Algorithms for Route Planning
KIT/ITI, Lectures 14-15: Introduction to TDSP & TD-Oracles

Spyros Kontogiannis

"N
AN \! (I
COMPUTER SCIENCE & [QN I

T RN ENT] Karlsruhe Institute of Technology

Assistant Professor at Department of Guest Professor at Institute of
Computer Science & Engineering Theoretical Informatics (KIT/ITT)

June 11-18, 2014

Time Dependent
Shortest Path

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

e Graph elements in real-time. /« Dynamic Shortest Path +/
@ Metric demonstrates . /+ Sthochastic Shortest Path +/
@ Graph is , metric

)4 S [O, |] in a predetermined fashion. /+ Parametric Shortest Path */
@ Graph is , metric in a predetermined

fashion. /* Time-Dependent Shortest Path */

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

e Graph is , metric in a predetermined
fashion. /* Time-Dependent Shortest Path */

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graph is , metric in a predetermined
fashion. /* Time-Dependent Shortest Path */
» Arcs are allowed to become (e.g., due

to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

» Arc lengths (e.g., traversal-time / consumption)
which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graph is , metric
Y S [O, |] in a predetermined fashion. /+ Parametric Shortest Path */
@ Graph is , metric in a predetermined
fashion. /* Time-Dependent Shortest Path */

» Arc lengths (e.g., traversal-time / consumption)
which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

@ Graph is , metric in a predetermined
fashion. /* Time-Dependent Shortest Path */

» Arc lengths (e.g., traversal-time / consumption)
which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

TDSP :: EXAMPLE 1 (Earliest Arrivals)

Instance with ARC DELAY functions

1
N
X#2 .
2x+011

How would you commute from o to d, for

a given departure time (from 0)?

TDSP :: EXAMPLE 1 (Earliest Arrivals)

04

Ol

How would you commute

a given departure time (from 0)? Eg:

from o to d, for

TDSP :: EXAMPLE 1 (Earliest Arrivals)

il &
0 i

I d

8.1

How would you commute from o to d, for
a given departure time (from 0)? Eg:

TDSP :: EXAMPLE 1 (Earliest Arrivals)

Instance with ARC DELAY functions

How would you commute from o to d, for
a given departure time (from 0)?
What if you are not sure about the departure time?

TDSP :: EXAMPLE 1 (Earliest Arrivals)

Instance with ARC-ARRIVAL functions

How would you commute from o to d, for
a given departure time (from 0)?
What if you are not sure about the departure time?

TDSP :: EXAMPLE 1 (Earliest Arrivals)

Instance with ARC-ARRIVAL functions

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute from o to d, for
a given departure time (from 0)?
What if you are not sure about the departure time?

TDSP :: EXAMPLE 1 (Earliest Arrivals)

Instance with ARC-ARRIVAL functions

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

How would you commute from o to d, for
a given departure time (from 0)?
What if you are not sure about the departure time?

orange path, if t, €[0,0.03]
shortest od—path = , if t,€]0.03,2.9]
purple path, if t, €[2.9,+00)

TDSP :: EXAMPLE 2 (Waiting Times)

Instance with ARC-ARRIVAL functions

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

be worth it?

TDSP :: EXAMPLE 2 (Waiting Times)

Instance with ARC-ARRIVAL functions

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](t,) = Arr[vd](Arr[uv](Arr[ou](to))) = 36t,+1.3

Would be worth it?

NO, since arrival-time functions are functions
of departure-time from origin.

TDSP :: EXAMPLE 2 (Waiting Times)

Instance with ARC DELAY functions

(1-x)/2,0 <x<1

Would be worth it?
NO, since arrival-time functions are functions
of departure-time from origin.

Would be worth it in this case?

TDSP :: EXAMPLE

Instance with ARC DELAY functions

(1-x)/2,0 <x<1

2 (Waiting Times)

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

RESHIES € |
x+1,x>1

be worth it?

NO, since arrival-time functions are functions
of departure-time from origin.

Would
A2

be worth it in this case?

A2 | YES, wait until time | and then traverse od, if already present
at o at time t, <. Otherwise, traverse od immediately.

Waiting Policies
Unrestricted Waiting (UW) Unlimited waiting is allowed at every
node along an od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the
origin node of each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of
each od-path.

Depending on the , the scheduler has to
decide not only for an optimal connecting path (that as-
sures the earliest arrival at the destination), but also for
the appropriate optimal waiting times at the nodes along
this path.

TDSP :: EXAMPLE

Instance with ARC DELAY functions

(1-x)/2,0 <x<1

What if

2 (Waiting Times) — contd.

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

RESHIES € |

is forbidden?

TDSP :: EXAMPLE 2 (Waiting Times) — contd.

Instance with ARC DELAY functions Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

(1-x)/2,0 <x<1

RESHIES € |

What if is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.

I | | | I d
| | | | | 3-8

TDSP :: EXAMPLE 2 (Waiting Times) — contd.

Instance with ARC DELAY functions Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

(1-x)/2,0 <x<1

RESHIES € |

Q3| What if is forbidden?

n infinite, non-simple TD shortest od-path with finite delay.
| o | | d

18
w
>

| | I

TDSP :: EXAMPLE 2 (Waiting Times) — contd.

Instance with ARC DELAY functions Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

(1-x)/2,0 <x<1

RESHIES € |
x+1,x>1

What if
An infinite, non-simple TD shortest od-path with finite delay.

o ‘ ‘ d

(S7le}
M‘: <
[
Nl—|
+
»‘I
&
N
+
EN|
+
oo‘I
&
Nl —|
+
EN|
+
ool
+
ok
w
|
|
|
|
|
|
|
S\
V
N

TDSP :: EXAMPLE

Instance with ARC DELAY functions

(1-x)/2,0 <x<1

2 (Waiting Times) — contd.

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

RESHIES € |

What if

is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.

ol u | o | <u,0,...,0,U,0 > I d
k
o faere] om0 | we
and
for TDSP, if waiting-at-nodes is forbidden.

Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

@ Unfortunately NOT! EXAMPLE:

100, t< 10,

plodli) = {12 |5 /g
t+ 100, t< 10,
= Arr[od|(t) = {t+l, £>10

Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

@ Unfortunately NOT! EXAMPLE:

100, t< 10,

pldli) = { 1% 155
t+ 100, t< 10,
= Arr[od](t) = {t+l, t;]O

@ But this is due to the pathological discontinuity of the delay /
arrival-time function.

Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

@ Unfortunately NOT! EXAMPLE:

100, t< 10,
pai) = {17 {210
t+ 100, t< 10,

= Arr[od](t) = {t+l, £>10

@ But this is due to the pathological discontinuity of the delay /
arrival-time function.

o They always exist for delay functions, as well as
for (possibly discontinuous) functions for which:

limgy, Dluv](t) <limgy, Dluv](t) = Dluv](ty) = limss, Dluv](t)

Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

@ Unfortunately NOT! EXAMPLE:

100, t< 10,

plodii) = {1 155
t+ 100, t< 10,
= Arr[od](t) = {t+l, t;]O

@ But this is due to the pathological discontinuity of the delay /
arrival-time function.

o They always exist for delay functions, as well as
for (possibly discontinuous) functions for which:

limgy, Dluv](t) <limgy, Dluv](t) = Dluv](ty) = limss, Dluv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

FIFO vs non-FIFO Arc Delays

o (Strict) FIFO Arc-Delays: The slopes of all the
functions are at least equal to (greater than) —1.

Equivalently: functions are
(aka no-overtaking property).

FIFO vs non-FIFO Arc Delays

o (Strict) FIFO Arc-Delays: The slopes of all the
functions are at least equal to (greater than) —1.

Equivalently: functions are
(aka no-overtaking property).

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

» Wait for the next , than use the (immediately
available)

FIFO vs non-FIFO Arc Delays

o (Strict) FIFO Arc-Delays: The slopes of all the
functions are at least equal to (greater than) —1.

Equivalently: functions are
(aka no-overtaking property).

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

» Wait for the next , than use the (immediately
available)

=

N s o o 6 o

arc delay

4 *
H M »
2 4 6 8 10 12 14 16 18 20 22 24 26

departure t, from tail[uv]

FIFO arc delay example

FIFO vs non-FIFO Arc Delays

o (Strict) FIFO Arc-Delays: The slopes of all the
functions are at least equal to (greater than) —1.

Equivalently: functions are ty

Dluv](ts) 4 =Amfui)
e

(aka no-overtaking property). o3

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

» Wait for the next , than use the (immediately
available)
A A
10 10
8| 8| ’)
E” 25§ E‘ @Bx*1 H
3 | * (-8/13)x +173/13 < 4 .
o 4 ; o 4 i
& @ S o[t v
2 : 4 6 8 10 12 14 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 1.4 16 18 20 22 Z;O 26 >
departure t, from tail[uv] departure t, from tail[uv]

FIFO arc delay example Non-FIFO arc delay example

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

S. Kontogiannis: ~ TDSP Basics ~ [10 / 69]

Non-FIFO+UW Network < FIFO Network

arc delay

A
10|
e
8| H
6 g
o
Y !
4 H :
2 i S
2 4 6 8 10 12 14 16 18 20 22 24 26

¥

departure t, from tail[uv]

»
»

=

arc delay

Y

departure t, from tail[uv]

2 4 6 8 10 12 14 16 18 20 22 24 26

»
»

Non-FIFO+UW arc delay function

@ A "“scan” of the line with slope —1

Equivalent FIFO (+FW) arc delay function

suffices.

Non-FIFO+UW Network < FIFO Network

of slope —1.

A A
10 10}
q ? B AT
= é =
= 6 ; @ 9
© * 2 © *
o 4 H i o 4 H
S e * & o
2 : 4 6 8 10 12 1:4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 1‘4 16 18 20 22 2‘4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A "“scan” of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line

Non-FIFO+UW Network < FIFO Network

of slope —1.

A A
10 10}
q ? B AT
= é =
= 6 ; @ 9
© * 2 © *
o 4 H i o 4 H
S e * & o
2 : 4 6 8 10 12 1:4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 14 16 18 20 22 2‘4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A "“scan” of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line

in Non-FIFO+UW and FIFO instances.

Non-FIFO+UW Network < FIFO Network

A A
10| 10
i 0 i 9 o
= é =
= 6 ; @ 9
© * 2 © *
o 4 : g o 4 :
S e * & o
2 : 4 6 8 10 12 1:4 16 18 20 22 2‘4 26 > 2 : 4 6 8 10 12 14 16 18 20 22 2Y4 26 >
departure t, from tail[uv] departure t, from tail[uv]
Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function
@ A "“scan” of the line with slope —1 suffices.
> pieces of the arc-delay function lying above the line
of slope —1.
° in Non-FIFO+UW and FIFO instances.
o Need to consider given the arrival times, in

order to compute the optimal waiting times in the original

Non-FIFO+UW instance.

Non-FIFO+UW Network < FIFO Network

arc delay

=

N A o ®

------- T

¥

arc delay

departure t, from tail[uv]

2 4 6 8 10 12 14 16 18 20 22 24 26

»
»

=

N A o o S o

»
»

2’46810121‘4161820222425
departure t, from tail[uv]

Non-FIFO+UW arc delay function

Equivalent FIFO (+FW) arc delay function

@ A "“scan” of the line with slope —1 suffices.

> pieces of the arc-delay function lying above the line

of slope —1.
°

@ Need to consider

in Non-FIFO+UW and FIFO instances.

given the arrival times, in

order to compute the optimal waiting times in the original

Non-FIFO+UW instance.

@ Interested in programming the transformation? Let me know!

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with

arc-travel-time functions
(Dlal)aea- (Arrla] = ID + Dla])ea-

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(Dla])aca. (Arr[a] = ID + Dia])aca-
DEFINITIONS:

@ Path arrival / travel-time functions: Vp = (o, ..., o) € Pod,
Arr[p] = Arr[ag] o - - o Arrfe;] (of the involved
arc-arrivals). D[p] = Arr[p] — ID.

o Earliest-arrival / Shortest-travel-time functions:
Arrlo,d] = minpepoyd{ Arrlp] }, Dlo,d] = Arrlo,d] — ID.

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(Dla])aca. (Arr[a] = ID + Dia])aca-
DEFINITIONS:

@ Path arrival / travel-time functions: Vp = (o, ..., o) € Pod,
Arr[p] = Arr[ag] o - - o Arrfe;] (of the involved
arc-arrivals). D[p] = Arr[p] — ID.

o Earliest-arrival / Shortest-travel-time functions:
Arrlo,d] = minpepoyd{ Arrlp] }, Dlo,d] = Arrlo,d] — ID.

GOALT: For departure-time t, from o, determine ty = Arr[o,d](ts).
GOALZ2: Provide a of Arrfo,d] (or D[o,d)]).

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.

@ Need to respond (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in
, for any departure time and od—pair.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.

@ Need to respond (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in
, for any departure time and od—pair.

& (offline) towards GOAL2 (succinct representations
of Dlo,d] functions) in order to support
responses to of GOALT.

Why Care for Both Goals?

@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.

@ Need to respond (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in
, for any departure time and od—pair.

& (offline) towards GOAL2 (succinct representations
of Dlo,d] functions) in order to support
responses to of GOALT.

= of distance summaries (as in static case) requires
to precompute functions instead of scalars.

Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

"This means that: Vt,, limyy, Dluv](t) > limss, Duv](t))

Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

@ [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

"This means that: Vt,, limyy, Dluv](t) > limsys, Duv](t))

Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

@ [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ [Orda-Rom (1990)] If arc-delay functions are , or
', then the

solution (path+waiting policy) in non-FIFO+UW network

induces a solution in network using the

and appropriate waiting time

"This means that: Vt,, limyy, Dluv](t) > limsys, Duv](t))

Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

@ [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ [Orda-Rom (1990)] If arc-delay functions are , or
', then the

solution (path+waiting policy) in non-FIFO+UW network

induces a solution in network using the

and appropriate waiting time

@ [Kontogiannis-Zaroliagis (2013)] In networks, (general)
subpath optimality holds also in the time-dependent case.

"This means that: Vt,, limyy, Dluv](t) > limsys, Duv](t))

Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

@ [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ [Orda-Rom (1990)] If arc-delay functions are , or
', then the

solution (path+waiting policy) in non-FIFO+UW network

induces a solution in network using the

and appropriate waiting time

@ [Kontogiannis-Zaroliagis (2013)] In networks, (general)
subpath optimality holds also in the time-dependent case.

@ [Foschini-Hershberger-Suri (2011)] In networks, Aff[O, d]
is non-decreasing (increasing).
"This means that: Vt,, limyy, Dluv](t) > limsys, Duv](t))

Algorithms for TDSP

@ For arbitrary (o,d,t,) queries (GOALT):

Algorithms for TDSP

@ For arbitrary (o,d,t,) queries (GOALT):

» TD variants of Dijkstra and Bellman-Ford algorithms work

correctly in networks, and in networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay are evaluated).

» TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in networks. Time complexity
slightly worse (when updating arc labels, some arc-delay

are evaluated). Determining existence of a finite-hop
solution is NP—hard.

Algorithms for TDSP

e For

>

e For

arbitrary (o,d,t,) queries (GOALT):

TD variants of Dijkstra and Bellman-Ford algorithms work
correctly in networks, and in networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay are evaluated).

TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in networks. Time complexity
slightly worse (when updating arc labels, some arc-delay

are evaluated). Determining existence of a finite-hop
solution is NP—hard.

arbitrary (o,d) queries (GOAL2):

[Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
networks.

Algorithms for TDSP

e For

>

arbitrary (o,d,t,) queries (GOALT):

TD variants of Dijkstra and Bellman-Ford algorithms work
correctly in networks, and in networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay are evaluated).

TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in networks. Time complexity

slightly worse (when updating arc labels, some arc-delay
are evaluated). Determining existence of a finite-hop
solution is NP—hard.

e For arbitrary (o,d) queries (GOAL2):

>

[Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
networks.

= Complexity is on number of “elementary”
(EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

* Not so “elementary” operations after all (see next slides)!!

Algorithms for TDSP

in FIFO, Continuous, Pwl Instances

Input/Output Data

PWL Arc Delays

Forward Description (as function of departure times from origin)

S. Kontogiannis: ~ TDSP Basics ~ [17 / 69]

PWL Arc Delays

Forward Description (as function of departure times from origin)

Reverse Description (as function of arrival times at destination)

S. Kontogiannis: ~ TDSP Basics ~ [17 / 69]

How to Store/Access PWL Arc Delays

e Exploit periodicity and piecewise-linearity:

(ftu+1, 0<ty modT <3
5, 3<t, modT <5
Vi, € R, D[w](ts) = 2,5, S5<t, modT <7
~Etu+ 3, T<t, modT <20
L |, 20<t, modT < 24

@ Representation: Array of (slope-constant) triples equipped
with advanced (eg, binary / predecessor) secrch copabilities.

(£1.3) 055] (2-57) | (-& 17.20) | (0.1,24)

S. Kontogiannis: ~ TDSP Basics ~ [18 / 69]

How to Store/Access PWL Arc Delays

e Exploit periodicity and piecewise-linearity:

(ftu+1, 0<ty modT <3
5, 3<t, modT <5
Vi, € R, D[w](ts) = 2,5, S5<t, modT <7
~Etu+ 3, T<t, modT <20
L |, 20<t, modT < 24

@ Representation: Array of (dep.time - delay) pairs equipped
with advanced (eg, binary / predecessor) secrch copabilities.

(O [G5HGS(LN][@0D]

S. Kontogiannis: ~ TDSP Basics [18 / 69]

Piecewise Linearity of Path / Earliest Arrivals

/

Aro-u-d] Arr{o d] Arr[o V- d]
il u
Anfi;d] Arou] Arr{ov] it

@ Primitive Breakpoint (PB): Departure-time b] from head|e] at
which D[e] changes slope (assume K € O(m) PBs in total).

Piecewise Linearity of Path / Earliest Arrivals

/

Aro-u-d] Arr{o d] Arr[o V- d]
il u
Anfi;d] Arou] Arr{ov] it

@ Primitive Breakpoint (PB): Departure-time b] from head|e] at
which D[e] changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o
s.t. earliest-arrival-time b, = Arr[o, tail(e)](be) coincides with a
breakpoint for Dle].

Piecewise Linearity of Path / Earliest Arrivals

-

Arrfo-u-d] Arro,d] Arrfo-v- d]
An{ud] An{au] Arriov] An{vd]

@ Primitive Breakpoint (PB): Departure-time b] from head|e] at
which D[e] changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o
s.t. earliest-arrival-time b, = Arr[o, tail(e)](be) coincides with a
breakpoint for Dle].

@ Minimization Breakpoint (MB): Departure-time b, from origin
o s.t. Arr[o,v] due to application of

Piecewise Linearity of Path / Earliest Arrivals

/

Aro-u-d] Arr{o d] Arr[o V- d]
il u
Anfi;d] An{au] Arr{ov] An{vd]

@ Primitive Breakpoint (PB): Departure-time b] from head|e] at
which D[e] changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o
s.t. earliest-arrival-time b, = Arr[o, tail(e)](be) coincides with a
breakpoint for Dle].

@ Minimization Breakpoint (MB): Departure-time b, from origin
o s.t. Arr[o,v] due to application of

@ Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr|o,d].

Known Issues wrt Representations

both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

» Convenient for handling artificial arcs (representing
shortest-travel-time functions) in
road network.

of the

Known Issues wrt Representations

both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

» Convenient for handling artificial arcs (representing
shortest-travel-time functions) in
road network.

of the

= Too many (worst case: n®1°9(")) breakpoints to store Arr[o,d]
(or Dlo,d]), even for arc-delays and graphs.

Known Issues wrt Representations

both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

» Convenient for handling artificial arcs (representing
shortest-travel-time functions) in of the
road network.

= Too many (worst case: n®1°9(")) breakpoints to store Arr[o,d]
(or Dlo,d]), even for arc-delays and graphs.

2 We need only O(é -log (g:f:{gj%)) breakpoints for a (I + ¢)
Dlo,d] of DJo,d], for the case of linear
arc-delays.

Complexity of TDSP

Lower Bound: |BP(Arrylo,d])| = n°9™ (1)

A Useful Observation (L2.1-2.2 in FHSI 1)

For any pair of functions f and g, both their
composition fog and their minimum min{f, g} are
functions as well.

Lower Bound: |BP(Arrylo,d])| = n°9™ (1)

A Useful Observation (L2.1-2.2 in FHSI 1)

For any pair of functions f and g, both their
composition f o g and their minimum min{f, g} are
functions as well.

Parametric Shortest Path (PSP): A Similar Problem
e INPUT: G=(V,A), oo deV. A
La](y) = Ala] -y + pla] per edge o € A (negative lengths are
).

e DEFINITIONS:
> Path-length: Vp € G,L[p](y) = > qc, £la](¥)
» Min-length: Vx,y € V,L[x,y](y) = minyep, {L[PI(¥)}-
o GOALT: Compute L[o,d] for a
e GOAL2: Compute L[o,d] for

of y.
of y.

S. Kontogiannis: ~ TDSP Basics ~ [23 / 69]

TDSP vs PSP?

Instance with ARC DELAY functions

X+2
2x+0.1

-

2x+0.1

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](ty) = Arr[vd](Arr[uv](Arr[ou](t;))) = 36t,+1.3

L{oud](t) = 3t + 2.1

Llovd](t)=3t+2.1
L{ouvd](t) = 7t+0.2

TDSP: Delay composition along paths

PSP: Delay addition along paths

Lower Bound: |BP(Arryy[o,d])| = ne9™ (1)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]
There exists (linear) PSP-instance with n/°9") BPs in L[o,d].

|

Lower Bound: |BP(Arryy[o,d])| = ne9™ (1)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with n/°9") BPs in L[o,d].

Main Steps for TDSP Lower Bound:

@ Assure in the PSP instance, in the

@ Scale properly the PSP instance.

© Consider the corresponding TDSP instance, with parameter y
handled as time.

@ Prove that L[o,d] (for PSP instance) and DJ[o,d] (for TDSP
instance) have (almost) the of BPs.

Lower Bound: |BP(Arrylo,d])| = n°a™ (lII)

@ Construct a layered-graph, in a path-length-preserving manner:

S. Kontogiannis: ~ TDSP Basics ~ [25 / 69]

Lower Bound: |BP(Arrylo,d])| = n°a™ (lII)

@ Construct a layered-graph, in a path-length-preserving manner:

Assure non-negativity of arc-lengths in PSP: For the sequence
2D 7 yn) of breakpoints (BPs) wrt L[o,d], shift arc

lengths by max{0, —Lmin}, | Lmin = Miny iy, yalacAG) L)}

S. Kontogiannis: ~ TDSP Basics ~ [25 / 69]

Lower Bound: |BP(Arry[o,d])| = ne9™ (lII)

@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence

riya . oyw) of
lengths by max{0, —Lmin},

(BPs) wrt L[o,d], shift arc

Liin = minye[yl ,yN],oreA(G){L[a](y)} :

@ Scale arc-lengths in PSP by a proper positive constant u.

Lower Bound: |BP(Arry[o,d])| = ne9™ (lII)

@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence

>,y -, yn) of (BPs) wrt L[o,d], shift arc
lengths by max{0, —Lmin}, |Lmin = Min, [, sn1aeaG) L)} |

@ Scale arc-lengths in PSP by a proper positive constant u.

© For the TDSP resulting from the scaled PSP when considering
y as departure time, prove that Vje {l,...,N— 1}, at

Vi = % both instances return shortest od—path p;.

Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

o vy =1 L= Lp](y) = Llo,d](7))-
° L = MiNgep,,— (p} HLGI(y), A= L’ Ej >0.
* Amln

Amin = minje[N_]] A

* . Amin
8" = MiNgeA[a]£0 {W}

Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

7 =)’1+)’J+' L = L[p](y;) = Llo,d](7)).
o Lj = mingep,, (o3 {LIqI(7), & =Lj —L; >0.
® | Amin = mingy_1] 4y | € = S | 8 = Minge Al 0 {%}

Small-enough so as

of p; in PSP instance: Veq € (0,],

Zaepj ﬁ[d](}_/J + EO‘) — _J

- < Zaeqe[a]()_/j)f Vq 7 Py

Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

Yi =

UL L= Lpl(7) = Llo,d)(7).

o L =mingep ;o3 {LIG1(7)), A =Lj—L; >0.

Amin = minje[N,]] A

: . . Amin
g* = Bmn | 5% = mlnaeA;A[a];éO{W}

Small-enough so as

of p; in PSP instance: Ve, € (0, €],

Zaep e[a](}/j + EO{)

i < 2aeqllal(y)), Vg # pj

Small-enough so as to cause
s Vae A Vo4 € (0,8%],

Dla](y; + 8a) = £lal(y; + 8a) < L[a](y)) + €

Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given j e {I,..., N-—1}:

@ Scale-invariance of time-perturbations: of all arc-delays

by a number u >0 does not affect at all the range of

allowed 8% = MiNge A A£0 {%}

Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
by a number u >0 does not affect at all the range of
— H Amin
allowed 8" = Minge A:Aja]£0 {W}

@ TDSP-instance: Scale the PSP-instance by u= m.

Handle the PSP-parameter y as time.

Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
by a number u >0 does not affect at all the range of
— H Amin
allowed 8" = Minge A:Aja]£0 {W}

@ TDSP-instance: Scale the PSP-instance by u= m.

Handle the PSP-parameter y as time.

° guarantees sufficiently small
. Arrlpil(y;) = ¥ + Dipil(y;) <y; + 6.

Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
by a number u >0 does not affect at all the range of
— H Amin
allowed 8" = Minge A:Aja]£0 {W}

@ TDSP-instance: Scale the PSP-instance by u= m.

Handle the PSP-parameter y as time.
° guarantees sufficiently small
. Arrlpil(y;) = v + Dlpl(y;) <y; +6*.
*. Small time-perturbations guarantee sufficiently small
, and thus, optimality of p;:

Dlpl(7;) < w-Lj+p- 2=tlm

/ (n— |)A QED
< pl - pltDAse < DRy vg £y

Upper Bound: |BP(Arrylo,d])| = K - neam (1)
Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) t; <t
Arrlo,d] forms a concave chain.

Upper Bound: |BP(Arrylo,d])| = K - neam (1)
Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) ; <t;
Arrlo,d] forms a concave chain.

WHY?

e Any arc-delay is (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (#,#)

@ Any path-arrival Arr(p](t) function is a

of linear
functions, thus

@ Arr[o,d] is the application of the min operator among linear
functions, thus

Upper Bound: |BP(Arrylo,d])| = K - neam (1)
Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) ; <t;
Arrlo,d] forms a concave chain.

WHY?

e Any arc-delay is (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (1,1).

@ Any path-arrival Arr(p](t) function is a

of linear
functions, thus

@ Arr[o,d] is the application of the min operator among linear
functions, thus

e Corollary: [BP(Arrgwlo,d])| < #different path slopes

Upper Bound: |BP(Arrylo,d])| = K - neam (1)

Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) ; <t
Arrlo,d] forms a concave chain.

WHY?
e Any arc-delay is (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (1,1).
@ Any path-arrival Arr(p](t) function is a of linear
functions, thus

@ Arr[o,d] is the application of the min operator among linear
functions, thus

e Corollary: [BP(Arrgwlo,d])| < #different path slopes

@ Is this enough?

Upper Bound: |BP(Arrylo,d])| = K - neam (1)

Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) ; <t
Arrlo,d] forms a concave chain.

WHY?
@ Any arc-delay is (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (1,1).

@ Any path-arrival Arr(p](t) function is a of linear
functions, thus

@ Arr[o,d] is the application of the min operator among linear
functions, thus

e Corollary: [BP(Arrgwlo,d])| < #different path slopes

@ Is this enough?

ool
(-1+py)* (-1+p2)* Teeig00-"" (-1+Pn2)*; (-1+Ppa)*

(]

Upper Bound: |BP(Arryulo,d])| = K - n™e3m (1)

OBSERVATION 1I: (L4.2 in
FHS11)

[BP(Arrpwilo, d])| < K-[BP(Arnin[o, d])].

Upper Bound: [BP(Arryulo,d])| = K - nXleam (1)

OBSERVATION II: (L4.2 in
FHS1 1)

|BP(Arrpw| [o,d])| < K- |BP(Arn,[o,d])|.

Lemma 4.3 (FHSI11)

IBP(Arminlo,d])] < 2D 4
layered graph with ¢ layers of n
nodes each.

S. Kontogiannis: ~ TDSP Basics ~ [29 / 69]

Upper Bound: [BP(Arryulo,d])| = K - nXleam (1)

OBSERVATION 1I: (L4.2 in
FHS1 1)

|BP(Arrpw| [o,d])| < K- |BP(Arn,[o,d])|.

Lemma 4.3 (FHSI11)

IBP(Arrin o, d)| < Z™J in
layered graph with ¢ layers of n
nodes each.

THM4.4 (FHST1)

|BP(Arrin[o, d])| = n™°9") in any graph G and pair of nodes
o,d e V(G).

S. Kontogiannis: ~ TDSP Basics ~ [29 / 69]

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

Why Do We Need the Output Sensitive Algorithm?

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to
have from/to any origin/destination vertex.

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to
have from/to any origin/destination vertex.

@ We may need to compute for
(eg, from/to hubs, all
superhub-to-superhub connections, etc).

Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to
have from/to any origin/destination vertex.

@ We may need to compute for
(eg, from/to hubs, all
superhub-to-superhub connections, etc).

© Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad

The Output-Sensitive Algorithm (1)

The Output-Sensitive Algorithm (1)

e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

The Output-Sensitive Algorithm (1)

e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

e Given an arbitrary point in time (
) to > O as departure time from origin

o0, compute a

The Output-Sensitive Algorithm (1)

e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

e Given an arbitrary point in time (

) to > O as departure time from origin
o0, compute a

@ Discover the TDSP tree is

» YW eV, two short alternatives when
departing from o at time ty: Earliest-arrival

to each parent, plus delay of corresponding
incoming arc.

» Minimization (vertex) Certificate f;;[v]: Earliest departure time
from o at which the two alternatives of v become

Primitive (arc) Certificate t;,;[e]: Primitive image of the next

(ie, after ty) breakpoint of the arc to come.

The Output-Sensitive Algorithm (1)

e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

e Given an arbitrary point in time (

) to > O as departure time from origin
o0, compute a

@ Discover the TDSP tree is

» YW eV, two short alternatives when
departing from o at time ty: Earliest-arrival

to each parent, plus delay of corresponding
incoming arc.

» Minimization (vertex) Certificate f;;[v]: Earliest departure time
from o at which the two alternatives of v become

Primitive (arc) Certificate t;,;[e]: Primitive image of the next

(ie, after ty) breakpoint of the arc to come.

o All (m+ n) certificates temporarily stored in a

The Output-Sensitive Algorithm (I1)

When current time t; >ty matches the earliest failure-time of a
certificate in the queue:

if

then

minimization-certificate
failure, at node v e V:

(1) Update shortest ov—path
/+ ONE-BIT change in combinatorial structure =/
(2) Update Arr[o, x| and
t:fai][x], Vx € TV.

(3) Update fforil[e]:

Vec E:x=taille] €T,.

Arr[o,v](t=ti-€) = At + B, + D[uv](Ait + By) = A, t + By \

Arr[o,x](t=t:-€) = At + By + D[vx](Ast + B-,)

A, t + B, = Arrfo,u](t)

ast+ By TDSPT
Subtree

st + B,

A, t+ B, = Arr[o,w](t

Arr[o,x](t=t +€) = A*,t + B*, + D[vx](A*t + B‘,,

Arr[o,v](t=t +€) = Ayt + By, + DIWVI(Aut + By) = A"t + B'y [l e
e NON-TDSPT-EDGE

Arr[o,V](t=ti-€) = Ayt + By + D[uv](Aut + B)) = A, t + B,

Arr[o,X](t=t,-€) = At + B, + D[vx](Ait + B,) \

A, t+ B, = Arr[o,u](t)
TDSPT
Subtree
A t+B, = Arrfo,w](t

Arrfox](t=trte) = At + By + - [vx](Avt +B,) /

Arrfo,v](t=t;+) = A,t + B, + D[uv](A,t + B,) = A, t + B, [k SRR
e NON-TDSPT-EDGE

The Output-Sensitive Algorithm (I1)

When current time t; >ty matches the earliest failure-time of a
certificate in the queue:

if

then

else

minimization-certificate
failure, at node v e V:

(1) Update shortest ov—path

/+ ONE-BIT change in combinatorial structure =/

(2) Update Arr[o, x| and
t:fai][x], Vx € TV.

(3) Update fforil[e]:
Vec E:x=taille] €T,.

/* primitive-certificate failure, at arc e =vx € E »/

Arr[o,v](t=ti-€) = At + B, + D[uv](Ait + By) = A, t + By \

Arr[o,x](t=t:-€) = At + By + D[vx](Ast + B-,)

A, t + B, = Arrfo,u](t)

ast+ By TDSPT

Subtree

st + B,

A, t+ B, = Arr[o,w](t

Arr[ox](t=t +€) = At + B, + D[vx](A*t + B*,)
Art{o,V](t=t +€) = Ayt + B,, + DIWVI(Aut + B,) = A"t + B, fm WL A

NON-TDSPT-EDGE

Arr[o,v](t=t,-€) = At + B, + D[uv](A,t + B,) = A, t + B, \
Arr[o,x](t=t;-€) = A\t + B, + D-[vx](At + B,)

A, t+ B, = Arr[o,u](t)
TDSPT
Subtree
A t+B, = Arrfo,w](t

Arrfox](t=trte) = At + By + - [vx](Avt +B,) /

Arrfo,v](t=t;+) = A,t + B, + D[uv](A,t + B,) = A, t + B, [k SRR
e NON-TDSPT-EDGE

(1) Update Arrfo,y] and tyly], Vy € Tx.
(2) Update tgle'], Ve' € E : taille’] € T.

The Output-Sensitive Algorithm (III)

e What to keep in memory:
» Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).
» Advanced search structures, if number of BPs is large.
» Only temporarily store certificates in a priority queue.

The Output-Sensitive Algorithm (III)

e What to keep in memory:
» Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).
» Advanced search structures, if number of BPs is large.
» Only temporarily store certificates in a priority queue.
° per certificate failure at ce VUE:
» In the (or any constant-in-degree graph):

O(|Ec| - logn). E. is the set of arcs whose tails are in T, or
Thead)q- Logarithmic factor is due to

» In the (in worst-case): O(mx log® n). Second

logarithmic factor is due to
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

The Output-Sensitive Algorithm (III)

e What to keep in memory:

» Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).

» Advanced search structures, if number of BPs is large.

» Only temporarily store certificates in a priority queue.

° per certificate failure at ce VUE:

» In the (or any constant-in-degree graph):
O(|Ec| - logn). E. is the set of arcs whose tails are in T, or
Thead)q- Logarithmic factor is due to

» In the (in worst-case): O(mx log® n). Second

logarithmic factor is due to
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

° of output-sensitive algorithm:

o(m x log? n x (PRIMBPs + MINBPs))

Poly-time Approximation Algorithms

(1 + &)—approximation of D[o,d] : Preliminaries

e Why focus on shortest-travel-time (delays) functions, and not
on earliest-arrival-time functions?

o Arc/Path Delay Reversal: Easy taskll!

%
e t, = Arr[o,v](t,) =t, — B[o, v](t,): Latest-departure-time from o
to v, as a function of the arrival time f, at v.

S. Kontogiannis: TDSP Basics ~ [36 / 69]

@ Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:

S. Kontogiannis: ~ TDSP Basics ~ [37 / 69]

Approximating D[o,d] : Quality

@ Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:

A D =
b)
> 3
Q‘I X
@ 2
D = D 5,4 o =
2 | P
" 5 DI
S48 =21 i | I\ T iU Lc) 4
c " 7] B B m 7]
(2) 4(c) > A(d) 20 (b) 4%(c)> 0> A(d) (©) 0=4%(c) > 41(d)

LEMMA: Closed Form of Maximum Absolute Error

[Kontogianis-Zaroliagis (201 3)]
MAE(c,d) = (A+(c) — A=(d)) - m=bd=m) o LA™ (d))

Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< D[o,d](t) < Do, d](t) < (1 +¢) -

Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< Do, d](t) < Dlo,d](t) < (1 +¢) -

e FACT: if D[o,d] was a priori known then a
space-optimal (1 + €)—upper-approximation (i.e., with the MIN

#BPs).

gives a

Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< Do, d](t) < Dlo,d](t) < (1 +¢) -

o FACT: if Dlo,d]| was a priori known then a gives a
space-optimal (1 + €)—upper-approximation (i.e., with the MIN
#BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o,d]
before approximating it. We must be based only on a few
of Dlo,d].

Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< Do, d](t) < Dlo,d](t) < (1 +¢) -

o FACT: if Dlo,d]| was a priori known then a gives a
space-optimal (1 + €)—upper-approximation (i.e., with the MIN
#BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o,d]
before approximating it. We must be based only on a few
of Dlo,d].

e FOCUS: arc-delays. Later extend to pwl arc-delays.

Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< Do, d](t) < Dlo,d](t) < (1 +¢) -

o FACT: if Dlo,d]| was a priori known then a gives a
space-optimal (1 + €)—upper-approximation (i.e., with the MIN
#BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o,d]
before approximating it. We must be based only on a few
of Dlo,d].

e FOCUS: arc-delays. Later extend to pwl arc-delays.

@ Djo,d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

Approximating Do, d]: Basic Idea (II)

e Make the sampling so that
vt € [0, T], Dlo,d](t) < (1 +¢€)-Djo,d]|(t).

o Keep sampling always the fastest-growing axis wrt to D[o,d].

S. Kontogiannis: ~ TDSP Basics ~ [39 / 69]

One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

S. Kontogiannis: ~ TDSP Basics ~ [40 / 69]

One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

Bad Case for [Foschini-Hersberger-Suri (2011)]

S. Kontogiannis: ~ TDSP Basics ~ [40 / 69]

One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

[Kontogiannis-Zaroliagis (2013)] :

S. Kontogiannis: ~ TDSP Basics ~ [40 / 69]

One-To-One Approximation: PHASE-2

[Foschini-Hershberger-Suri (201 1)]

of D[o,d] < I1:
repeat
Apply to the remaining time-interval(s)

until desired approximation guarantee (wrt
achieved.

One-To-All Approximaton via Bisection ()

[Kontogiannis-Zaroliagis (201 3)]

ASSUMPTION 1: Concavity of arc-delays. /1o be removed later +/

» Implies concavity of the function Dlo,d].

One-To-All Approximaton via Bisection ()

[Kontogiannis-Zaroliagis (201 3)]

ASSUMPTION 1: Concavity of arc-delays. /1o be removed later +/

» Implies concavity of the function Dlo,d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of
the (pwl) arc-delay functions.

> by TD-traffic data for road network of Berlin [TomTom
(February 2013)] that all arc-delay slopes are in [-0.5,0.5].

» Slopes of function D[o,d] from [—Amin, Amax],
for some constants Amax >0, Amin € [0, 1).

One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved

Do|-

Dy

v

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved

Dof-

Dy

>
»

fo t

Example of Bisection Execution : = Upper Bound, = Lower Bound

One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved

Dof--

D]

v

to ta t

Example of Bisection Execution : Level-1 Recursion

One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved

Ds

D,

v

to t 3 ty

Example of Bisection Execution : Level-2 Recursion

One-To-All Approximaton via Bisection (llI)

[Kontogiannis-Zaroliagis (201 3)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays.

@ Call Reverse TD-Dijkstra
to project each
concavity-spoiling PB to a
Pl of the origin o.

@ For each pair of
at o, run Bisection for
the corresponding
departure-times interval.

© Return the

head[uv]
>
>

earliest-arrival times at v

L &t
departure time from u = tail[uv]

A\ 4

of approximate distance summaries.

Approximating Dl[o,d]| : Space/Time Complexity

THEOREM: Space Complexity [Kontogianis-Zaroliagis (2013)]

Let K* be the total number of concavity-spoiling BPs among all
the arc-delay functions in the instance.

Space Complexity: For a oeV and possible
destinations d € V, the following complexity bounds hold for
creating all the approximation functions D[o, *] = (D|o, d])qey:

K* Dmax [O'*](O'T)
o O(T log (4Dmm[o,*1(or)))
@ In each interval of Pls,
|UBP[o,d]| < 4-(minimum #BPs for any (1 + ¢)—approximation.

Time Complexity: The number of executed
for the computation of the approximate distance functions is:

TDSPJo,d] € o(log (ﬁ) K log (%))

Implementation Issues wrt One-To-All Bisection

w One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
approximation method that provably works
(within constant factors) wrt
continuous pwl arc-delay functions.

Implementation Issues wrt One-To-All Bisection

w One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
approximation method that provably works
(within constant factors) wrt
continuous pwl arc-delay functions.

ea Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]
and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from in the degree of disconcavity (value of
K*) in the TD Instance.

Implementation Issues wrt One-To-All Bisection

w One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
approximation method that provably works
(within constant factors) wrt
continuous pwl arc-delay functions.

ea Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]
and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from in the degree of disconcavity (value of
K*) in the TD Instance.

@ A novel (again) approximation
technique, called the Trapezoidal method
([Kontogiannis—Wagner—ZaroIiagis (2014)]) avoids en’rirely the
dependence of the required space from the network structure
(and, of course, the degree of disconcavity).

Any Questions?

Time-Dependent Oracles
Wednesday, June 18 2014, 11:30

S. Kontogiannis: TDSP Basics [47 / 69]

Distance Oracles

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.

@ Trivial solution: No preprocessing, respond to queries by
running Dijkstra.
w O(n+m) size.
. O(m+ nlog(n)) query time.
@ | —stretch.

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.

@ Trivial solution: No preprocessing, respond to queries by
running Dijkstra.
w O(n+m) size.
. O(m+ nlog(n)) query time.
@ | —stretch.

¥ Try to provide smooth tradeoffs among space / query time /
stretchlll

Distance Oracles: Generic Idea

@ Metric-independent preprocessing: Split the graph, essentially
the distance metric.

Distance Oracles: Generic Idea

@ Metric-independent preprocessing: Split the graph, essentially
the distance metric.

» Roughly per cell (in each level, if is
applied).
» Boundary vertices/arcs much less than the graph size (e.g.,

O(v/n) in total).

» Each cell may be required to be a subgraph.

Distance Oracles: Generic Idea

@ Metric-independent preprocessing: Split the graph, essentially
the distance metric.

» Roughly per cell (in each level, if is
applied).
» Boundary vertices/arcs much less than the graph size (e.g.,

O(v/n) in total).

» Each cell may be required to be a subgraph.

@ Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

Distance Oracles: Generic Idea

@ Metric-independent preprocessing: Split the graph, essentially
the distance metric.

» Roughly per cell (in each level, if is
applied).
» Boundary vertices/arcs much less than the graph size (e.g.,

O(v/n) in total).

» Each cell may be required to be a subgraph.

@ Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

© Query Algorithm: Respond fast to queries, based on the
(hierarchical?) division and/or the
summaries.

Distance Oracles

o Extremely successful theme in static graphs.
» In theory:
* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).
» In practice:

* P-Space: A few GBs (sometimes less than | GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

Distance Oracles

o Extremely successful theme in static graphs.

» In theory:
* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).

» In practice:
* P-Space: A few GBs (sometimes less than | GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).

@ Some practical algorithms extended to time-dependent case.

Distance Oracles

o Extremely successful theme in static graphs.
» In theory:
* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).
» In practice:

* P-Space: A few GBs (sometimes less than | GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).
@ Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with
preprocessing-space / query-time / stretch tradeoffs.

Theoretical Bounds for Static Graphs

| Reference| Setting | Stretch [Query [Space
weighted 2k — 1, | O(k) O (kn'+17k)
[TZ05] Sl k> 2
weighted 2k — 1, | O(log(k)) | O(kn'+!/k)
[WNI3] | graph K> 2
weighted 2k — 1,1 O(1) O (kn'+17k)
[Chel3] S K> 2
sparse | e o(n) o(n?)
[AGI3] weighted
graph
[Kle02] P'af‘ar | +e€ O(e~") o(@)
weighted
[ThoO4] dJ
digraph
[MNO6] metric O(k) Oo(1) O(kn“rl ")
Doubling | +¢€ O(l1) ¢ —Qddim)
[BGKRL11T] metric, +2Q(ddim log(ddim)) ;y
dynamic

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering

distance queries efficiently (in time).

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering
distance queries efficiently (in time).

@ Trivial solution: Precompute all the (1 + ¢)—approximate
distance summaries from every origin to every destination.
= O(n3) size (O(n?), if all arc-delay functions concave).
@z O(loglog(n)) query time.
@ (1 4 €)—stretch.

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering
distance queries efficiently (in time).

@ Trivial solution: Precompute all the (1 + ¢)—approximate
distance summaries from every origin to every destination.
= O(n3) size (O(n?), if all arc-delay functions concave).
@z O(loglog(n)) query time.
@ (1 4 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.
w O(n+m+K) size (K = total number of PBs of arc-delays).
= O([m+ nlog(n)] x loglog(K)) query time.
ws | —stretch.

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering
distance queries efficiently (in time).

@ Trivial solution: Precompute all the (1 + ¢)—approximate
distance summaries from every origin to every destination.
= O(n3) size (O(n?), if all arc-delay functions concave).
@z O(loglog(n)) query time.
@ (1 4 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.
w O(n+m+K) size (K = total number of PBs of arc-delays).
= O([m+ nlog(n)] x loglog(K)) query time.
ws | —stretch.

© Is there a smooth tradeoff among space / query time / stretch?

FLAT TD-Oracle

FLAT TD-Oracle: Overall Idea

@ Choose a set L of landmarks.

» In theory: Each vertex v €V is chosen,
, to be included in the landmark set L w.p. p€ (0, 1).

» In practice: Selection of landmark set either randomly, or as the
set of of a given graph partition.

FLAT TD-Oracle: Overall Idea

@ Choose a set L of landmarks.

» In theory: Each vertex v €V is chosen,
, to be included in the landmark set L w.p. p€ (0, 1).

» In practice: Selection of landmark set either randomly, or as the
set of of a given graph partition.

@ Preprocess (1 + ¢)-approximate distance summaries (functions)
D¢, v] every Lel each destination
veV.

» Label-setting approach.

» One-to-all approximation, for any given landmark £ € L.

FLAT TD-Oracle: Overall Idea

@ Choose a set L of landmarks.

» In theory: Each vertex v €V is chosen,
, to be included in the landmark set L w.p. p€ (0, 1).

» In practice: Selection of landmark set either randomly, or as the
set of of a given graph partition.

@ Preprocess (1 + ¢)-approximate distance summaries (functions)
D¢, v] every Lel each destination
veV.

» Label-setting approach.

» One-to-all approximation, for any given landmark £ € L.

© Provide query algorithms (FCA/RQA) that return constant /
(1 + o)-approximate distance values, for arbitrary query
(o,d, o).

FLAT TD-Oracle

selection & preprocessing of landmarks

Landmark Selection and Preprocessing (1)

@ Select each vertex
w.p. p€ (0, 1) for the landmark set L C V.

@ Preprocessing: V£ € L, precompute (| + €¢)—approximate
distance functions A[¢,v] to all destinations v € V.

Landmark Selection and Preprocessing (1)

@ Select each vertex
w.p. p€ (0, 1) for the landmark set L C V.

@ Preprocessing: V£ € L, precompute (| + ¢)—approximate
distance functions A[¢,v] to all destinations v € V.

THEOREM: [Kontogiannis-Zaroliagis (201 3)]

Using Bisection for computing approximate distance summaries:
@ Pre-Space:

O(w $MaX(gy)eLxv {'09 (%) })

@ Pre-Time (in number of TDSP-Probes):

O (maxien) {log (i) | - KL maxg {log (34T 1)

Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space.

Landmark Selection and Preprocessing (Il)

A recent development: Improved preprocessing time/space.

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2014)]

Using both Bisection (for nodes) and Trapezoidal (for
nodes):

@ Pre-Space:

E [Sprs+trar] € O(T <l + %) Amax - pn? polylog(n))

@ Pre-Time:

E [Pg1s+trar] € O (T (I + %) Amax - pn? polylog(n) log log(Kmax)>

v

FLAT TD-Oracle

FCA: constant-approximation query

FCA: A constant-approximation query algorithm (1)

IT € ASP[lo.d](t;+Ro)
P O R Q e SP[o,l](t,)

tq = t, + D[o.d](t)

| Forvard Constant Approximation: FCA (o,d,to, (Al v])(gs)eLxv) |

I. Exploration: Grow a TD-Dijkstra forward ball B(o,t,) until
the closest landmark £, is settled.

2. return sol, = D[o, £4,](to) + Allo, d](to + Dlo, £](t5))-

FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vVt €[0,T], Dlo,d|(t) < {-Dld,o|(to).

FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vVt €[0,T], Dlo,d|(t) < {-Dld,o|(to).
THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o,d,t5), FCA achieves the following performance:

@ Approximation guarantee:

Dlo,d](ts) < Ro+ Allo,d](to + Ro) < (1 + €)D[o,d](to) + wRo

< (1 +e+y- ppiiay) - Dlo.dl(to)
where @ =1 + Amax(1 + €)(1 + 2{ + Amax{) + (1 +€){.

FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vte[0,T], Dlo,d|(t) <{-Dld,o](t,).

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o,d,t5), FCA achieves the following performance:

@ Approximation guarantee:

Dlo,d](ts) < Ro+ Allo,d](to + Ro) < (1 + €)D[o,d](to) + wRo

< (1 +e+y- ppiiay) - Dlo.dl(to)
where @ =1 + Amax(1 + €)(1 + 2{ + Amax{) + (1 +€){.

@ Query-time complexity:
> E[Qrcal € o(g ‘In (g))
> P {QFCA € Q(% -In? (%))} € O(p)

FLAT TD-Oracle

RQA: boosting approximation guarantee

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) 4 A[e,', d](tj = D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Di jkstra forward-ball B(W,-, t,-) un-
til the closest landmark ¢; is settled.

3. sol; = D[O, Wj](to) aF D[W,‘, Ei](tj) =+ A[Ej, d](t,‘ aF D[W,‘, é,](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

@ Growing level-0
ball...

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. sol; = D[O, W,‘](fo) aF D[W,‘, e,'](l"j) =+ A[Ei, d](t,‘ aF D[W,‘, él](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

@ Growing level-0
ball...

'~ @ Growing level-1
/@ balls...

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. sol; = D[O, W,‘](fo) aF D[W,‘, e,'](l"j) =+ A[Ei, d](t,‘ aF D[W,‘, él](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

@ Growing level-0
ball...

'~ @ Growing level-1
/@D balls...

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

l.
2.

while recursion budget R not exhausted do

Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.
SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))
Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.
endwhile

return best possible solution found.

@ Growing level-0
ball...

@ Growing level-1
balls...

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

@ Growing level-0
ball...

@ Growing level-1
balls...

@ Growing level-2
balls...

RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.

@ Growing level-0
ball...

@ Growing level-1
balls...

@ Growing level-2
balls...

S. Kontogiannis: ~ TD Oracles [64 / 69]

RQA: Why Does Recursion Boost Approximation?
=R

Pos € SP[o, wi](t,)

O D0 @

A I’ i S\ Qi € SPIwi» (i) /.

=

SRR R ‘ T2 RSP R
@ One of the discovered approximate od—paths has all its ball
centers at

RQA: Why Does Recursion Boost Approximation?
=R

Pos € SP[o, wi](%)

O D0 @

t, 151 [N \““(),QESP[H'/\,[A](I/\) .
2R+ R+ + R ‘ﬁk:xsr&uf, iRy
@ One of the discovered approximate od—paths has all its ball
centers at

@ Optimal improve approximation guarantee:

VB>1, ¥Ae (0,1), A-OPT + (1 —2A)-B-OPT <B-OPT

RQA: Why Does Recursion Boost Approximation?
=R

Pos € SP[o, wi](%)

Iy 151 I Qx € SPwic, il (@) .
. -~ 8

ZRotRit ot Rey é T2 RSFIL, dictR)
@ One of the discovered approximate od—paths has all its ball
centers at

@ Optimal improve approximation guarantee:

VB>1, ¥Ae (0,1), A-OPT + (1 —2A)-B-OPT <B-OPT

© Quality of approximation guarantee of FCA (per ball) for
remaining to the destination depends on
(distance from the closest landmark to the ball center).

RQA: Why Does Recursion Boost Approximation?
=R

Pos € SP[o, wi](t,)

O D0 - @

173 151 [N ‘\‘Q,r\ e SPIwr , Ll(%) o
. -~ 8

ZRotRit ot Rey é T2 RSFIL, dictR)
@ One of the discovered approximate od—paths has all its ball
centers at

@ Optimal improve approximation guarantee:

VB>1, ¥Ae (0,1), A-OPT + (1 —2A)-B-OPT <B-OPT

© Quality of approximation guarantee of FCA (per ball) for
remaining to the destination depends on
(distance from the closest landmark to the ball center).

@ A constant number of recursion depth R suffices to assure
guarantee close to | +e.

RQA: Performance

THEOREM: Complexity of RQA

For sparse networks (i.e., having u= |A//|V| € O(1)), the
complexity of RQA with recursion budget R for obtaining

(1 + o)—approximate distances (for any constant o >¢) to arbitrary
(o,d,t5) queries, is:

E [2roa] < O(() -in (1)).
[QRQA € O((]n(n)R+' . []nln(n)-i-ln (;)D} =1 O(%) ,

TD Distance Oracle: Recap

n?log(n)
O((K* + l)n2U) O(-loglog(Kmax) O(loglog(K*))
(K* + 1)TDP
log(n)-
O(n+m+K) o(1) O(109 10(Kue))
pnZlog(n) R |
o(an(K* n I)U) Of -loglog(Kmax) o((E) log (5
«(K* + 1)TDP - log log(Kmax)
()(nz—a) ()(nz—a) ()(n(r+1)-a)
S. Kontogiannis: ~ TD Oracles [66 / 69]

TD Distance Oracle:

Wilhelmsruh 3 g — B
Konradshohe' " Tegel Bezirk g Ananpes &,
Hakenfelde ' % e s Sec E?Dzlr\: Pankow Malchow, 5
€gelort i EOB' Reinickendorf Warlenberg

Towards Implementation...

3
Clars-ZetkinPark wehiow %

3 Neu-Hohenschénhausen Fiche Altlandsberg
103
Falkenhagener Wedding Marzahn | Eiche sud Honow Bruchmilh
Feld Haselhorst g Prenzlauer 755)
{100 Berg Hellersdorf Neuenhagén Fredersdoif
Spandau
P Moabit bei Berlin
0 Bezirk Petersha
Berlin Marzahn-Hellersdorf
5 I i Bezirk Hoppegarten
Lichtenberg 1 Biesdart
Mahlsdorf
-Wilmersdorf Rummelsburg Kaulsdorfer s
£ i
2 Gatow. a
Schonebere e Ishos! h
; NeukalinPlanterwald) | <ashorst
Friedenau jalurtheater Riidersd:
T 103) Friedrichshagen bei Berl
g " B
& Dahlem Steglitz Tempelhof ~ ety .
(51 eV o
Zehlendorf Y Bezitk Treptoyr-Kopenick™ wassarwerk
= Neukdlin [Adlers aof Friedrichshagen Rahnsdorf |
L Lichterfelde ouzEr 3
Steglitz-Zehlendorf yiio] bt
Departure 8:00 - 20:00 20:00 - 08:00
Travel Time 46.5 mins 45.1 mins
FCA Response Time <0.2ms <0.2ms
RQA(1) Repsponse Time <1ms <1ms
P2P Dist.Summary Construction 120 ms
One-To-All Dist.Summary Construction

<40 sec

TD Distance Oracle: Towards Implementation...

e rrenzraueroerg .
Spandau aee \Mitte: % Hellersdorf7/”| Neuenhag}n

oabi E 4 ! Petershagen-Eggers

Wilhelmstadt N d e oiler et o SrelagentEgger

E’ngﬁ; Steig 140

1hurg

h Berli 5 ; \
¥ Ci arlouenﬁ;;gaﬁsaw > T Hoppegarten
— £ CheéKpormCharlie " Bll‘es'dbr(

2 -Wilmersdorf Friedrichshain-Kreuzberg) J
Grunew Alt-Trepto G 7 L]
Gatow Wi 2 @)Viktoriapark e N / o
Schoneberg Planterwald) | Karishorst || Waldesrun
e Havel Schmargendor? i "’;"; IS
yol k s eherd S | Drive 59 min
ke Griinewald Oberschaneweide 6km
Kladow @@ Riemeistérfenn(@) Dahlem sfeglitz | Tempelho > - (L
®
P Volkspaik Marend \ o i
I° < Bezirk NeukalIn . médrichshagm!kzhnsdod
Lichterfelde | Britzer Garten (s} e P
- ~ =
) {
o s Buckow]
Wannsee - 1 %%
20 Marienfelde

|
Kleinmachriow .~

N == Teltow: G
& Heinersdorf L Lichtenrade
) Stahnsdorf |
Gosen-Neugfttaul,
Ruhisdorf Eichwalde | .
fewitz Gterfelde Mahlow oea

Schulzendorf

CroGbeerens;, Grossbeeren
%,

Blankenfelde-Mahiow.
ARG ‘Wernsdorf

Diedersdorf Bel a
101] Blankenfelde Grot Kienitz
Wildau

Niederlehme J=31

Dahlewitz

aarmund Ahrensdort Ma‘ma—endn‘ﬂ

Juhnsdorf

S o

}
Lowenbruch Ralgsdort 3 Kénigs WUSIE:hausen Friedersdorf

Senzig Heidese

Bindow
¢

S. Kontogiannis: ~ TD Oracles [67 / 69]

Related Literature

@ [Dreyfus (1969)] S. E. Dreyfus. An appraisal of some shortest-path
algorithms. In Operations Research, 17(3):395—412, 1969.

@ [Orda-Rom (2000)] A. Orda, R. Rom. Shortest-path and minimum

delay algorithms in networks with time-dependent edge-length. In .
ACM, 37(3):607—625, 1990.

@ [Dean (2004)] B. C. Dean. Shortest paths in FIFO time-dependent
networks: Theory and algorithms. Technical report. MIT, 2004.

@ [Dehne-Omran-Sack (2010)] F. Dehne, O. T. Masoud, J. R. Sack.

Shortest paths in time-dependent FIFO networks. In Algorithmica,
62(1-2):416—435, 2012.

@ [Foschini-Hershberger-Suri (2011)] L. Foschini, J. Hershberger, S. Suri. On

the complexity of time-dependent shortest paths. In Algorithmica,
68(4), pp. 1075—1097, 2014. Prelim. version in SODA 201 1.

@ [Kontogiannis-Zaroliagis (2013)] 14. S. Kontogiannis, C. Zaroliagis.
Distance oracles for time dependent networks. In Automata,
Languages and Programming (ICALP-A 2014), Springer, 201 4.

Any Questions?

Time-Dependent Speed-up Techniques
Wednesday, July 2 2014, 11:30

S. Kontogiannis: ~ TD Oracles [69 / 69]

	Problem Statement & Examples
	Problem Statements

	Algorithms for TDSP on FIFO, Continuous, Pwl Instances
	Input/Output Data
	Complexity Results
	Lower Bound on Number of Breakpoints
	Upper Bound on Number of Breakpoints
	An Exact (output-sensitive) Algorithm for Arr[o,]
	Poly-time Approximation Algorithms for D[o,d] and D[o,]

	Distance Oracles
	Distance Oracles
	Distance Oracle for TDSP
	STEP 2: Selection & Preprocessing of Landmarks
	STEP 3: All-To-All Constant-Approximation Queries (FCA)
	STEP 4: Boosting Approximation Guarantee (RQA)

