Karlsruhe Institute of Technology

Connection Scan

Julian Dibbelt, Thomas Pajor, Ben Strasser, Dorothea Wagner

KIT - INSTITUTE OF THEORETICAL INFORMATICS - CHAIR PROF. DR. WAGNER

What is a Timetable?

Karlsruhe

What is a Timetable?

What is a Timetable?

What is a Timetable?

Karlsruhe Institute of Technology

What is a Timetable?

A train station

What is a Timetable?

Can the user do this instantely?

What is a Timetable?

One stop with minimum change time 10 min

What is a Timetable?

Many stops with footpaths
No minimum change times

What is a Timetable?

Mix change times and footpaths

What is a Timetable?

What is a Timetable?

Karlsruhe Institute of Technology

What is a Timetable?

What is a Timetable?

For simplicity: We ignore footpaths in this lecture.

What is a Timetable?

- A timetable contains stops, connections, trips.
- A connection is a train that drives from one stop to another one without intermediate halt.
- A trip is a sequence of connections operated by the same train.
- A connection has a departure and arrival time and a departure and arrival stop and a trip ID.
- The timetable is aperiodic: Connections do not repeat.
- A path through a timetable is called journey.
- Switching between trains of different trips is a transfer.
- Transfers require time. This is formalized as following:
- Stops have a minimum change time.

Each transfer(within the stop) needs at least this amount of time.

- Footpaths exist with a constant walking time between adjacent stops. (The footpath graph usually is highly disconnected, i.e., main station platforms are connected to subway platforms, but not neighbouring tram stops on the same line.)

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Basic Connection Scan

Earliest Arrival Time Problem

Input: Ordered list of connections, source stop, source time, target stop Output: Earliest (on time) arrival time

Startcriterion

Observation: Trains departing before the source time are never needed.
\Rightarrow Do a binary search to determine the first connection that departs no earlier than the source time and start the scan there.

Stopcriterion

So far: We solve the one-to-all problem.
Question: Can we do better given a target stop t, i.e., solve the one-to-one problem?

Stopcriterion

So far: We solve the one-to-all problem.
Question: Can we do better given a target stop t, i.e., solve the one-to-one problem?

Observation: Trains departing after the arrival time at t are never useful.
\Rightarrow Abort the scan if the time at t is not bigger than the departure time of the current connection.

Profile Queries

Problem: The user often does not know his departure or arrival time. Solution: Provide journeys for a whole time range.

Profile Queries

Problem: The user often does not know his departure or arrival time. Solution: Provide journeys for a whole time range.

Screenshot of bahn.de

Profile Queries

Problem: The user often does not know his departure or arrival time. Solution: Provide journeys for a whole time range.

Profile Connection Scan

Earliest Arrival Backward Profile Problem

Input: Timetable, target stop t
Output: (full) st-Profile for every stop s (except t)

Profile Connection Scan

Earliest Arrival Backward Profile Problem

Input: Timetable, target stop t
Output: (full) st-Profile for every stop s (except t)

Profile Connection Scan

Core Idea: Dynamic Programming
At the arrival of each connection the user has three options:

- He remains seated.
- He exits the train and waits for another one.
- He finishes his journey (only valid at target stop).

Profile-Representation: Store a profile function as dynamic array of ordered (deptime, arrtime)-pairs.

Note: The pairs are simultaneously ordered increasing by deptime and arrtime.

Profile Connection Scan

For every connection c decreasing by departure time:

Profile Connection Scan

For every connection c decreasing by departure time:

Profile Connection Scan

For every connection c decreasing by departure time:

In practice: very short linear scan . (Can be made constant, see later.)

Profile Connection Scan

For every connection c decreasing by departure time:

Test if new jump is above or below existing one.

Profile Connection Scan

For every connection c decreasing by departure time:

Insert new jump if below. (In the example it is below.)

Profile Connection Scan

$P(s)$: profile of stop s, an array of pairs;
$T(t)$: earliest arrival time of trip t, a single timestamp;
$P(s) \leftarrow\{(\infty, \infty)\}$ for every stop $s ;$
$T(t) \leftarrow \infty$ for every trip t;
for every connection c by decreasing $c_{\text {deptime }}$ do
$t \leftarrow$ evaluate $P\left(c_{\text {arrstop }}\right)$ at $c_{\text {arrtime }}+$ minchange $\left(c_{\text {arrstop }}\right)$;
$t \leftarrow \min \left(t, T\left(c_{\text {tripid }}\right)\right)$;
if $c_{\text {arrstop }}=$ target stop then $t \leftarrow \min \left(t, c_{\text {arrtime }}\right) ;$
$T\left(c_{\text {tripid }}\right) \leftarrow t$;
if $t<P\left(c_{\text {depstop }}\right)$ [front]. arrtime then
L Insert $\left(c_{\text {deptime }}, t\right)$ pair at the front of $P\left(c_{\text {depstop }}\right)$;

How to Evaluate Profiles?

Evaluating a profile at moment t consists of finding the first pair (d, a) such that $t \leq d$.

Option 1:

- $c_{\text {arrtime }}-c_{\text {deptime }}$ is small compared to the time horizon of the whole profile.
- A linear scan works very good in practice.
- Less than 2 pairs touched on average.
- Quasi $O(1)$.

How to Evaluate Profiles?

Option 2: Modify the algorithm slightly. Replace:
if $t<P\left(c_{\text {depstop }}\right)$ [front]. arrtime then Insert $\left(c_{\text {deptime }}, t\right)$ pair at the front of $P\left(c_{\text {depstop }}\right)$;
with
Insert $\left(c_{\text {deptime }}, \min \left(t, P\left(c_{\text {depstop }}\right)[\right.\right.$ front $]$. arrtime $\left.)\right)$ pair at the front of $P\left(c_{\text {depstop }}\right)$;

- The departure times are now independent of the target stop.
- The same pairs with the same departure times (but different arrival times) are generated in the same order for each algorithm execution.
- In a quick preprocessing step: Store for each connection the position $c_{\text {eval }}$ of the corresponding pair.
- True $O(1)$ evaluation \rightarrow Complete running time in O (\#connections)

Profile Connection Scan

$P(s)$: profile of stop s;
$T(t)$: earliest arrival time of trip t, a single integer;
$c_{\text {eval }}$: pair ID needed at evaluation, independent of the target stop;
$P(s) \leftarrow\{(\infty, \infty)\}$ for every stop $s ;$
$T(t) \leftarrow \infty$ for every trip t;
for every connection c by decreasing $c_{\text {deptime }}$ do
$t \leftarrow P\left(c_{\text {arrstop }}\right)\left[c_{\text {eval }}\right] ;$
$t \leftarrow \min \left(t, T\left(c_{\text {tripid }}\right)\right)$;
if $c_{\text {arrstop }}=$ target stop then
$L t \leftarrow \min \left(t, c_{\text {arrtime }}\right)$;
$T\left(c_{\text {tripid }}\right) \leftarrow t$;
Insert $\left(c_{\text {deptime }}, \min \left(t, P\left(c_{\text {depstop }}\right)\right.\right.$ [front]. arrtime $\left.)\right)$ pair at the front of $P\left(c_{\text {depstop }}\right)$;

Restricted Range

The input also contains:

- a minimum departure time d
- a maximum arrival time a

Optimization:

- Scan only connections c with $d \leq c_{\text {deptime }} \leq a$.
- This subarray can be determined using two binary searches.

Restricted Range

The input also contains:

- a minimum departure time d
- a maximum arrival time a
- a source stop s
- a target stop t

Optimization:

- For every stop x determine the earliest arrival time $\tau(x)$ from s with source time d. This can be done using a basic connection scan, restricted to the same subrange.
- Before processing a connection c in the profile scan check whether $\tau\left(c_{\text {depstop }}\right) \leq c_{\text {deptime }}$. If this does not hold skip the connection, as it can not be part of any desired journey.

Problems with Earliest Arrival Time

The user wants to get from A to C.
Earliest arrival journeys:
(1) $A \rightarrow B \rightarrow C$
(2) $A \rightarrow B \rightarrow D \rightarrow E \rightarrow F \rightarrow B \rightarrow C$

The user wants journey 1.
However, journey 2 is also optimal according to arrival time.
\rightarrow One solution: Minimize Number of Transfers

Problems with Earliest Arrival Time

Easy solution: Chose among all earliest arrival journeys one with a minimum number of transfers.

Algorithm modification: Add a small constant to the arrival time returned by the $P\left(c_{\text {arrstop }}\right)$ evaluation.

Good enough in most networks.

Problems with Earliest Arrival Time

Complex solution: Compute all Pareto-optimal journeys.
Pareto-optimal: A journey is Pareto-optimal if no other journey exists that is faster and uses fewer transfers.

Algorithm modification:

- We are only interested in journeys with at most n train entries (i.e. $n-1$ transfers).
- Replace all arrival times with $\left(a_{0}, a_{1}, a_{2} \ldots a_{n}\right)$-tuples. a_{i} indicates the earliest arrival time when entering at most i trains.
- Inserting a pair consits of entering a train.
\rightarrow Shift all components, i.e.,
$\operatorname{shift}\left(a_{0}, a_{1}, \ldots, a_{n}\right)=\left(\infty, a_{0}, a_{1}, \ldots, a_{n-1}\right)$
- Minimum is replace with componentwise minimum.

Pareto Profile Connection Scan

$P(s)$: profile of stop s;
$T(t)$: earliest arrival time of trip t;
$c_{\text {eval }}$: pair ID needed at profile evaluation;
$P(s) \leftarrow\{(\infty,(\infty, \infty \ldots \infty))\}$ for every stop $s ;$
$T(t) \leftarrow(\infty, \infty \ldots \infty)$ for every trip t;
for every connection c by decreasing $c_{\text {deptime }}$ do
$t \leftarrow P\left(c_{\text {arrstop }}\right)\left[c_{\text {eval }}\right] ;$
$t \leftarrow \min \left(t, T\left(c_{\text {tripid }}\right)\right)$;
if $c_{\text {arrstop }}=$ target stop then
$L t \leftarrow \min \left(t,\left(c_{\text {arrtime }}, c_{\text {arrtime }} \ldots c_{\text {arrtime }}\right)\right)$;
$T\left(c_{\text {tripid }}\right) \leftarrow t$;
Insert $\left(c_{\text {deptime }}, \min \left(\operatorname{shift}(t), P\left(c_{\text {depstop }}\right)[\right.\right.$ front]. arrtime $\left.)\right)$ pair at the front of $P\left(c_{\text {depstop }}\right)$;

SIMD/SSE

- SIMD : Single Instruction Multiple Data
- Special CPU instructions that work on fixed length vectors of integers (or floats) in a single CPU cycle.
- Available on all mordern x86 processors.
- 128 bit registers à 4×32 bit or à 8×16 bit integers.
- The x86 implementation is called SSE.
- SIMD is the general concept.

SIMD/SSE

Without SSE:
int $\mathrm{a}[8], \mathrm{b}[8], \mathrm{c}[8]$;
$c[0]=a[0]+b[0]$;
$\mathrm{c}[1]=\mathrm{a}[1]+\mathrm{b}[1]$;
$\mathrm{c}[2]=\mathrm{a}[2]+\mathrm{b}[2]$;
$c[3]=a[3]+b[3] ; \quad c[4]=a[4]+b[4]$;
$c[6]=a[6]+b[6] ; \quad c[7]=a[7]+b[7] ;$
8 time units used
With SSE:
_-m128i a[2],b[2], c[2];
$\mathrm{c}[0]=$ _mm_add_epi32 (a[0], b[0]);
$\mathrm{c}[1]=$ _mm_add_epi32 (a[1], b[1]);
2 time units used
Speedup of 4 only observed for compute-bound algorithms.

SIMD/SSE

Without SSE:

short $\mathrm{a}[8], \mathrm{b}[8], \mathrm{c}[8]$;
$\mathrm{c}[0]=\mathrm{a}[0]+\mathrm{b}[0] ; \quad \mathrm{c}[1]=\mathrm{a}[1]+\mathrm{b}[1] ; \quad \mathrm{c}[2]=\mathrm{a}[2]+\mathrm{b}[2]$;
$\mathrm{c}[3]=\mathrm{a}[3]+\mathrm{b}[3] ; \quad \mathrm{c}[4]=\mathrm{a}[4]+\mathrm{b}[4] ; \quad \mathrm{c}[5]=\mathrm{a}[5]+\mathrm{b}[5]$;
$c[6]=a[6]+b[6] ; \quad c[7]=a[7]+b[7] ;$
8 time units used
With SSE:
_-m128i a,b,c;
$\mathrm{c}=$ _mm_add_epi16(a,b);
1 time units used
Speedup of 8 only observed for compute-bound algorithms.

SIMD/SSE

Simple if-else-constructs are also supported.
Without SSE:
short $\mathrm{a}[8], \mathrm{b}[8], \mathrm{c}[8]$;
for (int $\mathrm{i}=0 ; \mathrm{i}<8 ;++\mathrm{i})$

$$
c[i]=a[i]<b[i] ? a[i]: b[i] ;
$$

With SSE:
__m128i a,b,c;
$\mathrm{c}=$ _mm_blendv_epi8 (a, b,_mm_cmplt_epi16(a,b));

Or use the minimum instruction:
__m128i a,b,c;
$\mathrm{c}=$ _mm_min_epi16(a,b);

Pareto Profile Connection Scan

The arrival time vector operations can all be done using SSE-instructions.

Time Compression

Problem: Algorithm is memory-bound.
The memory is nearly completely filled with arrival times.
\rightarrow Compress arrival times.
Observation: Not at every second a train leaves and departs.
Idea: For every stop compute an ordered array $t_{0}, t_{1}, \ldots, t_{n}$ of the time points at which a train departs or arrives.

- Indices respect time order, i.e., $t_{i}<t_{j} \Longleftrightarrow i<j$.
- Often the indices fit into 16 bit integers.
- Propagate the indices instead of the time points.

Problems with Delays

Problems with Delays

25 min delay vs 20 min transfer

Problems with Delays

What if 9 min are not enough?

Problems with Delays

\ldots but perhaps they are enough ...
\rightarrow Backup journeys are needed

Decision Graph

Decision Graph

If all goes well

Decision Graph

9 min change time \rightarrow likely to fail

Decision Graph

The backup journey

Decision Graph

Tight change on the backup \rightarrow Backup for the backup needed

Decision Graph

Backup of the Backup

Delay Model

Assumptions:

- Connections arrive with a random delay.
- Connections have a maximum delay.
- Distributions are known.
- All random variables are independent.
- Connections always depart on time.
c 's departure time

c's latest arrival time

Expected Arrival Time

$e_{0} \ldots e_{4}$: expected arrival times
$t_{1} \ldots t_{6}$: fixed points int time blue: in the decision graph
red: not in the decision graph

Expected Arrival Time

t : actual arrival time

$$
e_{0}=P\left(t_{1} \leq t \leq t_{2}\right) \cdot e_{1}+P\left(t_{2} \leq t \leq t_{5}\right) \cdot e_{4}
$$

Expected Arrival Time

t : actual arrival time

$$
e_{0}=P\left(t_{1} \leq t \leq t_{3}\right) \cdot e_{2}+P\left(t_{3} \leq t \leq t_{5}\right) \cdot e_{4}
$$

Minimum Expected Arrival Time (MEAT)

Computing Decision Graphs

Input: Timetable, delay probabilities, target stop
Output: Subset of connections with minimum expected arrival time for every source stop and time

MEAT Connection Scan

Profile maps depature time onto MEAT at target.

MEAT Connection Scan

Profile maps depature time onto MEAT at target.

MEAT Connection Scan

Scan a bit further to collect all relevant trains.
This scan is not $O(1)$.

MEAT Connection Scan

Average weighted by probability of a getting train. Inserting is $O(1)$ just as before.

Running Times

Karlsruhe Institute of Technology

London instance with 4850431 connections.

Earliest Arrival One-to-One:

- Time-Expanded:
- Time-Dependent:
- Connection Scan:

$$
\begin{array}{r}
64.4 \mathrm{~ms} \\
10.9 \mathrm{~ms} \\
2.0 \mathrm{~ms}
\end{array}
$$

Earliest Arrival One-to-All:

- Time-Expanded:
- Time-Dependent:
- Connection Scan:
876.2 ms
18.9 ms
9.7 ms
(Time-Dependent can be made slightly faster, with ideas not covered in this course.)

Running Times

Non-Pareto Profile All-to-One:

- Self-Pruning-Connection-Setting :
- Connection Scan:
- + constant eval:
- + time compress:

1262 ms 177 ms 134 ms 104 ms

Pareto Profile All-to-One (journeys with at most 8 trains):

- RAPTOR :
- Connection Scan:
- + SSE:

MEAT:
272 ms

