Ben Strasser – Connection Scan 6/35

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop
Output: Earliest (on time) arrival time

is trip reachable?

connections

orderd by

departure time

change time (in min)

arrival time

4 10 5 7 3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9:
00

9:
25

9:
15

9:
45

9:
25

9:
55

d
ep ar
r

d
ep ar
r

d
ep a
rr

tr
ip
id

tr
ip
id

tr
ip
id

FT

+∞ +∞8:00 9:25 9:55

Ben Strasser – Connection Scan 6/35

Startcriterion

Observation: Trains departing before the source time are never needed.

⇒ Do a binary search to determine the first connection that departs no
earlier than the source time and start the scan there.

Ben Strasser – Connection Scan 7/35

Stopcriterion

So far: We solve the one-to-all problem.

Question: Can we do better given a target stop t , i.e., solve the
one-to-one problem?

Observation: Trains departing after the arrival time at t are never useful.

⇒ Abort the scan if the time at t is not bigger than the departure time of
the current connection.

Ben Strasser – Connection Scan 8/35

Stopcriterion

So far: We solve the one-to-all problem.

Question: Can we do better given a target stop t , i.e., solve the
one-to-one problem?

Observation: Trains departing after the arrival time at t are never useful.

⇒ Abort the scan if the time at t is not bigger than the departure time of
the current connection.

Ben Strasser – Connection Scan 8/35

Profile Queries

Problem: The user often does not know his departure or arrival time.
Solution: Provide journeys for a whole time range.

Ben Strasser – Connection Scan 9/35

Profile Queries

Problem: The user often does not know his departure or arrival time.
Solution: Provide journeys for a whole time range.

Screenshot of bahn.de

Ben Strasser – Connection Scan 9/35

Profile Queries

Problem: The user often does not know his departure or arrival time.
Solution: Provide journeys for a whole time range.

source stop

target stop

minimum
departure

time

maximum
arrival time

Screenshot of bahn.de

Ben Strasser – Connection Scan 9/35

Profile Connection Scan

departure time at some stop

ar
ri

va
l

ti
m

e
a
t

ta
rg

et
st

o
p

Earliest Arrival Backward Profile Problem

Input: Timetable, target stop t
Output: (full) st-Profile for every stop s (except t)

Ben Strasser – Connection Scan 10/35

Profile Connection Scan

departure time at some stop

ar
ri

va
l

ti
m

e
a
t

ta
rg

et
st

o
p

Departing journeys
correspond to jumps.

Earliest Arrival Backward Profile Problem

Input: Timetable, target stop t
Output: (full) st-Profile for every stop s (except t)

Ben Strasser – Connection Scan 10/35

Profile Connection Scan

Core Idea: Dynamic Programming

At the arrival of each connection the user has three options:

He remains seated.

He exits the train and waits for another one.

He finishes his journey (only valid at target stop).

Profile-Representation: Store a profile function as dynamic array of
ordered (deptime, arrtime)-pairs.

Note: The pairs are simultaneously ordered increasing by deptime and
arrtime.

Ben Strasser – Connection Scan 11/35

Profile Connection Scan

For every connection c decreasing by departure time:

profile at c’s departure stop profile at c’s arrival stop

Ben Strasser – Connection Scan 12/35

Profile Connection Scan

For every connection c decreasing by departure time:

c’s departure time c’s departure time

Blue
area

does not
contain

any
pairs,
yet.

Green area is
final.

New pairs must
be inserted on

blue line.

profile at c’s departure stop profile at c’s arrival stop

Ben Strasser – Connection Scan 12/35

Profile Connection Scan

For every connection c decreasing by departure time:

c’s departure time c’s arrival time

profile at c’s departure stop profile at c’s arrival stop

Fast
scan

In practice: very short linear scan . (Can be made constant, see later.)

Ben Strasser – Connection Scan 12/35

Profile Connection Scan

For every connection c decreasing by departure time:

c’s departure time c’s arrival time

Only pair needed for
domination test.

profile at c’s departure stop profile at c’s arrival stop

Test if new jump is above or below existing one.

Ben Strasser – Connection Scan 12/35

Profile Connection Scan

For every connection c decreasing by departure time:

c’s departure time c’s arrival time

profile at c’s departure stop profile at c’s arrival stop

Insert new jump if below. (In the example it is below.)

Ben Strasser – Connection Scan 12/35

Profile Connection Scan

P(s) : profile of stop s, an array of pairs;
T (t) : earliest arrival time of trip t , a single timestamp;

P(s)← {(∞,∞)} for every stop s;
T (t)←∞ for every trip t ;
for every connection c by decreasing cdeptime do

t ← evaluate P(carrstop) at carrtime +minchange(carrstop);
t ← min(t,T (ctripid));
if carrstop = target stop then

t ← min(t, carrtime);
T (ctripid)← t ;
if t < P(cdepstop)[front]. arrtime then

Insert (cdeptime, t) pair at the front of P(cdepstop);

Ben Strasser – Connection Scan 13/35

How to Evaluate Profiles?

Evaluating a profile at moment t consists of finding the first pair (d , a)
such that t ≤ d .

Option 1:

carrtime − cdeptime is small compared to the time horizon of the whole
profile.

A linear scan works very good in practice.

Less than 2 pairs touched on average.

Quasi O(1).

Ben Strasser – Connection Scan 14/35

How to Evaluate Profiles?
Option 2: Modify the algorithm slightly. Replace:

if t < P(cdepstop)[front]. arrtime then
Insert (cdeptime, t) pair at the front of P(cdepstop);

with

Insert (cdeptime,min(t,P(cdepstop)[front]. arrtime)) pair
at the front of P(cdepstop);

The departure times are now independent of the target stop.

The same pairs with the same departure times (but different arrival
times) are generated in the same order for each algorithm execution.

In a quick preprocessing step: Store for each connection the position
ceval of the corresponding pair.

True O(1) evaluation→ Complete running time in O(#connections)

Ben Strasser – Connection Scan 15/35

Profile Connection Scan

P(s) : profile of stop s;
T (t) : earliest arrival time of trip t , a single integer;
ceval : pair ID needed at evaluation, independent of the target stop;

P(s)← {(∞,∞)} for every stop s;
T (t)←∞ for every trip t ;
for every connection c by decreasing cdeptime do

t ← P(carrstop)[ceval];
t ← min(t,T (ctripid));
if carrstop = target stop then

t ← min(t, carrtime);
T (ctripid)← t ;
Insert (cdeptime,min(t,P(cdepstop)[front]. arrtime)) pair

at the front of P(cdepstop);

Ben Strasser – Connection Scan 16/35

Restricted Range

The input also contains:

a minimum departure time d

a maximum arrival time a

a source stop s

a target stop t

Optimization:

Scan only connections c with d ≤ cdeptime ≤ a.

This subarray can be determined using two binary searches.

Ben Strasser – Connection Scan 17/35

Restricted Range

The input also contains:

a minimum departure time d

a maximum arrival time a

a source stop s

a target stop t

Optimization:

For every stop x determine the earliest arrival time τ(x) from s with
source time d . This can be done using a basic connection scan,
restricted to the same subrange.

Before processing a connection c in the profile scan check whether
τ(cdepstop) ≤ cdeptime. If this does not hold skip the connection, as it
can not be part of any desired journey.

Ben Strasser – Connection Scan 17/35

Problems with Earliest Arrival Time

A B C

D

E

F

8:00→9:00 14:00→15:00

9:30→10:00 12:30→13:00

10:30→11:00 11:30→12:00

The user wants to get from A to C.
Earliest arrival journeys:

1 A→ B → C
2 A→ B → D → E → F → B → C

The user wants journey 1.
However, journey 2 is also optimal according to arrival time.

→One solution: Minimize Number of Transfers

Ben Strasser – Connection Scan 18/35

Problems with Earliest Arrival Time

Easy solution: Chose among all earliest arrival journeys one with a
minimum number of transfers.

Algorithm modification: Add a small constant to the arrival time returned
by the P(carrstop) evaluation.

Good enough in most networks.

Ben Strasser – Connection Scan 19/35

Problems with Earliest Arrival Time

Complex solution: Compute all Pareto-optimal journeys.

Pareto-optimal: A journey is Pareto-optimal if no other journey exists that
is faster and uses fewer transfers.

Algorithm modification:

We are only interested in journeys with at most n train entries
(i.e. n − 1 transfers).

Replace all arrival times with (a0, a1, a2 . . . an)-tuples.
ai indicates the earliest arrival time when entering at most i trains.

Inserting a pair consits of entering a train.
→ Shift all components, i.e.,
shift(a0, a1, . . . , an) = (∞, a0, a1, . . . , an−1)

Minimum is replace with componentwise minimum.

Ben Strasser – Connection Scan 20/35

Pareto Profile Connection Scan

P(s) : profile of stop s;
T (t) : earliest arrival time of trip t ;
ceval : pair ID needed at profile evaluation;

P(s)← {(∞, (∞,∞ . . .∞))} for every stop s;
T (t)← (∞,∞ . . .∞) for every trip t ;
for every connection c by decreasing cdeptime do

t ← P(carrstop)[ceval];
t ← min(t,T (ctripid));
if carrstop = target stop then

t ← min(t, (carrtime, carrtime . . . carrtime));
T (ctripid)← t ;
Insert (cdeptime,min(shift(t),P(cdepstop)[front]. arrtime)) pair

at the front of P(cdepstop);

Ben Strasser – Connection Scan 21/35

SIMD/SSE

SIMD : Single Instruction Multiple Data

Special CPU instructions that work on fixed length vectors of integers
(or floats) in a single CPU cycle.

Available on all mordern x86 processors.

128bit registers à 4×32 bit or à 8×16 bit integers.

The x86 implementation is called SSE.

SIMD is the general concept.

Ben Strasser – Connection Scan 22/35

SIMD/SSE
Without SSE:

i n t a [8] , b [8] , c [8] ;
c [0] = a [0] + b [0] ; c [1] = a [1] + b [1] ; c [2] = a [2] + b [2] ;
c [3] = a [3] + b [3] ; c [4] = a [4] + b [4] ; c [5] = a [5] + b [5] ;
c [6] = a [6] + b [6] ; c [7] = a [7] + b [7] ;

8 time units used

With SSE:

m128i a [2] , b [2] , c [2] ;
c [0] = mm add epi32 (a [0] , b [0]) ;
c [1] = mm add epi32 (a [1] , b [1]) ;

2 time units used

Speedup of 4 only observed for compute-bound algorithms.

Ben Strasser – Connection Scan 23/35

SIMD/SSE

Without SSE:

short a [8] , b [8] , c [8] ;
c [0] = a [0] + b [0] ; c [1] = a [1] + b [1] ; c [2] = a [2] + b [2] ;
c [3] = a [3] + b [3] ; c [4] = a [4] + b [4] ; c [5] = a [5] + b [5] ;
c [6] = a [6] + b [6] ; c [7] = a [7] + b [7] ;

8 time units used

With SSE:

m128i a , b , c ;
c= mm add epi16 (a , b) ;

1 time units used

Speedup of 8 only observed for compute-bound algorithms.

Ben Strasser – Connection Scan 24/35

SIMD/SSE
Simple if-else-constructs are also supported.

Without SSE:

short a [8] , b [8] , c [8] ;
for (i n t i =0; i <8; ++ i)

c [i] = a [i] < b [i] ? a [i] : b [i] ;

With SSE:

m128i a , b , c ;
c= mm blendv epi8 (a , b , mm cmplt epi16 (a , b)) ;

Or use the minimum instruction:

m128i a , b , c ;
c= mm min epi16 (a , b) ;

Ben Strasser – Connection Scan 25/35

Pareto Profile Connection Scan

The arrival time vector operations can all be done using SSE-instructions.

Ben Strasser – Connection Scan 26/35

Time Compression

Problem: Algorithm is memory-bound.
The memory is nearly completely filled with arrival times.
→ Compress arrival times.

Observation: Not at every second a train leaves and departs.

Idea: For every stop compute an ordered array t0, t1, . . . , tn of the time
points at which a train departs or arrives.

Indices respect time order, i.e., ti < tj ⇐⇒ i < j .

Often the indices fit into 16 bit integers.

Propagate the indices instead of the time points.

Ben Strasser – Connection Scan 27/35

Problems with Delays

composed out of several screenshots of bahn.de, specific situation was not observed

. . . but perhaps they are enough . . .
→ Backup journeys are needed

Ben Strasser – Connection Scan 28/35

Problems with Delays

composed out of several screenshots of bahn.de, specific situation was not observed

25 min delay vs 20 min transfer

. . . but perhaps they are enough . . .
→ Backup journeys are needed

Ben Strasser – Connection Scan 28/35

Problems with Delays

composed out of several screenshots of bahn.de, specific situation was not observed

What if 9 min are not enough?

. . . but perhaps they are enough . . .
→ Backup journeys are needed

Ben Strasser – Connection Scan 28/35

Problems with Delays

composed out of several screenshots of bahn.de, specific situation was not observed

. . . but perhaps they are enough . . .
→ Backup journeys are needed

Ben Strasser – Connection Scan 28/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

Ben Strasser – Connection Scan 29/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

If all goes well

Ben Strasser – Connection Scan 29/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

9 min change time→ likely to fail

Ben Strasser – Connection Scan 29/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

The backup journey

Ben Strasser – Connection Scan 29/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

Tight change on the backup→ Backup for the backup needed

Ben Strasser – Connection Scan 29/35

Decision Graph

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

Backup of the Backup

Ben Strasser – Connection Scan 29/35

Delay Model
Assumptions:

Connections arrive with a random delay.
Connections have a maximum delay.
Distributions are known.
All random variables are independent.
Connections always depart on time.

c’s departure stop

c’s arrival stop

c’s departure time

c’s on time arrival time

c’s latest arrival time

Ben Strasser – Connection Scan 30/35

Expected Arrival Time

e0

e1 e2 e3 e4

t1

t2

t3 t4

t5 t6

e0 . . . e4: expected arrival times
t1 . . . t6: fixed points int time

blue: in the decision graph
red: not in the decision graph

Ben Strasser – Connection Scan 31/35

Expected Arrival Time

e0

e1 e2 e3 e4

t1

t2

t3 t4

t5 t6

t : actual arrival time
e0 = P(t1 ≤ t ≤ t2) · e1 + P(t2 ≤ t ≤ t5) · e4

Ben Strasser – Connection Scan 31/35

Expected Arrival Time

e0

e1 e2 e3 e4

t1

t2

t3 t4

t5 t6

t : actual arrival time
e0 = P(t1 ≤ t ≤ t3) · e2 + P(t3 ≤ t ≤ t5) · e4

Ben Strasser – Connection Scan 31/35

Minimum Expected Arrival Time (MEAT)

Zurich 11:00 11:09 11:34 14:26 15:09

Karlsruhe 8:00 Basel 12:27 12:31 13:33

Milano 14:50 15:20 16:38 17:20 18:50 21:10

Genova 22:42 23:53Roma 18:45 20:45 29:51

Computing Decision Graphs

Input: Timetable, delay probabilities, target stop
Output: Subset of connections with minimum expected arrival time

for every source stop and time

Ben Strasser – Connection Scan 32/35

MEAT Connection Scan

departure time

M
E

A
T

a
t

ta
rg

et
st

o
p

departure time

M
E

A
T

a
t

ta
rg

et
st

o
p profile at c’s departure stop profile at c’s arrival stop

Profile maps depature time onto MEAT at target.

Ben Strasser – Connection Scan 33/35

MEAT Connection Scan

profile at c’s departure stop profile at c’s arrival stop

c’s arrival timec’s departure time

Profile maps depature time onto MEAT at target.

Ben Strasser – Connection Scan 33/35

MEAT Connection Scan

c’s departure time c’s arrival interval

profile at c’s departure stop profile at c’s arrival stop

Scan a bit further to collect all relevant trains.
This scan is not O(1).

Ben Strasser – Connection Scan 33/35

MEAT Connection Scan

c’s departure time c’s arrival interval

profile at c’s departure stop profile at c’s arrival stop

weighted
average

Average weighted by probability of a getting train.
Inserting is O(1) just as before.

Ben Strasser – Connection Scan 33/35

Running Times

London instance with 4 850 431 connections.

Earliest Arrival One-to-One:

Time-Expanded: 64.4 ms

Time-Dependent: 10.9 ms

Connection Scan: 2.0 ms

Earliest Arrival One-to-All:

Time-Expanded: 876.2 ms

Time-Dependent: 18.9 ms

Connection Scan: 9.7 ms

(Time-Dependent can be made slightly faster, with ideas not covered in
this course.)

Ben Strasser – Connection Scan 34/35

Running Times

Non-Pareto Profile All-to-One:

Self-Pruning-Connection-Setting : 1 262 ms

Connection Scan: 177 ms

+ constant eval: 134 ms

+ time compress: 104 ms

Pareto Profile All-to-One (journeys with at most 8 trains):

RAPTOR : 1 179 ms

Connection Scan: 255 ms

+ SSE: 221 ms

MEAT: 272 ms

Ben Strasser – Connection Scan 35/35

