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purple path, if t, €[2.9,+00)
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Instance with ARC DELAY functions

(1-x)/2,0 <x<1

2 (Waiting Times)

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

RESHIES € |
x+1,x>1

be worth it?

NO, since arrival-time functions are functions
of departure-time from origin.

Would
A2

be worth it in this case?

A2 | YES, wait until time | and then traverse od, if already present
at o at time t, <. Otherwise, traverse od immediately.



Waiting Policies
Unrestricted Waiting (UW) Unlimited waiting is allowed at every
node along an od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the
origin node of each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of
each od-path.

Depending on the , the scheduler has to
decide not only for an optimal connecting path (that as-
sures the earliest arrival at the destination), but also for
the appropriate optimal waiting times at the nodes along
this path.
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TDSP :: EXAMPLE

Instance with ARC DELAY functions

(1-x)/2,0 <x<1

2 (Waiting Times) — contd.

Instance with ARC ARRIVAL functions

(1+x)/2,0 <x <1
x+l,x2>1
(1+x)/2,0<x<1
x+1,x>1

RESHIES € |

What if

is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.
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for TDSP, if waiting-at-nodes is forbidden.
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Inexistence of Optimal Waiting Times

@ Do optimal waiting times at nodes always exist?

@ Unfortunately NOT! EXAMPLE:

100, t< 10,

plodii) = {1 155
t+ 100, t< 10,
= Arr[od](t) = {t+l, t;]O

@ But this is due to the pathological discontinuity of the delay /
arrival-time function.

o They always exist for delay functions, as well as
for (possibly discontinuous) functions for which:

limgy, Dluv](t) <limgy, Dluv](t) = Dluv](ty) = limss, Dluv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).
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FIFO vs non-FIFO Arc Delays

o (Strict) FIFO Arc-Delays: The slopes of all the
functions are at least equal to (greater than) —1.

Equivalently: functions are ty

Dluv](ts) 4 =Amfui)
e

(aka no-overtaking property). o3

@ Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

» Wait for the next , than use the (immediately
available)
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Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

S. Kontogiannis: ~ TDSP Basics ~ [10 / 69]
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@ A "“scan” of the line with slope —1 suffices.

> pieces of the arc-delay function lying above the line

of slope —1.
°

@ Need to consider

in Non-FIFO+UW and FIFO instances.

given the arrival times, in

order to compute the optimal waiting times in the original

Non-FIFO+UW instance.

@ Interested in programming the transformation? Let me know!
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Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths
INPUT:
° graph G = (V, A) with
arc-travel-time functions
(Dla])aca. (Arr[a] = ID + Dia])aca-
DEFINITIONS:

@ Path arrival / travel-time functions: Vp = (o, ..., o) € Pod,
Arr[p] = Arr[ag] o - - o Arrfe;] ( of the involved
arc-arrivals). D[p] = Arr[p] — ID.

o Earliest-arrival / Shortest-travel-time functions:
Arrlo,d] = minpepoyd{ Arrlp] }, Dlo,d] = Arrlo,d] — ID.

GOALT: For departure-time t, from o, determine ty = Arr[o,d](ts).
GOALZ2: Provide a of Arrfo,d] (or D[o,d)]).
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@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.
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Why Care for Both Goals?

@ Not always sure when to depart (still think about it)!
Possessing the entire Dlo,d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the

within a window of possible departure
times.

@ Need to respond (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in
, for any departure time and od—pair.

& (offline) towards GOAL2 (succinct representations
of Dlo,d] functions) in order to support
responses to of GOALT.

= of distance summaries (as in static case) requires
to precompute functions instead of scalars.
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Consequencies of Different Network Models

@ [Dreyfus (1969)] Prefix-subpath optimality holds in
networks (given that optimal waiting times
). The same applies for the networks.

@ [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
networks (cf. EXAMPLE of Slide 7).

@ [Orda-Rom (1990)] If arc-delay functions are , or
', then the

solution (path+waiting policy) in non-FIFO+UW network

induces a solution in network using the

and appropriate waiting time

@ [Kontogiannis-Zaroliagis (2013)] In networks, (general)
subpath optimality holds also in the time-dependent case.

@ [Foschini-Hershberger-Suri (2011)] In networks, Aff[O, d]
is non-decreasing (increasing).
"This means that: Vt,, limyy, Dluv](t) > limsys, Duv](t))
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Algorithms for TDSP

e For

>

arbitrary (o,d,t,) queries (GOALT):

TD variants of Dijkstra and Bellman-Ford algorithms work
correctly in networks, and in networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay are evaluated).

TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in networks. Time complexity

slightly worse (when updating arc labels, some arc-delay
are evaluated). Determining existence of a finite-hop
solution is NP—hard.

e For arbitrary (o,d) queries (GOAL2):

>

[Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
networks.

= Complexity is on number of “elementary”
(EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

* Not so “elementary” operations after all (see next slides)!!



Algorithms for TDSP

in FIFO, Continuous, Pwl Instances



Input/Output Data
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PWL Arc Delays

Forward Description (as function of departure times from origin)

Reverse Description (as function of arrival times at destination)

S. Kontogiannis: ~ TDSP Basics ~ [17 / 69]



How to Store/Access PWL Arc Delays

e Exploit periodicity and piecewise-linearity:

( ftu+1, 0<ty modT <3
5, 3<t, modT <5
Vi, € R, D[w](ts) = 2,5, S5<t, modT <7
~Etu+ 3, T<t, modT <20
L |, 20<t, modT < 24

@ Representation: Array of (slope-constant) triples  equipped
with advanced (eg, binary / predecessor) secrch copabilities.

(£1.3) 055 ] (2-57) | (-& 17.20) | (0.1,24)

S. Kontogiannis: ~ TDSP Basics ~ [18 / 69]




How to Store/Access PWL Arc Delays

e Exploit periodicity and piecewise-linearity:

( ftu+1, 0<ty modT <3
5, 3<t, modT <5
Vi, € R, D[w](ts) = 2,5, S5<t, modT <7
~Etu+ 3, T<t, modT <20
L |, 20<t, modT < 24

@ Representation: Array of (dep.time - delay) pairs equipped
with advanced (eg, binary / predecessor) secrch copabilities.

(O [G5HGS(LN][@0D]

S. Kontogiannis: ~ TDSP Basics  [18 / 69]
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Piecewise Linearity of Path / Earliest Arrivals

-

Arrfo-u-d] Arro,d] Arrfo-v- d]
An{ud] An{au] Arriov] An{vd]
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Aro-u-d] Arr{o d] Arr[o V- d]
il u
Anfi;d] An{au] Arr{ov] An{vd]

@ Primitive Breakpoint (PB): Departure-time b] from head|e] at
which D[e] changes slope (assume K € O(m) PBs in total).

@ Primitive Image (PI): be from origin o
s.t. earliest-arrival-time b, = Arr[o, tail(e)](be) coincides with a
breakpoint for Dle].

@ Minimization Breakpoint (MB): Departure-time b, from origin
o s.t. Arr[o,v] due to application of

@ Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr|o,d].
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Known Issues wrt Representations

both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

» Convenient for handling artificial arcs (representing
shortest-travel-time functions) in of the
road network.

= Too many (worst case: n®1°9(")) breakpoints to store Arr[o,d]
(or Dlo,d]), even for arc-delays and graphs.

2 We need only O(é -log (g:f:{gj%)) breakpoints for a (I + ¢)
Dlo,d] of DJo,d], for the case of linear
arc-delays.
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composition fog and their minimum min{f, g} are
functions as well.




Lower Bound: |BP(Arrylo,d])| = n°9™ (1)

A Useful Observation (L2.1-2.2 in FHSI 1)

For any pair of functions f and g, both their
composition f o g and their minimum min{f, g} are
functions as well.

Parametric Shortest Path (PSP): A Similar Problem
e INPUT: G=(V,A), oo deV. A
La](y) = Ala] -y + pla] per edge o € A (negative lengths are
).

e DEFINITIONS:
> Path-length: Vp € G,L[p](y) = > qc, £la](¥)
» Min-length: Vx,y € V,L[x,y](y) = minyep, {L[PI(¥)}-
o GOALT: Compute L[o,d] for a
e GOAL2: Compute L[o,d] for

of y.
of y.
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TDSP vs PSP?

Instance with ARC DELAY functions

X+2
2x+0.1

-

2x+0.1

Arrfoud](t,) = Arr[ud](Arr[ou](t,)) = 6t, + 2.2

Arr[ovd](t,) = Arr[vd](Arr[ov](t,)) = 6t, + 6.1
Arr[ouvd](ty) = Arr[vd](Arr[uv](Arr[ou](t;))) = 36t,+1.3

L{oud](t) = 3t + 2.1

Llovd](t)=3t+2.1
L{ouvd](t) = 7t+0.2

TDSP: Delay composition along paths

PSP: Delay addition along paths
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Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]
There exists (linear) PSP-instance with n/°9") BPs in L[o,d].
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Lower Bound: |BP(Arryy[o,d])| = ne9™ (1)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with n/°9") BPs in L[o,d].

Main Steps for TDSP Lower Bound:

@ Assure in the PSP instance, in the

@ Scale properly the PSP instance.

© Consider the corresponding TDSP instance, with parameter y
handled as time.

@ Prove that L[o,d] (for PSP instance) and DJ[o,d] (for TDSP
instance) have (almost) the of BPs.



Lower Bound: |BP(Arrylo,d])| = n°a™ (lII)

@ Construct a layered-graph, in a path-length-preserving manner:
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@ Construct a layered-graph, in a path-length-preserving manner:

Assure non-negativity of arc-lengths in PSP: For the sequence
2D 7 yn) of breakpoints (BPs) wrt L[o,d], shift arc

lengths by max{0, —Lmin}, | Lmin = Miny iy, yalacAG) L)}
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@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence

riya . oyw) of
lengths by max{0, —Lmin},

(BPs) wrt L[o,d], shift arc
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@ Scale arc-lengths in PSP by a proper positive constant u.



Lower Bound: |BP(Arry[o,d])| = ne9™ (lII)

@ Construct a layered-graph, in a manner:

Assure non-negativity of arc-lengths in PSP: For the sequence

>,y -, yn) of (BPs) wrt L[o,d], shift arc
lengths by max{0, —Lmin}, |Lmin = Min, [, sn1aeaG) L)} |

@ Scale arc-lengths in PSP by a proper positive constant u.

© For the TDSP resulting from the scaled PSP when considering
y as departure time, prove that Vje {l,...,N— 1}, at

Vi = % both instances return shortest od—path p;.



Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

o vy =1 L= Lp](y) = Llo,d](7))-
° L = MiNgep,,— (p} HLGI(y), A= L’ Ej >0.
* Amln

Amin = minje[N_]] A

* . Amin
8" = MiNgeA[a]£0 {W}




Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

7 = )’1+)’J+' L = L[p](y;) = Llo,d](7)).
o Lj = mingep,, (o3 {LIqI(7), & =Lj —L; >0.
® | Amin = mingy_1] 4y | € = S | 8 = Minge Al 0 {%}

Small-enough so as

of p; in PSP instance: Veq € (0, ],

Zaepj ﬁ[d](}_/J + EO‘) — _J

- < Zaeqe[a]()_/j)f Vq 7 Py




Lower Bound: |BP(Arrylo,d])| = n°9™ (1V)

How it works: At given je {l,..., N—1}:

Yi =

UL L= Lpl(7) = Llo,d)(7).

o L =mingep ;o3 {LIG1(7)), A =Lj—L; >0.

Amin = minje[N,]] A

: . . Amin
g* = Bmn | 5% = mlnaeA;A[a];éO{W}

Small-enough so as

of p; in PSP instance: Ve, € (0, €],

Zaep e[a](}/j + EO{)

i < 2aeqllal(y)), Vg # pj

Small-enough so as to cause
s Vae A Vo4 € (0,8%],

Dla](y; + 8a) = £lal(y; + 8a) < L[a](y)) + €
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How it works (continued): At given j e {I,..., N-—1}:

@ Scale-invariance of time-perturbations: of all arc-delays

by a number u >0 does not affect at all the range of

allowed 8% = MiNge A A£0 {%}



Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
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Handle the PSP-parameter y as time.



Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
by a number u >0 does not affect at all the range of
— H Amin
allowed 8" = Minge A:Aja]£0 {W}

@ TDSP-instance: Scale the PSP-instance by u= m.

Handle the PSP-parameter y as time.
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Lower Bound: |BP(Arry[o,d])| = n°9™ (V)

How it works (continued): At given je{l,...,N— 1}

@ Scale-invariance of time-perturbations: of all arc-delays
by a number u >0 does not affect at all the range of
— H Amin
allowed 8" = Minge A:Aja]£0 {W}

@ TDSP-instance: Scale the PSP-instance by u= m.

Handle the PSP-parameter y as time.
° guarantees sufficiently small
. Arrlpil(y;) = v + Dlpl(y;) <y; +6*.
*. Small time-perturbations guarantee sufficiently small
, and thus, optimality of p;:

Dlpl(7;) < w-Lj+p- 2=tlm

/ (n— |)A QED
< pl - pltDAse < DRy vg £y




Upper Bound: |BP(Arrylo,d])| = K - neam (1)
Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) t; <t
Arrlo,d] forms a concave chain.
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Upper Bound: |BP(Arrylo,d])| = K - neam (1)

Observation: (L4.1 in FHSI11)

Between any two consecutive Primitive Images (Pls) ; <t
Arrlo,d] forms a concave chain.

WHY?
@ Any arc-delay is (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (1,1 ).

@ Any path-arrival Arr(p](t) function is a of linear
functions, thus

@ Arr[o,d] is the application of the min operator among linear
functions, thus

e Corollary: [BP(Arrgwlo,d])| < #different path slopes

@ Is this enough?

ool
(-1+py)* (-1+p2)* Teeig00-"" (-1+Pn2)*; (-1+Ppa)*

(]




Upper Bound: |BP(Arryulo,d])| = K - n™e3m (1)

OBSERVATION 1I: (L4.2 in
FHS11)

[BP(Arrpwilo, d])| < K-[BP(Arnin[o, d])].




Upper Bound: [BP(Arryulo,d])| = K - nXleam (1)

OBSERVATION II: (L4.2 in
FHS1 1)

|BP(Arrpw| [o,d])| < K- |BP(Arn,[o,d])|.

Lemma 4.3 (FHSI11)

IBP(Arminlo,d])] < 2D 4
layered graph with ¢ layers of n
nodes each.
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Upper Bound: [BP(Arryulo,d])| = K - nXleam (1)

OBSERVATION 1I: (L4.2 in
FHS1 1)

|BP(Arrpw| [o,d])| < K- |BP(Arn,[o,d])|.

Lemma 4.3 (FHSI11)

IBP(Arrin o, d)| < Z™J in
layered graph with ¢ layers of n
nodes each.

THM4.4 (FHST1)

|BP(Arrin[o, d])| = n™°9") in any graph G and pair of nodes
o,d e V(G).

S. Kontogiannis: ~ TDSP Basics ~ [29 / 69]



(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions
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Why Do We Need the Output Sensitive Algorithm?

@ It gives exactly the distance functions in question, ie,
, that we would ideally like to
have from/to any origin/destination vertex.

@ We may need to compute for
(eg, from/to hubs, all
superhub-to-superhub connections, etc).

© Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad
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e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

e Given an arbitrary point in time (

) to > O as departure time from origin
o0, compute a

@ Discover the TDSP tree is

» YW eV, two short alternatives when
departing from o at time ty: Earliest-arrival

to each parent, plus delay of corresponding
incoming arc.

» Minimization (vertex) Certificate f;;[v]: Earliest departure time
from o at which the two alternatives of v become

Primitive (arc) Certificate t;,;[e]: Primitive image of the next

(ie, after ty) breakpoint of the arc to come.



The Output-Sensitive Algorithm (1)

e ASSUMPTION: The in-degree of every
node in the graph is at most 2.

e Given an arbitrary point in time (

) to > O as departure time from origin
o0, compute a

@ Discover the TDSP tree is

» YW eV, two short alternatives when
departing from o at time ty: Earliest-arrival

to each parent, plus delay of corresponding
incoming arc.

» Minimization (vertex) Certificate f;;[v]: Earliest departure time
from o at which the two alternatives of v become

Primitive (arc) Certificate t;,;[e]: Primitive image of the next

(ie, after ty) breakpoint of the arc to come.

o All (m+ n) certificates temporarily stored in a



The Output-Sensitive Algorithm (I1)

When current time t; >ty matches the earliest failure-time of a
certificate in the queue:

if

then

minimization-certificate
failure, at node v e V:

(1) Update shortest ov—path
/+ ONE-BIT change in combinatorial structure =/
(2) Update Arr[o, x| and
t:fai][x], Vx € TV.

(3) Update fforil[e]:

Vec E:x=taille] €T,.

Arr[o,v](t=ti-€) = At + B, + D[uv](Ait + By) = A, t + By \

Arr[o,x](t=t:-€) = At + By + D[vx](Ast + B-,)

A, t + B, = Arrfo,u](t)

ast+ By TDSPT
Subtree

st + B,

A, t+ B, = Arr[o,w](t

Arr[o,x](t=t +€) = A*,t + B*, + D[vx](A*t + B‘,,

Arr[o,v](t=t +€) = Ayt + By, + DIWVI(Aut + By) = A"t + B'y [l e
e NON-TDSPT-EDGE

Arr[o,V](t=ti-€) = Ayt + By + D[uv](Aut + B)) = A, t + B,

Arr[o,X](t=t,-€) = At + B, + D[vx](Ait + B,) \

A, t+ B, = Arr[o,u](t)
TDSPT
Subtree
A t+B, = Arrfo,w](t

Arrfox](t=trte) = At + By + - [vx](Avt +B,) /

Arrfo,v](t=t;+) = A,t + B, + D[uv](A,t + B,) = A, t + B, [k SRR
e NON-TDSPT-EDGE




The Output-Sensitive Algorithm (I1)

When current time t; >ty matches the earliest failure-time of a
certificate in the queue:

if

then

else

minimization-certificate
failure, at node v e V:

(1) Update shortest ov—path

/+ ONE-BIT change in combinatorial structure =/

(2) Update Arr[o, x| and
t:fai][x], Vx € TV.

(3) Update fforil[e]:
Vec E:x=taille] €T,.

/* primitive-certificate failure, at arc e =vx € E »/

Arr[o,v](t=ti-€) = At + B, + D[uv](Ait + By) = A, t + By \

Arr[o,x](t=t:-€) = At + By + D[vx](Ast + B-,)

A, t + B, = Arrfo,u](t)

ast+ By TDSPT

Subtree

st + B,

A, t+ B, = Arr[o,w](t

Arr[ox](t=t +€) = At + B, + D[vx](A*t + B*,)
Art{o,V](t=t +€) = Ayt + B,, + DIWVI(Aut + B,) = A"t + B, fm WL A

NON-TDSPT-EDGE

Arr[o,v](t=t,-€) = At + B, + D[uv](A,t + B,) = A, t + B, \
Arr[o,x](t=t;-€) = A\t + B, + D-[vx](At + B,)

A, t+ B, = Arr[o,u](t)
TDSPT
Subtree
A t+B, = Arrfo,w](t

Arrfox](t=trte) = At + By + - [vx](Avt +B,) /

Arrfo,v](t=t;+) = A,t + B, + D[uv](A,t + B,) = A, t + B, [k SRR
e NON-TDSPT-EDGE

(1) Update Arrfo,y] and tyly], Vy € Tx.
(2) Update tgle'], Ve' € E : taille’] € T.




The Output-Sensitive Algorithm (III)

e What to keep in memory:
» Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).
» Advanced search structures, if number of BPs is large.
» Only temporarily store certificates in a priority queue.
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» Breakpoint triples for earliest-arrival functions, plus ONE bit
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° per certificate failure at ce VUE:
» In the (or any constant-in-degree graph):

O(|Ec| - logn). E. is the set of arcs whose tails are in T, or
Thead)q- Logarithmic factor is due to

» In the (in worst-case): O(mx log® n). Second

logarithmic factor is due to
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.



The Output-Sensitive Algorithm (III)

e What to keep in memory:

» Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).

» Advanced search structures, if number of BPs is large.

» Only temporarily store certificates in a priority queue.

° per certificate failure at ce VUE:

» In the (or any constant-in-degree graph):
O(|Ec| - logn). E. is the set of arcs whose tails are in T, or
Thead)q- Logarithmic factor is due to

» In the (in worst-case): O(mx log® n). Second

logarithmic factor is due to
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

° of output-sensitive algorithm:

o(m x log? n x (PRIMBPs + MINBPs) )



Poly-time Approximation Algorithms



(1 + &)—approximation of D[o,d] : Preliminaries

e Why focus on shortest-travel-time (delays) functions, and not
on earliest-arrival-time functions?

o Arc/Path Delay Reversal: Easy taskll!

%
e t, = Arr[o,v](t,) =t, — B[o, v](t,): Latest-departure-time from o
to v, as a function of the arrival time f, at v.

S. Kontogiannis:  TDSP Basics ~ [36 / 69]



@ Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:
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Approximating D[o,d] : Quality

@ Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:

A D =
b )
> 3
Q‘I X
@ 2
D = D 5,4 o =
2 | P
" 5 DI
S48 =21 i | I\ T iU Lc) 4
c " 7] B B m 7]
(2) 4(c) > A(d) 20 (b) 4%(c)> 0> A(d) (©) 0=4%(c) > 41(d)

LEMMA: Closed Form of Maximum Absolute Error

[Kontogianis-Zaroliagis (201 3)]
MAE(c,d) = (A+(c) — A=(d)) - m=bd=m) o LA™ (d))




Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< D[o,d](t) < Do, d](t) < (1 +¢) -
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Approximating D[o,d]: Basic Idea (I)

e Approximations of D[o,d]: For given ¢ >0, and Vt € [0, T),

< Do, d](t) < Dlo,d](t) < (1 +¢) -

o FACT: if Dlo,d]| was a priori known then a gives a
space-optimal (1 + €)—upper-approximation (i.e., with the MIN
#BPs).

e PROBLEM: Prohibitively expensive to compute/store D|o,d]
before approximating it. We must be based only on a few
of Dlo,d].

e FOCUS: arc-delays. Later extend to pwl arc-delays.

@ Djo,d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.



Approximating Do, d]: Basic Idea (II)

e Make the sampling so that
vt € [0, T], Dlo,d](t) < (1 +¢€)-Djo,d]|(t).

o Keep sampling always the fastest-growing axis wrt to D[o,d].

S. Kontogiannis: ~ TDSP Basics ~ [39 / 69]



One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

S. Kontogiannis: ~ TDSP Basics ~ [40 / 69]



One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

Bad Case for [Foschini-Hersberger-Suri (2011)]
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One-To-One Approximation: PHASE-|

[Foschini-Hershberger-Suri (201 1)]

while slope of D[o,d] > | do

[Kontogiannis-Zaroliagis (2013)] :
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One-To-One Approximation: PHASE-2

[Foschini-Hershberger-Suri (201 1)]

of D[o,d] < I1:
repeat
Apply to the remaining time-interval(s)

until desired approximation guarantee (wrt
achieved.
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One-To-All Approximaton via Bisection ()

[Kontogiannis-Zaroliagis (201 3)]

ASSUMPTION 1: Concavity of arc-delays. /1o be removed later +/

» Implies concavity of the function Dlo,d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of
the (pwl) arc-delay functions.

> by TD-traffic data for road network of Berlin [TomTom
(February 2013)] that all arc-delay slopes are in [-0.5,0.5].

» Slopes of function D[o,d] from [—Amin, Amax],
for some constants Amax >0, Amin € [0, 1).



One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved
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Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved
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One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved
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Example of Bisection Execution : Level-1 Recursion



One-To-All Approximaton via Bisection (Il)

[Kontogiannis-Zaroliagis (201 3)]

Under ASSUMPTIONS 1-2: Execute Bisection to
all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved

Ds

D,

v

to t 3 ty

Example of Bisection Execution : Level-2 Recursion



One-To-All Approximaton via Bisection (llI)

[Kontogiannis-Zaroliagis (201 3)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays.

@ Call Reverse TD-Dijkstra
to project each
concavity-spoiling PB to a
Pl of the origin o.

@ For each pair of
at o, run Bisection for
the corresponding
departure-times interval.

© Return the

head[uv]
>
>

earliest-arrival times at v

L &t
departure time from u = tail[uv]

A\ 4

of approximate distance summaries.




Approximating Dl[o,d]| : Space/Time Complexity

THEOREM: Space Complexity [Kontogianis-Zaroliagis (2013)]

Let K* be the total number of concavity-spoiling BPs among all
the arc-delay functions in the instance.

Space Complexity: For a oeV and possible
destinations d € V, the following complexity bounds hold for
creating all the approximation functions D[o, *] = (D|o, d])qey:

K* Dmax [O'*](O'T)
o O(T log (4Dmm[o,*1(or) ))
@ In each interval of Pls,
|UBP[o,d]| < 4-(minimum #BPs for any (1 + ¢)—approximation.

Time Complexity: The number of executed
for the computation of the approximate distance functions is:

TDSPJo,d] € o(log (ﬁ) K log (%))




Implementation Issues wrt One-To-All Bisection

w One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
approximation method that provably works
(within constant factors) wrt
continuous pwl arc-delay functions.
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Implementation Issues wrt One-To-All Bisection

w One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
approximation method that provably works
(within constant factors) wrt
continuous pwl arc-delay functions.

ea Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]
and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from in the degree of disconcavity (value of
K*) in the TD Instance.

@ A novel (again ) approximation
technique, called the Trapezoidal method
([Kontogiannis—Wagner—ZaroIiagis (2014)] ) avoids en’rirely the
dependence of the required space from the network structure
(and, of course, the degree of disconcavity).



Any Questions?

Time-Dependent Oracles
Wednesday, June 18 2014, 11:30

S. Kontogiannis:  TDSP Basics [47 / 69]



Distance Oracles



Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries



Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.



Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.

@ Trivial solution: No preprocessing, respond to queries by
running Dijkstra.
w O(n+m) size.
. O(m+ nlog(n)) query time.
@ | —stretch.



Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a graph with arc-travel-times, create
a data structure (oracle) that requires
requirements and allows answering distance queries

@ Trivial solution: Preprocess by executing and storing APSP.
= O(n?) size.
w O(1) query time.
ws | —stretch.

@ Trivial solution: No preprocessing, respond to queries by
running Dijkstra.
w O(n+m) size.
. O(m+ nlog(n)) query time.
@ | —stretch.

¥ Try to provide smooth tradeoffs among space / query time /
stretchlll
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Distance Oracles: Generic Idea

@ Metric-independent preprocessing: Split the graph, essentially
the distance metric.

» Roughly per cell (in each level, if is
applied).
» Boundary vertices/arcs much less than the graph size (e.g.,

O(v/n) in total).

» Each cell may be required to be a subgraph.

@ Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

© Query Algorithm: Respond fast to queries, based on the
(hierarchical?) division and/or the
summaries.
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o Extremely successful theme in static graphs.
» In theory:
* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).
» In practice:

* P-Space: A few GBs (sometimes less than | GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).
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Distance Oracles

o Extremely successful theme in static graphs.
» In theory:
* P-Space: Subquadratic (sometimes quasi-linear).
* Q-Time: Constant.
* Stretch: Small (sometimes PTAS).
» In practice:

* P-Space: A few GBs (sometimes less than | GB).
* Q-Time: Miliseconds (sometimes microseconds).

* Stretch: Exact distances (in most cases).
@ Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with
preprocessing-space / query-time / stretch tradeoffs.




Theoretical Bounds for Static Graphs

| Reference| Setting | Stretch [ Query [ Space
weighted 2k — 1, | O(k) O (kn'+17k)
[TZ05] Sl k> 2
weighted 2k — 1, | O(log(k)) | O(kn'+!/k)
[WNI3] | graph K> 2
weighted 2k — 1,1 O(1) O (kn'+17k)
[Chel3] S K> 2
sparse | e o(n) o(n?)
[AGI3] weighted
graph
[Kle02] P'af‘ar | +e€ O(e~") o(@)
weighted
[ThoO4] dJ
digraph
[MNO6] metric O(k) Oo(1) O(kn“rl ")
Doubling | +¢€ O(l1) ¢ —Qddim)
[BGKRL11T] metric, +2Q(ddim log(ddim)) ;y
dynamic
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CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering
distance queries efficiently (in time).

@ Trivial solution: Precompute all the (1 + ¢)—approximate
distance summaries from every origin to every destination.
= O(n3) size (O(n?), if all arc-delay functions concave).
@z O(loglog(n)) query time.
@ (1 4 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.
w O(n+m+K) size (K = total number of PBs of arc-delays).
= O([m+ nlog(n)] x loglog(K)) query time.
ws | —stretch.



Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable space and allows answering
distance queries efficiently (in time).

@ Trivial solution: Precompute all the (1 + ¢)—approximate
distance summaries from every origin to every destination.
= O(n3) size (O(n?), if all arc-delay functions concave).
@z O(loglog(n)) query time.
@ (1 4 €)—stretch.

@ Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.
w O(n+m+K) size (K = total number of PBs of arc-delays).
= O([m+ nlog(n)] x loglog(K)) query time.
ws | —stretch.

© Is there a smooth tradeoff among space / query time / stretch?



FLAT TD-Oracle
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@ Choose a set L of landmarks.

» In theory: Each vertex v €V is chosen,
, to be included in the landmark set L w.p. p€ (0, 1).

» In practice: Selection of landmark set either randomly, or as the
set of of a given graph partition.
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FLAT TD-Oracle: Overall Idea

@ Choose a set L of landmarks.

» In theory: Each vertex v €V is chosen,
, to be included in the landmark set L w.p. p€ (0, 1).

» In practice: Selection of landmark set either randomly, or as the
set of of a given graph partition.

@ Preprocess (1 + ¢)-approximate distance summaries (functions)
D¢, v] every Lel each destination
veV.

» Label-setting approach.

» One-to-all approximation, for any given landmark £ € L.

© Provide query algorithms (FCA/RQA) that return constant /
(1 + o)-approximate distance values, for arbitrary query
(o,d, o).



FLAT TD-Oracle

selection & preprocessing of landmarks



Landmark Selection and Preprocessing (1)

@ Select each vertex
w.p. p€ (0, 1) for the landmark set L C V.

@ Preprocessing: V£ € L, precompute (| + €¢)—approximate
distance functions A[¢,v] to all destinations v € V.



Landmark Selection and Preprocessing (1)

@ Select each vertex
w.p. p€ (0, 1) for the landmark set L C V.

@ Preprocessing: V£ € L, precompute (| + ¢)—approximate
distance functions A[¢,v] to all destinations v € V.

THEOREM: [Kontogiannis-Zaroliagis (201 3)]

Using Bisection for computing approximate distance summaries:
@ Pre-Space:

O(w $MaX(gy)eLxv {'09 (%) })

@ Pre-Time (in number of TDSP-Probes):

O (maxien) {log (i) | - KL maxg {log (34T 1)




Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space.



Landmark Selection and Preprocessing (Il)

A recent development: Improved preprocessing time/space.

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2014)]

Using both Bisection (for nodes) and Trapezoidal (for
nodes):

@ Pre-Space:

E [Sprs+trar] € O(T <l + %) Amax - pn? polylog(n))

@ Pre-Time:

E [Pg1s+trar] € O (T (I + %) Amax - pn? polylog(n) log log(Kmax)>

v



FLAT TD-Oracle

FCA: constant-approximation query



FCA: A constant-approximation query algorithm (1)

IT € ASP[lo.d](t;+Ro)
P O R Q e SP[o,l](t,)

tq = t, + D[o.d](t)

| Forvard Constant Approximation: FCA (o,d,to, (Al v])(gs)eLxv) |

I. Exploration: Grow a TD-Dijkstra forward ball B(o,t,) until
the closest landmark £, is settled.

2. return sol, = D[o, £4,](to) + Allo, d](to + Dlo, £](t5))-




FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vVt €[0,T], Dlo,d|(t) < {-Dld,o|(to).



FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vVt €[0,T], Dlo,d|(t) < {-Dld,o|(to).
THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o,d,t5), FCA achieves the following performance:

@ Approximation guarantee:

Dlo,d](ts) < Ro+ Allo,d](to + Ro) < (1 + €)D[o,d](to) + wRo

< (1 +e+y- ppiiay ) - Dlo.dl(to)
where @ =1 + Amax(1 + €)(1 + 2{ + Amax{) + (1 +€){.




FCA: A constant-approximation query algorithm (II)

e ASSUMPTION 3: Bounded Opposite Trips.
3¢ > 1:V(o,d) eV xV, vte[0,T], Dlo,d|(t) <{-Dld,o](t,).

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o,d,t5), FCA achieves the following performance:

@ Approximation guarantee:

Dlo,d](ts) < Ro+ Allo,d](to + Ro) < (1 + €)D[o,d](to) + wRo

< (1 +e+y- ppiiay ) - Dlo.dl(to)
where @ =1 + Amax(1 + €)(1 + 2{ + Amax{) + (1 +€){.

@ Query-time complexity:
> E[Qrcal € o(g ‘In (g))
> P {QFCA € Q(% -In? (%))} € O(p)




FLAT TD-Oracle

RQA: boosting approximation guarantee



RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) 4 A[e,', d](tj = D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.

5. endwhile

6. return best possible solution found.
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RQA: Overview

| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

l.
2.

while recursion budget R not exhausted do

Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.
SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))
Recursion: Execute RQA centered at
of B(w;,t;) with recursion budget R — 1I.
endwhile

return best possible solution found.

@ Growing level-0
ball...
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| Recursive Query Approximation: RQA (0,d,to, (AL, V])(gneLxv.R)

1. while recursion budget R not exhausted do

2. Exploration: Grow a TD-Dijkstra forward-ball B(w;, #;) un-
til the closest landmark ¢; is settled.

3. SOll' = D[O, W,‘](fo) aF D[W,‘, e,'](fj) =+ A[e,', d](tj aF D[W,‘, Zl](t,))

4. Recursion: Execute RQA centered at
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5. endwhile
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@ Optimal improve approximation guarantee:

VB>1, ¥Ae (0,1), A-OPT + (1 —2A)-B-OPT <B-OPT

© Quality of approximation guarantee of FCA (per ball) for
remaining to the destination depends on
(distance from the closest landmark to the ball center).



RQA: Why Does Recursion Boost Approximation?
=R

Pos € SP[o, wi](t,)

O D0 - @

173 151 [N ‘\‘Q,r\ e SPIwr , Ll(%) o
. -~ 8

ZRotRit ot Rey é T2 RSFIL, dictR)
@ One of the discovered approximate od—paths has all its ball
centers at

@ Optimal improve approximation guarantee:

VB>1, ¥Ae (0,1), A-OPT + (1 —2A)-B-OPT <B-OPT

© Quality of approximation guarantee of FCA (per ball) for
remaining to the destination depends on
(distance from the closest landmark to the ball center).

@ A constant number of recursion depth R suffices to assure
guarantee close to | +e.



RQA: Performance

THEOREM: Complexity of RQA

For sparse networks (i.e., having u= |A//|V| € O(1)), the
complexity of RQA with recursion budget R for obtaining

(1 + o)—approximate distances (for any constant o >¢) to arbitrary
(o,d,t5) queries, is:

E [2roa] < O( () -in (1)).
[QRQA € O((]n(n )R+' . []nln(n)-i-ln (;)D} =1 O(%) ,




TD Distance Oracle: Recap

n?log(n)
O((K* + l)n2U) O( -loglog(Kmax) O(loglog(K*))
(K* + 1)TDP
log(n)-
O(n+m+K) o(1) O( 109 10(Kue) )
pnZlog(n) R |
o(an(K* n I)U) Of -loglog(Kmax) o( (E) log (5
«(K* + 1)TDP - log log(Kmax)
()(nz—a) ()(nz—a) ()(n(r+1)-a)
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TD Distance Oracle: Towards Implementation...
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