Time Dependent Shortest Path
Why **Time-Dependent** Shortest Paths?

Real-life networks: Elements demonstrate *temporal behavior.*
Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior.

- Graph elements added/removed in real-time. /* Dynamic Shortest Path */
- Metric demonstrates stochastic behavior. /* Stochastic Shortest Path */
- Graph is fixed, metric changes with the value of a parameter $\gamma \in [0, 1]$ in a predetermined fashion. /* Parametric Shortest Path */
- Graph is fixed, metric changes over time in a predetermined fashion. /* Time-Dependent Shortest Path */
Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior.

- Graph is **fixed**, metric **changes over time** in a predetermined fashion.

 /* Time-Dependent Shortest Path */
Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior.

- Graph is \textit{fixed}, metric \textit{changes over time} in a \textit{predetermined} fashion.

 - Arrows are allowed to become \textit{occasionally unavailable} (e.g., due to periodic maintenance, saving consumption of resources, etc), for predetermined \textit{unavailability time-intervals} (discrete domain).

 - Arc lengths (e.g., traversal-time / consumption) \textit{change with departure-time from tail} which is treated as a \textit{real-valued} variable (functions with continuous domain, but not necessarily continuous range).
Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior.

- Graph is fixed, metric changes with the value of a parameter $\gamma \in [0, 1]$ in a predetermined fashion. /* Parametric Shortest Path */
- Graph is fixed, metric changes over time in a predetermined fashion. /* Time-Dependent Shortest Path */

- Arc lengths (e.g., traversal-time / consumption) change with departure-time from tail which is treated as a real-valued variable (functions with continuous domain, but not necessarily continuous range).
Why Time-Dependent Shortest Paths?

Real-life networks: Elements demonstrate temporal behavior.

- Graph is fixed, metric changes over time in a predetermined fashion.

 Arc lengths (e.g., traversal-time / consumption) change with departure-time from tail which is treated as a real-valued variable (functions with continuous domain, but not necessarily continuous range).
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?
Q1 How would you commute **as fast as possible** from o to d, for a given departure time (from o)? Eg: $t_o = 0$
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)? Eg: $t_o = 1$
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time?
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time?
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time?
Q1 How would you commute as fast as possible from o to d, for a given departure time (from o)?

Q2 What if you are not sure about the departure time?

A shortest od–path =

\[
\begin{align*}
\text{orange path, if } & t_o \in [0, 0.03] \\
\text{yellow path, if } & t_o \in [0.03, 2.9] \\
\text{purple path, if } & t_o \in [2.9, +\infty)
\end{align*}
\]
Instance with ARC-ARRIVAL functions

\[\text{Q1} \] Would waiting-at-nodes be worth it?

\[\text{Arr}\{\text{oud}\}(t_o) = \text{Arr}\{\text{ud}\}(\text{Arr}\{\text{vu}\}(\text{Arr}\{\text{ov}\}(t_o))) = 4t_o + 8 \]
\[\text{Arr}\{\text{oud}\}(t_o) = \text{Arr}\{\text{ud}\}(\text{Arr}\{\text{ou}\}(t_o)) = 6t_o + 2.2 \]
\[\text{Arr}\{\text{oud}\}(t_o) = \text{Arr}\{\text{ud}\}(\text{Arr}\{\text{vu}\}(\text{Arr}\{\text{ov}\}(t_o))) = 36t_o + 1.3 \]
Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are *non-decreasing* functions of departure-time from origin.
Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?
TDSP :: EXAMPLE 2 (Waiting Times)

Q1 Would waiting-at-nodes be worth it?
A1 NO, since arrival-time functions are non-decreasing functions of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?
A2 YES, wait until time \(t_o = 1 \) and then traverse \(od \), if already present at \(o \) at time \(t_o < 1 \). Otherwise, traverse \(od \) immediately.
Waiting Policies

Unrestricted Waiting (UW) Unlimited waiting is allowed at every node along an od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the origin node of each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of each od-path.

Depending on the waiting policy, the scheduler has to decide not only for an optimal connecting path (that assures the earliest arrival at the destination), but also for the appropriate optimal waiting times at the nodes along this path.
Q3 What if waiting-at-nodes is forbidden?
What if waiting-at-nodes is forbidden?

An infinite, non-simple TD shortest od-path with finite delay.

Q3

A3
Q3 What if waiting-at-nodes is forbidden?
A3 An infinite, non-simple TD shortest od-path with finite delay.

\[
\begin{array}{c|c|c|c|c}
\delta & u & o & & d \\
\hline
0 & \frac{1+\delta}{2} & \frac{1}{2} + \frac{1+\delta}{4} & & 3 - \frac{1}{2} - \frac{1+\delta}{4} > 2
\end{array}
\]
Instance with **ARC DELAY** functions

(1-x)/2, 0 ≤ x < 1
1, x ≥ 1

(1-x)/2, 0 ≤ x < 1
1, x ≥ 1

3 – 2x, 0 ≤ x < 1
1, x ≥ 1

0 < t_o = δ < 1

Instance with **ARC ARRIVAL** functions

(1+x)/2, 0 ≤ x < 1
x+1, x ≥ 1

(1+x)/2, 0 ≤ x < 1
x+1, x ≥ 1

3 – x, 0 ≤ x < 1
x+1, x ≥ 1

0 < t_o = δ < 1

Q3 What if *waiting-at-nodes* is *forbidden*?

A3 An infinite, non-simple **TD** shortest *od*-path with finite delay.

<table>
<thead>
<tr>
<th></th>
<th>o</th>
<th>u</th>
<th>o</th>
<th>u</th>
<th>o</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>1+δ</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>1+δ</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2+1/4+1/8</td>
<td>1/2+1/4</td>
<td>1/2+1/4+1/8+1/16</td>
<td>3 – 1/2 – 1/4 – 1/8 – 1/16 > 2</td>
<td></td>
</tr>
</tbody>
</table>
What if waiting-at-nodes is forbidden? An infinite, non-simple TD shortest od-path with finite delay.

<table>
<thead>
<tr>
<th>o</th>
<th>u</th>
<th>o</th>
<th><u, o, ..., o, u, o></th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>(\frac{1+\delta}{2})</td>
<td>(\frac{1}{2} + \frac{1+\delta}{4})</td>
<td>(\uparrow \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k = 1)</td>
<td>(t_d \downarrow 2)</td>
</tr>
</tbody>
</table>

Subpath optimality and shortest path simplicity not guaranteed for TDSP, if waiting-at-nodes is forbidden.
Do optimal waiting times at nodes always exist?

Unfortunately not! Example:

\[
D[t] = \begin{cases}
100, & t \leq 10 \\
1, & t > 10
\end{cases}
\]

\Rightarrow \text{Arr}[t] = \begin{cases}
100 + t, & t \leq 10 \\
1 + t, & t > 10
\end{cases}

But this is due to the pathological discontinuity of the delay / arrival-time function.

They always exist for continuous delay functions, as well as for (possibly discontinuous) piecewise-linear (pwl) functions for which:

\[
\lim_{t \downarrow t_0} D[t] < \lim_{t \uparrow t_0} D[t] \Rightarrow D[t_0] = \lim_{t \downarrow t_0} D[t]
\]

From now on we assume that optimal waiting times at nodes exist (and are polynomial-time computable).
Inexistence of Optimal Waiting Times

- Do optimal waiting times at nodes always exist?
- Unfortunately NOT! EXAMPLE:

 \[
 D[od](t) = \begin{cases}
 100, & t \leq 10, \\
 1, & t > 10
 \end{cases}
 \]

 \[\Rightarrow Arr[od](t) = \begin{cases}
 t + 100, & t \leq 10, \\
 t + 1, & t > 10
 \end{cases}\]

But this is due to the pathological discontinuity of the delay/arrival-time function.

They always exist for continuous delay functions, as well as for (possibly discontinuous) pwl functions for which:

\[
\lim_{t \downarrow t_u} D[uv](t) < \lim_{t \uparrow t_u} D[uv](t) \Rightarrow D[uv](t) = \lim_{t \downarrow t_u} D[uv](t)
\]

From now on we assume that optimal waiting times at nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]
Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

\[D[od](t) = \begin{cases}
100, & t \leq 10, \\
1, & t > 10
\end{cases} \]

\[\Rightarrow Arr[od](t) = \begin{cases}
 t + 100, & t \leq 10, \\
 t + 1, & t > 10
\end{cases} \]

But this is due to the pathological discontinuity of the delay / arrival-time function.
Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

\[
D[od](t) = \begin{cases}
100, & t \leq 10, \\
1, & t > 10
\end{cases}
\]

\[
Arr[od](t) = \begin{cases}
 t + 100, & t \leq 10, \\
 t + 1, & t > 10
\end{cases}
\]

But this is due to the pathological discontinuity of the delay / arrival-time function.

They always exist for continuous delay functions, as well as for (possibly discontinuous) \textit{pwl} functions for which:

\[
\lim_{t \downarrow t_u} D[uv](t) < \lim_{t \uparrow t_u} D[uv](t) \Rightarrow D[uv](t_u) = \lim_{t \downarrow t_u} D[uv](t)
\]
Inexistence of Optimal Waiting Times

- Do optimal waiting times at nodes always exist?
- Unfortunately NOT! EXAMPLE:

 \[
 D[od](t) = \begin{cases}
 100, & t \leq 10, \\
 1, & t > 10
 \end{cases}
 \]

 \[
 \Rightarrow Arr[od](t) = \begin{cases}
 t + 100, & t \leq 10, \\
 t + 1, & t > 10
 \end{cases}
 \]

- But this is due to the pathological discontinuity of the delay / arrival-time function.

- They always exist for continuous delay functions, as well as for (possibly discontinuous) \textit{pwl} functions for which:

 \[
 \lim_{t \downarrow t_u} D[uv](t) < \lim_{t \uparrow t_u} D[uv](t) \Rightarrow D[uv](t_u) = \lim_{t \downarrow t_u} D[uv](t)
 \]

From now on we assume that optimal waiting times at nodes \textbf{exist} (and are polynomial-time computable).
(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at least equal to (greater than) -1.

Equivalently: Arc-arrival functions are non-decreasing (aka no-overtaking property).
(Strict) FIFO Arc-Delays: The slopes of all the arc-delay functions are at least equal to (greater than) \(-1\).

Equivalently: Arc-arrival functions are non-decreasing (aka no-overtaking property).

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the tail of an arc, before trespassing it. E.g.:

- Wait for the next (*faster*) IC train, than use the (immediately available) (*slower*) local train.
FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the *arc-delay* functions are at least equal to (greater than) -1.

Equivalently: *Arc-arrival* functions are non-decreasing (aka *no-overtaking* property).

Non-FIFO Arc-Delays: Possibly preferrable to wait for some period at the tail of an arc, before trespassing it. E.g.:

- Wait for the next *(faster) IC train*, than use the *(immediately available) (slower) local train*.

![Diagram](attachment:image.png)
FIFO vs non-FIFO Arc Delays

- **(Strict) FIFO Arc-Delays:** The slopes of all the arc-delay functions are at least equal to (greater than) \(-1\).

 Equivalently: *Arc-arrival* functions are non-decreasing (aka *no-overtaking* property).

- **Non-FIFO Arc-Delays:** Possibly preferrable to wait for some period at the tail of an arc, before trespassing it. E.g.:

 - Wait for the next *(faster) IC train*, than use the (immediately available) *(slower) local train*.

\[
D_{[uv]}(t_u) = \text{Arr}_{[uv]}(t_u) = t_u + D_{[uv]}(t_u) \quad \text{or} \quad D_{[uv]}(t_v) = \text{Arr}_{[uv]}(t_v) = t_v + D_{[uv]}(t_v)
\]

\[
2x - 5 \quad \text{for FIFO arc delay example}
\]

\[
(-8/13)x + 173/13 \quad \text{for FIFO arc delay example}
\]

\[
(4/5)x + 1 \quad \text{for Non-FIFO arc delay example}
\]

\[
-2x + 33 \quad \text{for Non-FIFO arc delay example}
\]
Non-FIFO+UW Network ⇔ FIFO Network

Non-FIFO+UW arc delay function

Equivalent FIFO (+FW) arc delay function
Non-FIFO+UW Network ⇔ FIFO Network

Non-FIFO+UW arc delay function

- A “scan” of the line with slope -1 from right to left suffices.

Equivalent FIFO (+FW) arc delay function
Non-FIFO+UW arc delay function

- A “scan” of the line with slope -1 from right to left suffices.
 - **Shortcircuit** pieces of the arc-delay function lying above the line of slope -1.

Equivalent FIFO (+FW) arc delay function
Non-FIFO+UW Network ⇔ FIFO Network

Non-FIFO+UW arc delay function

- A “scan” of the line with slope -1 from right to left suffices.
 - **Shortcircuit** pieces of the arc-delay function lying above the line of slope -1.

- **Identical arrival-times** in Non-FIFO+UW and FIFO instances.

Equivalent FIFO (+FW) arc delay function
Non-FIFO+UW Network ⇔ FIFO Network

Non-FIFO+UW arc delay function

- A “scan” of the line with slope \(-1\) from right to left suffices.
 - **Shortcircuit** pieces of the arc-delay function lying above the line of slope \(-1\).

- **Identical arrival-times** in Non-FIFO+UW and FIFO instances.

- Need to consider **latest departures** given the arrival times, in order to compute the optimal waiting times in the original Non-FIFO+UW instance.
Non-FIFO+UW Network ⇔ FIFO Network

A “scan” of the line with slope -1 from right to left suffices.

- **Shortcircuit** pieces of the arc-delay function lying above the line of slope -1.

- Identical arrival-times in Non-FIFO+UW and FIFO instances.

- Need to consider latest departures given the arrival times, in order to compute the optimal waiting times in the original Non-FIFO+UW instance.

interested in programming the transformation? Let me know!
DEFINITION: Time-Dependent Shortest Paths

INPUT:
- Directed graph $G = (V, A)$ with succinctly represented arc-travel-time functions $(D[\alpha])_{\alpha \in A}$. $(Arr[\alpha] = ID + D[\alpha])_{\alpha \in A}$.
Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

- Directed graph $G = (V, A)$ with succinctly represented arc-travel-time functions $(D[\alpha])_{\alpha \in A}$. $(Arr[\alpha] = ID + D[\alpha])_{\alpha \in A}$.

DEFINITIONS:

- Path arrival / travel-time functions: $\forall p = (\alpha_1, \ldots, \alpha_k) \in P_{o,d}$, $Arr[p] = Arr[\alpha_k] \circ \cdots \circ Arr[\alpha_1]$ (composition of the involved arc-arrivals). $D[p] = Arr[p] - ID$.

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:
- **Directed graph** \(G = (V, A) \) with succinctly represented arc-travel-time functions \((D[\alpha])_{\alpha \in A} \).
 \((\text{Arr}[\alpha] = \text{ID} + D[\alpha])_{\alpha \in A} \).

DEFINITIONS:
- **Path arrival / travel-time** functions:
 \(\forall p = (\alpha_1, \ldots, \alpha_k) \in P_{o,d}, \text{Arr}[p] = \text{Arr}[\alpha_k] \circ \cdots \circ \text{Arr}[\alpha_1] \) (composition of the involved arc-arrivals). \(D[p] = \text{Arr}[p] − \text{ID} \).

- **Earliest-arrival / Shortest-travel-time** functions:
 \(\text{Arr}[o,d] = \min_{p \in P_{o,d}} \{ \text{Arr}[p] \} \), \(D[o,d] = \text{Arr}[o,d] − \text{ID} \).

GOAL1: For departure-time \(t_o \) from \(o \), determine \(t_d = \text{Arr}[o,d](t_o) \).

GOAL2: Provide a succinct representation of \(\text{Arr}[o,d] \) (or \(D[o,d] \)).
Why Care for Both Goals?

1. Not always sure **when to depart** (still think about it)!
Possessing the entire *distance function* $D[o,d]$ allows for easy answers (e.g., via look-ups) in several queries for varying departure times, or even finding the *minimum travel / earliest-arrival time* within a window of possible departure times.
Why Care for Both Goals?

1. Not always sure **when to depart** (still think about it)! Possessing the entire *distance function* $D[o,d]$ allows for easy answers (e.g., via look-ups) in several queries for varying departure times, or even finding the *minimum travel / earliest-arrival time* within a window of possible departure times.

2. Need to respond **efficiently** (in theory: *sublinear time*, in practice: *micro/miliseconds*) to arbitrary queries in *large-scale nets*, for any departure time and od–pair.
Why Care for Both Goals?

1. Not always sure *when to depart* (still think about it)! Possessing the entire *distance function* $D[o,d]$ allows for easy answers (e.g., via look-ups) in several queries for varying departure times, or even finding the *minimum travel / earliest-arrival time* within a window of possible departure times.

2. Need to respond **efficiently** (in theory: sublinear time, in practice: micro/miliseconds) to arbitrary queries in *large-scale nets*, for any departure time and od–pair.

Preprocess (offline) towards GOAL2 (succinct representations of *selected* $D[o,d]$ functions) in order to support *real-time* responses to *queries* of GOAL1.
Why Care for Both Goals?

1. Not always sure **when to depart** (still think about it)! Possessing the entire *distance function* $D[o,d]$ allows for easy answers (e.g., via look-ups) in several queries for varying departure times, or even finding the *minimum travel / earliest-arrival time* within a window of possible departure times.

2. Need to respond **efficiently** (in theory: *sublinear time*, in practice: *micro/miliseconds*) to arbitrary queries in *large-scale nets*, for any departure time and od–pair.

 - **Preprocess** (offline) towards **GOAL2** (succinct representations of *selected* $D[o,d]$ functions) in order to support *real-time* responses to *queries* of **GOAL1**.

 - **Preprocessing** of distance summaries (as in static case) requires to precompute functions instead of scalars.
Consequences of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in **Non-FIFO+UW** networks (given that optimal waiting times *exist*). The same applies for the **FIFO** networks.

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise continuous with negative discontinuities, then the solution (path+waiting policy) in non-FIFO+UW network induces a solution in non-FIFO+OW network using the same path and appropriate waiting time only at the origin.

[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general) subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, $Arr[O, d]$ is non-decreasing (increasing).

\[^1\text{This means that: } \forall t_u, \lim_{t \uparrow t_u} D[uv](t) \geq \lim_{t \downarrow t_u} D[uv](t)\]
Consequences of Different Network Models

- [Dreyfus (1969)] Prefix-subpath optimality holds in **Non-FIFO+UW** networks (given that optimal waiting times **exist**). The same applies for the **FIFO** networks.

- [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in **non-FIFO+FW** networks (cf. EXAMPLE of Slide 7).

1 This means that: \(\forall t_u, \lim_{t \uparrow t_u} D[uv](t) \geq \lim_{t \downarrow t_u} D[uv](t) \)
[Dreyfus (1969)] Prefix-subpath optimality holds in Non-FIFO+UW networks (given that optimal waiting times exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise continuous with negative discontinuities\(^1\), then the solution (path+waiting policy) in non-FIFO+UW network induces a solution in non-FIFO+OW network using the same path and appropriate waiting time only at the origin.

\(^1\)This means that: \(\forall t_u, \lim_{t \uparrow t_u} D[uv](t) \geq \lim_{t \downarrow t_u} D[uv](t) \)
Consequences of Different Network Models

- **[Dreyfus (1969)]** Prefix-subpath optimality holds in **Non-FIFO+UW** networks (given that optimal waiting times exist). The same applies for the **FIFO** networks.

- **[Orda-Rom (1990)]** Prefix-subpath optimality does NOT hold in **non-FIFO+FW** networks (cf. EXAMPLE of Slide 7).

- **[Orda-Rom (1990)]** If arc-delay functions are **continuous**, or **piecewise continuous with negative discontinuities**\(^1\), then the solution (path+waiting policy) in non-FIFO+UW network induces a solution in **non-FIFO+OW** network using the **same path** and appropriate waiting time only at the origin.

- **[Kontogiannis-Zaroliagis (2013)]** In **strict-FIFO** networks, (general) subpath optimality holds also in the time-dependent case.

\(^1\) This means that: \(\forall t_u, \lim_{t \uparrow t_u} D[uv](t) \geq \lim_{t \downarrow t_u} D[uv](t) \)
Consequences of Different Network Models

- [Dreyfus (1969)] Prefix-subpath optimality holds in **Non-FIFO+UW** networks (given that optimal waiting times exist). The same applies for the **FIFO** networks.

- [Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in **non-FIFO+FW** networks (cf. EXAMPLE of Slide 7).

- [Orda-Rom (1990)] If arc-delay functions are continuous, or piecewise continuous with negative discontinuities⁠¹, then the solution (path+waiting policy) in non-FIFO+UW network induces a solution in **non-FIFO+OW** network using the same path and appropriate waiting time only at the origin.

- [Kontogiannis-Zaroliagis (2013)] In **strict-FIFO** networks, (general) subpath optimality holds also in the time-dependent case.

- [Foschini-Hershberger-Suri (2011)] In (strict) **FIFO** networks, \(\text{Arr}[o,d] \) is non-decreasing (increasing).

¹ This means that: \(\forall t_u, \lim_{t \uparrow t_u} D[uv](t) \geq \lim_{t \downarrow t_u} D[uv](t) \)
Algorithms for TDSP

- For arbitrary \((o, d, t_o)\) queries (\textbf{GOAL1}):

 - TD variants of Dijkstra and Bellman-Ford algorithms work correctly in FIFO networks, and in non-FIFO+UW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated).

 - TD variants of Dijkstra and Bellman-Ford algorithms do NOT work correctly in non-FIFO+FW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated). Determining existence of a finite-hop solution is \(\text{NP-hard}\).

- For arbitrary \((o, d, t_o)\) queries (\textbf{GOAL2}):

 - \([\text{Orda-Rom (1990)}]\) Propose a TD-variant of Bellman-Ford, for non-FIFO+UW networks. Complexity is polynomial on number of "elementary" functional operations (EVAL, LINEAR COMBINATION, MIN, COMPOSITION).

 Not so "elementary" operations after all (see next slides)!!!
Algorithms for TDSP

- For arbitrary \((o, d, t_o)\) queries (GOAL1):
 - TD variants of Dijkstra and Bellman-Ford algorithms work correctly in FIFO networks, and in non-FIFO+UW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated).
 - TD variants of Dijkstra and Bellman-Ford algorithms do NOT work correctly in non-FIFO+FW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated). Determining existence of a finite-hop solution is \(\mathcal{NP}\)-hard.

- [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW networks. Complexity is polynomial on number of "elementary" functional operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION) Not so "elementary" operations after all (see next slides)!!!

S. Kontogiannis: TDSP Basics [14 / 69]
Algorithms for TDSP

- For arbitrary (o, d, t_o) queries (GOAL1):
 - TD variants of Dijkstra and Bellman-Ford algorithms work correctly in FIFO networks, and in non-FIFO+UW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated).
 - TD variants of Dijkstra and Bellman-Ford algorithms do NOT work correctly in non-FIFO+FW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated). Determining existence of a finite-hop solution is NP–hard.

- For arbitrary (o, d) queries (GOAL2):
 - [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW networks.
For arbitrary \((o, d, t_o)\) queries (GOAL1):

- TD variants of Dijkstra and Bellman-Ford algorithms work correctly in FIFO networks, and in non-FIFO+UW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated).

- TD variants of Dijkstra and Bellman-Ford algorithms do NOT work correctly in non-FIFO+FW networks. Time complexity slightly worse (when updating arc labels, some arc-delay functions are evaluated). Determining existence of a finite-hop solution is \(\mathcal{NP}\)–hard.

For arbitrary \((o, d)\) queries (GOAL2):

- [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for non-FIFO+UW networks.

 Complexity is polynomial on number of “elementary” functional operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

 Not so “elementary” operations after all (see next slides)!!!
Algorithms for TDSP
in FIFO, Continuous, Pwl Instances
Input/Output Data
PWL Arc Delays

Forward Description (as function of departure times from origin)

Reverse Description (as function of arrival times at destination)
PWL Arc Delays

Forward Description (as function of departure times from origin)

Reverse Description (as function of arrival times at destination)
How to Store/Access PWL Arc Delays

- Exploit *periodicity* and *piecewise-linearity*:

\[
\forall t_u \in \mathbb{R}, \quad \overrightarrow{D}[uv](t_u) = \begin{cases}
4/3 t_u + 1, & 0 \leq t_u \mod T \leq 3 \\
5, & 3 \leq t_u \mod T \leq 5 \\
2t_u - 5, & 5 \leq t_u \mod T \leq 7 \\
-8/13 t_u + 173/13, & 7 \leq t_u \mod T \leq 20 \\
1, & 20 \leq t_u \mod T \leq 24
\end{cases}
\]

- Representation: Array of *(slope-constant)* triples equipped with advanced (eg, binary / predecessor) *search capabilities*.

\[
\left(\frac{4}{3}, 1, 3\right) \quad (0, 5, 5) \quad (2, -5, 7) \quad \left(-\frac{8}{13}, \frac{173}{13}, 20\right) \quad (0, 1, 24)
\]
How to Store/Access PWL Arc Delays

- Exploit \textit{periodicity} and \textit{piecewise-linearity}:

\[\forall t_u \in \mathbb{R}, \quad \mathbf{D}[uv](t_u) = \begin{cases}
\frac{4}{3}t_u + 1, & 0 \leq t_u \mod T \leq 3 \\
5, & 3 \leq t_u \mod T \leq 5 \\
2t_u - 5, & 5 \leq t_u \mod T \leq 7 \\
-\frac{8}{13}t_u + \frac{173}{13}, & 7 \leq t_u \mod T \leq 20 \\
1, & 20 \leq t_u \mod T \leq 24
\end{cases} \]

- Representation: Array of \textit{(dep.time - delay) pairs} equipped with advanced (eg, binary / predecessor) \textit{search capabilities}.

\begin{align*}
(0, 1) & \quad (3, 5) & \quad (5, 5) & \quad (7, 9) & \quad (20, 1)
\end{align*}
Primitive Breakpoint (PB): Departure-time b'_e from $\text{head}[e]$ at which $D[e]$ changes slope (assume $K \in O(m)$ PBs in total).
Primitive Breakpoint (PB): Departure-time b'_e from $\text{head}[e]$ at which $D[e]$ changes slope (assume $K \in O(m)$ PBs in total).

Primitive Image (PI): Latest departure-time b_e from origin o s.t. earliest-arrival-time $b'_e = \text{Arr}[o, \text{tail}(e)](b_e)$ coincides with a breakpoint for $D[e]$.
Primitive Breakpoint (PB): Departure-time b'_e from head $[e]$ at which $D[e]$ changes slope (assume $K \in O(m)$ PBs in total).

Primitive Image (PI): Latest departure-time b_e from origin o s.t. earliest-arrival-time $b'_e = Arr[o, \text{tail}(e)](b_e)$ coincides with a breakpoint for $D[e]$.

Minimization Breakpoint (MB): Departure-time b_v from origin o s.t. $Arr[o, v]$ changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function $Arr[o, d]$.

S. Kontogiannis: TDSP Basics [19 / 69]
Primitive Breakpoint (PB): Departure-time b'_e from head[e] at which $D[e]$ changes slope (assume $K \in O(m)$ PBs in total).

Primitive Image (PI): Latest departure-time b_e from origin o s.t. earliest-arrival-time $b'_e = Arr[o, tail(e)](b_e)$ coincides with a breakpoint for $D[e]$.

Minimization Breakpoint (MB): Departure-time b_v from origin o s.t. $Arr[o, v]$ changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival function $Arr[o, d]$.
Known Issues wrt Representations

😊 Same representation both for arc-arrival (or delay) functions and earliest-arrival (or shortest-travel-time) functions.

- Convenient for handling artificial arcs (representing shortest-travel-time functions) in *overlay abstractions* of the road network.
Known Issues wrt Representations

😊 **Same representation** both for arc-arrival (or delay) functions and earliest-arrival (or shortest-travel-time) functions.

- Convenient for handling artificial arcs (representing shortest-travel-time functions) in *overlay abstractions* of the road network.

😊 Too many (worst case: $n^{\Theta(\log(n))}$) breakpoints to store $\text{Arr}[o,d]$ (or $D[o,d]$), even for *linear* arc-delays and *planar* graphs.
Known Issues wrt Representations

😊 Same representation both for arc-arrival (or delay) functions and earliest-arrival (or shortest-travel-time) functions.

- Convenient for handling artificial arcs (representing shortest-travel-time functions) in overlay abstractions of the road network.

😊 Too many (worst case: $n^{\Theta(\log(n))}$) breakpoints to store $Arr[o,d]$ (or $D[o,d]$), even for linear arc-delays and planar graphs.

😊 We need only $O\left(\frac{1}{\varepsilon} \cdot \log \left(\frac{D_{\max}[o,d]}{D_{\min}[o,d]}\right)\right)$ breakpoints for a $(1 + \varepsilon)$ upper approximation $\bar{D}[o,d]$ of $D[o,d]$, for the case of linear arc-delays.
Complexity of TDSP
Lower Bound: \(|BP(\text{Arr}_{\text{pwl}}[o,d])| = n^{\Omega(\log n)} \) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of \textbf{monotone, pwl} functions \(f \) and \(g \), both their composition \(f \circ g \) and their minimum \(\min\{f,g\} \) are \textbf{monotone, pwl} functions as well.
Lower Bound: \(|BP(\text{Arr}_{\text{pwl}}[o,d])| = n^{\Omega(\log n)} \) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of monotone, \(\text{pwl} \) functions \(f \) and \(g \), both their composition \(f \circ g \) and their minimum \(\min\{f, g\} \) are monotone, \(\text{pwl} \) functions as well.

Parametric Shortest Path (PSP): A Similar Problem

- **INPUT:** \(G = (V, A), \ o, d \in V \). A \textit{linear length function}
 \(l[\alpha](\gamma) = \lambda[\alpha] \cdot \gamma + \mu[\alpha] \) per edge \(\alpha \in A \) (negative lengths are allowed).

- **DEFINITIONS:**
 - **Path-length:** \(\forall p \in G, L[p](\gamma) = \sum_{\alpha \in p} l[\alpha](\gamma) \).
 - **Min-length:** \(\forall x, y \in V, L[x,y](\gamma) = \min_{p \in P_{xy}} \{L[p](\gamma)\} \).

- **GOAL1:** Compute \(L[o,d] \) for a \textit{given value} of \(\gamma \).
- **GOAL2:** Compute \(L[o,d] \) for \textit{all (real) values} of \(\gamma \).
TDSP vs PSP?

Instance with ARC DELAY functions

TDSP: Delay composition along paths
PSP: Delay addition along paths

S. Kontogiannis: TDSP Basics [23 / 69]
TDSP vs **PSP**?

TDSP: Delay *composition* along paths

PSP: Delay *addition* along paths
Lower Bound: \(|BP(Arr_{pwl}[o, d])| = n^{\Omega(\log n)} (\text{II})\)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with \(n^{\Omega(\log n)}\) BPs in \(L[o, d]\).
Lower Bound: \(|BP(Arr_{pwl}[o,d])| = n^{\Omega(\log n)} \) (II)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with \(n^{\Omega(\log n)} \) BPs in \(L[o,d] \).

Main Steps for TDSP Lower Bound:

1. Assure *non-negativity of lengths* in the PSP instance, in the departure-time interval of interest.

2. Scale properly the PSP instance.

3. Consider the corresponding TDSP instance, with parameter \(\gamma \) handled as time.

4. Prove that \(L[o,d] \) (for PSP instance) and \(D[o,d] \) (for TDSP instance) have (almost) the same number of BPs.
Construct a **layered-graph**, in a **path-length-preserving** manner:
Lower Bound: \(|BP(Arr_{pwl}[o,d])| = n^{\Omega(\log n)} (III)\)

1. Construct a **layered-graph**, in a **path-length-preserving** manner:

Assure non-negativity of arc-lengths in PSP: For the sequence \(\langle \gamma_1, \gamma_2, \ldots, \gamma_N \rangle\) of **breakpoints** (BPs) wrt \(L[o,d]\), shift arc lengths by \(\max\{0, -L_{\text{min}}\}\), \(\begin{equation} L_{\text{min}} = \min_{\gamma \in [\gamma_1, \gamma_N], \alpha \in A(G)} \{L[\alpha](\gamma)\} \end{equation} \).
Construct a **layered-graph**, in a **path-length-preserving** manner:

1. Assure non-negativity of arc-lengths in PSP: For the sequence \(\langle \gamma_1, \gamma_2, \ldots, \gamma_N \rangle \) of **breakpoints** (BPs) wrt \(L[o, d] \), shift arc lengths by \(\max\{0, -L_{\min}\} \), \(L_{\min} = \min_{\gamma \in [\gamma_1, \gamma_N], \alpha \in \mathcal{A}(G)} \{L[\alpha](\gamma)\} \).

2. Scale arc-lengths in PSP by a proper positive constant \(\mu \).
Construct a **layered-graph**, in a path-length-preserving manner:

Assure non-negativity of arc-lengths in PSP: For the sequence \(\langle \gamma_1, \gamma_2, \ldots, \gamma_N \rangle\) of breakpoints (BPs) wrt \(L[o,d]\), shift arc lengths by \(\max\{0, -L_{\min}\}\), \(L_{\min} = \min_{\gamma \in [\gamma_1, \gamma_N], \alpha \in A(G)} \{L[\alpha](\gamma)\}\).

Scale arc-lengths in PSP by a proper positive constant \(\mu\).

For the TDSP resulting from the scaled PSP when considering \(\gamma\) as departure time, prove that \(\forall j \in \{1, \ldots, N - 1\}\), at “time” \(\tilde{\gamma}_j \equiv \frac{\gamma_j + \gamma_{j+1}}{2}\) both instances return **the same** shortest \(od\)-path \(p_j\).
Lower Bound: \[|BP(Arr_{pwl}[o,d])| = n^{\Omega(\log n)} \] (IV)

How it works: At given \(j \in \{1, \ldots, N - 1\} \):

- \(\bar{\gamma}_j = \frac{\gamma_j + \gamma_{j+1}}{2} \), \(\bar{L}_j = L[p_j](\bar{\gamma}_j) = L[o,d](\bar{\gamma}_j) \).

- \(L'_j = \min_{q \in P_{s,d} - \{p_j\}} \{L[q](\bar{\gamma}_j), \Delta_j = L'_j - \bar{L}_j > 0 \} \).

\[
\begin{array}{c|c|c}
\Delta_{\min} &= \min_{j \in [N-1]} \Delta_j & \varepsilon^* = \frac{\Delta_{\min}}{2n} \\
\delta^* &= \min_{\alpha \in A : \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}
\end{array}
\]
Lower Bound: \(|BP(\text{Arr}_{\text{pwl}}[o,d])| = n^{\Omega(\log n)}\) (IV)

How it works: At given \(j \in \{1, \ldots, N-1\}\):

- \(\bar{\gamma}_j = \frac{\gamma_j + \gamma_{j+1}}{2}, \ \bar{L}_j = L[p_j](\bar{\gamma}_j) = L[o,d](\bar{\gamma}_j)\).
- \(L'_j = \min_{q \in P_{s,d} - \{p_j\}} \{L[q](\bar{\gamma}_j), \ \Delta_j = L'_j - \bar{L}_j > 0\}.

- \(|\Delta_{\min} = \min_{j \in [N-1]} \Delta_j, \ \epsilon^* = \frac{\Delta_{\min}}{2n}, \ \delta^* = \min_{A: \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}\)

- **Arc-delay perturbations:** Small-enough so as not to affect optimality of \(p_j\) in PSP instance: \(\forall \epsilon_{\alpha} \in (0, \epsilon^*],\)

\[
\sum_{\alpha \in p_j} l[\alpha](\bar{\gamma}_j + \epsilon_{\alpha}) \leq \bar{L}_j + \frac{\Delta_j}{2} < \frac{\bar{L}_j + L'_j}{2} < L'_j \leq \sum_{\alpha \in q} l[\alpha](\bar{\gamma}_j), \ \forall q \neq p_j
\]
Lower Bound: \(|BP(\text{Arr}_{\text{pw}l}[o,d])| = n^{\Omega(\log n)} \) (IV)

How it works: At given \(j \in \{1, \ldots, N - 1\}\):

- \(\tilde{\gamma}_j = \frac{\gamma_j + \gamma_{j+1}}{2}, \quad \tilde{L}_j = L[p_j](\tilde{\gamma}_j) = L[o,d](\tilde{\gamma}_j)\).
- \(L'_j = \min_{q \in P_{s,d} - \{p_j\}} \{L[q](\tilde{\gamma}_j), \quad \Delta_j = L'_j - \tilde{L}_j > 0\} \)

\[
\Delta_{\min} = \min_{j \in [N-1]} \Delta_j \quad \varepsilon^* = \frac{\Delta_{\min}}{2n} \quad \delta^* = \min_{\alpha \in A: \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}
\]

- **Arc-delay perturbations**: Small-enough so as not to affect optimality of \(p_j\) in PSP instance: \(\forall \varepsilon_\alpha \in (0, \varepsilon^*], \sum_{\alpha \in p_j} l[\alpha](\tilde{\gamma}_j + \varepsilon_\alpha) \leq \tilde{L}_j + \Delta_j \leq \frac{L_j + L'_j}{2} < L'_j \leq \sum_{\alpha \in q} l[\alpha](\tilde{\gamma}_j), \quad \forall q \neq p_j\)

- **Departure-time perturbations**: Small-enough so as to cause not too large arc-delay perturbations: \(\forall \alpha \in A, \forall \delta_\alpha \in (0, \delta^*], \quad D[\alpha](\tilde{\gamma}_j + \delta_\alpha) = l[\alpha](\tilde{\gamma}_j + \delta_\alpha) \leq l[\alpha](\tilde{\gamma}_j) + \varepsilon^*\)
Lower Bound: \(|BP(Arr_{pwl}[o, d])| = n^{\Omega(\log n)} \) (V)

How it works (continued): At given \(j \in \{1, \ldots, N - 1\} \):

- Scale-invariance of time-perturbations: Scaling of all arc-delays by a positive number \(\mu > 0 \) does not affect at all the range of allowed time-perturbations \(\delta^* = \min_{\alpha \in A : \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\} \).
Lower Bound: $|BP(Arr_{pwl}[o, d])| = n^{\Omega(\log n)}$ (V)

How it works (continued): At given $j \in \{1, \ldots, N - 1\}$:

- **Scale-invariance of time-perturbations:** Scaling of all arc-delays by a positive number $\mu > 0$ does not affect at all the range of allowed time-perturbations $\delta^* = \min_{\alpha \in A : \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}$.

- **TDSP-instance:** Scale the PSP-instance by $\mu = \frac{\delta^*}{2(L_{\max} + \Delta_{\min})}$. Handle the PSP-parameter γ as time.
How it works (continued): At given $j \in \{1, \ldots, N - 1\}$:

- **Scale-invariance of time-perturbations**: Scaling of all arc-delays by a **positive** number $\mu > 0$ does not affect at all the range of allowed time-perturbations $\delta^* = \min_{\alpha \in A : \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}$.

- **TDSP-instance**: Scale the PSP-instance by $\mu = \frac{\delta^*}{2(L_{\max} + \Delta_{\min})}$. Handle the PSP-parameter γ as time.

- **Proper scaling guarantees sufficiently small departure-time perturbations**: $\text{Arr}[p_j](\tilde{\gamma}_j) = \tilde{\gamma}_j + D[p_j](\tilde{\gamma}_j) < \tilde{\gamma}_j + \delta^*$.

Lower Bound: $|BP(\text{Arr}_{\text{pwl}}[o, d])| = n^{\Omega(\log n)}$ (V)
Lower Bound: $|BP(Arr_{pwl}[o,d])| = n^{\Omega(\log n)} \ (V)$

How it works (continued): At given $j \in \{1, \ldots, N-1\}$:

- **Scale-invariance of time-perturbations:** Scaling of all arc-delays by a positive number $\mu > 0$ does not affect at all the range of allowed time-perturbations $\delta^* = \min_{\alpha \in A: \lambda[\alpha] \neq 0} \left\{ \frac{\Delta_{\min}}{2n|\lambda[\alpha]|} \right\}$.

- **TDSP-instance:** Scale the PSP-instance by $\mu = \frac{\delta^*}{2(L_{\max} + \Delta_{\min})}$. Handle the PSP-parameter γ as time.

- **Proper scaling guarantees sufficiently small departure-time perturbations:** $Arr[p_j](\bar{\gamma}_j) = \bar{\gamma}_j + D[p_j](\bar{\gamma}_j) < \bar{\gamma}_j + \delta^*$.

\therefore Small time-perturbations guarantee sufficiently small arc-delay perturbations, and thus, optimality of p_j:

\[
D[p_j](\bar{\gamma}_j) \leq \mu \cdot L_j + \mu \cdot \frac{(n-1)\Delta_{\min}}{2n} < \mu \cdot L'_j - \mu \frac{(n-1)\Delta_{\min}}{2n} \leq D[q](\bar{\gamma}_j), \quad \forall q \neq p_j
\]
Upper Bound: \(|BP(Arr_{pwI}[o,d])| = K \cdot n^{O(\log n)} \) (1)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) \(t_j < t_{j+1} \), \(Arr[o,d] \) forms a concave chain.
Upper Bound: $|BP(Arr_{pwl}[o,d])| = K \cdot n^{O(\log n)}$ (I)

Observation: (L4.1 in FHS11)
Between any two consecutive Primitive Images (PIs) $t_j < t_{j+1}$, $Arr[o,d]$ forms a concave chain.

WHY?
- Any arc-delay is **linear** (no primitive breakpoints occur at edges), if the departure-time domain is restricted to (t_j, t_{j+1}).
- Any path-arrival $Arr[p](t)$ function is a *composition* of linear functions, thus **linear**.
- $Arr[o,d]$ is the application of the *min* operator among linear functions, thus **concave**.
Upper Bound: \[|BP(Arr_{pwl}[o,d])| = K \cdot n^{O(\log n)} \] (I)

Observation: (L4.1 in FHS11)
Between any two consecutive Primitive Images (PIs) \(t_j < t_{j+1} \), \(Arr[o,d] \) forms a concave chain.

WHY?

- Any arc-delay is linear (no primitive breakpoints occur at edges), if the departure-time domain is restricted to \((t_j, t_{j+1}) \).
- Any path-arrival \(Arr[p](t) \) function is a composition of linear functions, thus linear.
- \(Arr[o,d] \) is the application of the min operator among linear functions, thus concave.

Corollary: \[|BP(Arr_{pwl}[o,d])| \leq \# \text{different path slopes} \]
Upper Bound: \(|BP(Arr_{pwl}[o,d])| = K \cdot n^{O(\log n)} \) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) \(t_j < t_{j+1} \), \(Arr[o,d] \) forms a concave chain.

WHY?

- Any arc-delay is **linear** (no primitive breakpoints occur at edges), if the departure-time domain is restricted to \((t_j, t_{j+1}) \).
- Any path-arrival \(Arr[p](t) \) function is a **composition** of linear functions, thus **linear**.
- \(Arr[o,d] \) is the application of the **min** operator among linear functions, thus **concave**.

Corollary: \(|BP(Arr_{pwl}[o,d])| \leq \# \text{different path slopes} \)

- Is this enough?
Upper Bound: \[|BP(\text{Arr}_{\text{pwl}}[o,d])| = K \cdot n^{O(\log n)} \] (1)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) \(t_j < t_{j+1} \), \(\text{Arr}[o,d] \) forms a concave chain.

WHY?

- Any arc-delay is **linear** (no primitive breakpoints occur at edges), if the departure-time domain is restricted to \((t_j, t_{j+1}) \).
- Any path-arrival \(\text{Arr}[p](t) \) function is a **composition** of linear functions, thus **linear**.
- \(\text{Arr}[o,d] \) is the application of the \textit{min} operator among linear functions, thus **concave**.

Corollary: \[|BP(\text{Arr}_{\text{pwl}}[o,d])| \leq \# \text{different path slopes} \]

Is this enough?

\[\text{NO!!!} \]
Upper Bound: \[|BP(Arr_{pw}[o,d])| = K \cdot n^{O(\log n)} \] (II)

OBSERVATION II: (L4.2 in FHS11)

\[|BP(Arr_{pw}[o,d])| \leq K \cdot |BP(Arr_{lin}[o,d])|. \]
Upper Bound: \(|BP(Arr_{pwl}[o, d])| = K \cdot n^{O(\log n)} \) (II)

Observation II: (L4.2 in FHS11)
\[
|BP(Arr_{pwl}[o, d])| \leq K \cdot |BP(Arr_{lin}[o, d])|.
\]

Lemma 4.3 (FHS11)
\[
|BP(Arr_{lin}[o, d])| \leq \frac{(2n+1)^{1+\log c}}{2} \quad \text{in a layered graph with } c \text{ layers of } n \text{ nodes each.}
\]
Upper Bound: \[|BP(\text{Arr}_{\text{pwL}}[o, d])| = K \cdot n^{O(\log n)} \] (II)

Observation II: (L4.2 in FHS11)

\[|BP(\text{Arr}_{\text{pwL}}[o, d])| \leq K \cdot |BP(\text{Arr}_{\text{lin}}[o, d])| . \]

Lemma 4.3 (FHS11)

\[|BP(\text{Arr}_{\text{lin}}[o, d])| \leq \frac{(2n+1)^{1+\log c}}{2} \] in a layered graph with \(c \) layers of \(n \) nodes each.

Thm 4.4 (FHS11)

\[|BP(\text{Arr}_{\text{lin}}[o, d])| = n^{O(\log n)} \] in any graph \(G \) and pair of nodes \(o, d \in V(G) \).
(Exact) Output Sensitive Algorithm for Earliest-Arrival Functions
Why Do We Need the Output Sensitive Algorithm?

1. It gives exactly the distance functions in question, i.e., functional descriptions of earliest-arrivals, that we would ideally like to have from/to any origin/destination vertex.

2. We may need to compute exact distance summaries for special pairs of vertices (e.g., from/to hubs, all superhub-to-superhub connections, etc).

3. Interesting to discover whether the complexity of the earliest-arrival functions is indeed so bad in real (e.g., road) networks.
Why Do We Need the Output Sensitive Algorithm?

1. It gives exactly the distance functions in question, i.e., functional descriptions of earliest-arrivals, that we would ideally like to have from/to any origin/destination vertex.

2. We may need to compute exact distance summaries for special pairs of vertices (e.g., from/to hubs, all superhub-to-superhub connections, etc).

3. Interesting to discover whether the complexity of the earliest-arrival functions is indeed so bad in real (e.g., road) networks.
Why Do We Need the Output Sensitive Algorithm?

1. It gives exactly the distance functions in question, ie, **functional descriptions of earliest-arrivals**, that we would ideally like to have from/to any origin/destination vertex.

2. We may need to compute **exact distance summaries** for **special pairs of vertices** (eg, from/to hubs, all superhub-to-superhub connections, etc).
Why Do We Need the Output Sensitive Algorithm?

1. It gives exactly the distance functions in question, i.e., functional descriptions of earliest-arrivals, that we would ideally like to have from/to any origin/destination vertex.

2. We may need to compute exact distance summaries for special pairs of vertices (e.g., from/to hubs, all superhub-to-superhub connections, etc).

3. Interesting to discover whether the complexity of the earliest-arrival functions is indeed so bad in real (e.g., road) networks.
The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every node in the graph is at most 2.

Given an arbitrary point in time (''current time'' $t_0 \geq 0$) as departure time from origin o, compute a TDSP tree.

Discover until when the TDSP tree is valid.

$\forall v \in V$, two short alternatives when departing from o at time t_0:
- Earliest-arrival to each parent, plus delay of corresponding incoming arc.

\minimization (vertex) Certificate $t_{\text{fail}}[v]$: Earliest departure time from o at which the two alternatives of v become equivalent.

Primitive (arc) Certificate $t_{\text{fail}}[e]$: Primitive image of the next (ie, after t_0) breakpoint of the arc to come.

$\forall v \in V$, two short alternatives when departing from o at time t_0:
- Earliest-arrival to each parent, plus delay of corresponding incoming arc.

All ($m + n$) certificates temporarily stored in a priority queue.
ASSUMPTION: The in-degree of every node in the graph is at most 2.

Given an arbitrary point in time ("current time") $t_0 \geq 0$ as departure time from origin o, compute a TDSP tree.

Discover until when the TDSP tree is valid.

$\forall v \in V$, two short alternatives when departing from o at time t_0:

- Earliest-arrival to each parent, plus delay of corresponding incoming arc.

Minimization (vertex) Certificate $t_{\text{fail}}[v]$:

Earliest departure time from o at which the two alternatives of v become equivalent.

Primitive (arc) Certificate $t_{\text{fail}}[e]$: Primitive image of the next (i.e., after t_0) breakpoint of the arc to come.

All ($m+n$) certificates temporarily stored in a priority queue.
The Output-Sensitive Algorithm (I)

- **ASSUMPTION**: The in-degree of every node in the graph is at most 2.
- Given an arbitrary point in time ("current time") $t_0 \geq 0$ as departure time from origin o, compute a TDSP tree.
The Output-Sensitive Algorithm (I)

- **ASSUMPTION:** The in-degree of every node in the graph is at most 2.
- Given an arbitrary point in time ("current time") $t_0 \geq 0$ as departure time from origin o, compute a TDSP tree.
- Discover *until when* the TDSP tree is **valid**.
 - $\forall v \in V$, two short alternatives when departing from o at time t_0: Earliest-arrival to each parent, plus delay of corresponding incoming arc.
 - **Minimization (vertex) Certificate** $t_{\text{fail}}[v]$: Earliest departure time from o at which the two alternatives of v become equivalent.
 - **Primitive (arc) Certificate** $t_{\text{fail}}[e]$: Primitive image of the next (ie, after t_0) breakpoint of the arc to come.
The Output-Sensitive Algorithm (I)

- ASSUMPTION: The in-degree of every node in the graph is at most 2.

Given an arbitrary point in time ("current time") $t_0 \geq 0$ as departure time from origin o, compute a TDSP tree.

Discover until when the TDSP tree is valid.

- $\forall v \in V$, two short alternatives when departing from o at time t_0: Earliest-arrival to each parent, plus delay of corresponding incoming arc.

- **Minimization (vertex) Certificate** $t_{\text{fail}}[v]$: Earliest departure time from o at which the two alternatives of v become equivalent.

- **Primitive (arc) Certificate** $t_{\text{fail}}[e]$: Primitive image of the next (ie, after t_0) breakpoint of the arc to come.

- All $(m + n)$ certificates temporarily stored in a priority queue.
The Output-Sensitive Algorithm (II)

When current time $t_1 > t_0$ matches the earliest failure-time of a certificate in the queue:

if minimization-certificate failure, at node $v \in V$:

then (1) Update shortest ov-path

/* ONE-BIT change in combinatorial structure */

(2) Update $Arr[o, x]$ and $t_{fail}[x]$, $\forall x \in T_v$.

(3) Update $t_{fail}[e]$, $\forall e \in E : x = tail[e] \in T_v$.
The Output-Sensitive Algorithm (II)

When current time $t_1 > t_0$ matches the earliest failure-time of a certificate in the queue:

if minimization-certificate failure, at node $v \in V$:

then (1) Update shortest $ov-$path /* ONE-BIT change in combinatorial structure */

(2) Update $Arr[o,x]$ and $t_{fail}[x]$, $\forall x \in T_v$.

(3) Update $t_{fail}[e]$, $\forall e \in E : x = tail[e] \in T_v$.

else /* primitive-certificate failure, at arc $e = vx \in E$ */

(1) Update $Arr[o,y]$ and $t_{fail}[y]$, $\forall y \in T_x$.

(2) Update $t_{fail}[e']$, $\forall e' \in E : tail[e'] \in T_x$.

\[Arr[o,v](t = t_1 - \varepsilon) = A_u t + B_u + D[uv](A_v t + B_v) = A_v t + B_v \]
\[A_u t + B_u = Arr[o,u](t) \]
\[\alpha_1 t + \beta_1 \]
\[\alpha_2 t + \beta_2 \]
\[A_w t + B_w = Arr[o,w](t) \]
\[\alpha_3 t + \beta_3 \]
\[Arr[o,v](t = t_1 + \varepsilon) = A_v t + B_v + D[vx](A_v t + B_v) = A_v t + B_v \]
\[Arr[o,x](t = t_1 - \varepsilon) = A_v t + B_v + D[vx](A_v t + B_v) \]
\[Arr[o,x](t = t_1 + \varepsilon) = A_v t + B_v + D[vx](A_v t + B_v) \]
The Output-Sensitive Algorithm (III)

- What to keep in memory:
 - Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the parent).
 - Advanced search structures, if number of BPs is large.
 - Only temporarily store certificates in a priority queue.
The Output-Sensitive Algorithm (III)

- What to keep in memory:
 - Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the parent).
 - Advanced search structures, if number of BPs is large.
 - Only temporarily store certificates in a priority queue.

- Response-time per certificate failure at $c \in V \cup E$:
 - In the *in-degrees-2 graph* (or any constant-in-degree graph): $O(|E_c| \cdot \log n)$. E_c is the set of arcs whose tails are in T_c, or $T_{head}[c]$. Logarithmic factor is due to priority-queue operations.
 - In the *original graph* (in worst-case): $O(m \times \log^2 n)$. Second logarithmic factor is due to updates of tournament trees implementing the MIN operator at a particular node, upon emergence of a single certificate failure.
The Output-Sensitive Algorithm (III)

- **What to keep in memory:**
 - Breakpoint triples for earliest-arrival functions, plus ONE bit (indicating the parent).
 - Advanced search structures, if number of BPs is large.
 - Only temporarily store certificates in a priority queue.

- **Response-time** per certificate failure at $c \in V \cup E$:
 - In the *in-degrees-2 graph* (or any constant-in-degree graph): $O(|E_c| \cdot \log n)$. E_c is the set of arcs whose tails are in T_c, or $T_{head}[c]$. Logarithmic factor is due to *priority-queue operations*.
 - In the *original graph* (in worst-case): $O(m \times \log^2 n)$. Second logarithmic factor is due to *updates of tournament trees* implementing the MIN operator at a particular node, upon emergence of a single certificate failure.

- **Worst-case time-complexity** of output-sensitive algorithm:
 $$O \left(m \times \log^2 n \times (\text{PRIMBPs} + \text{MINBPs}) \right)$$
Poly-time Approximation Algorithms
Why focus on shortest-travel-time (delays) functions, and not on earliest-arrival-time functions?

Arc/Path Delay Reversal: Easy task!!!

\[t_o = \overleftarrow{\text{Arr}}[o, v](t_v) = t_v - \overleftarrow{D}[o, v](t_v): \text{Latest-departure-time from } o \text{ to } v, \text{ as a function of the arrival time } t_v \text{ at } v. \]
Approximating $D[0,d]$: Quality

- **Maximum Absolute Error**: A crucial quantity both for the time-complexity and for the space-complexity of the algorithm:

\[
D_{\text{max}} = D(c) y(m) + (c) \geq \Lambda - (d) (x-d) + D(d) \\
\]
Approximating $D[o,d]$: Quality

- **Maximum Absolute Error**: A crucial quantity both for the time-complexity and for the space-complexity of the algorithm:

$$\text{MAE}(c,d) = (\Lambda^+(c) - \Lambda^-(d)) \cdot \frac{(m-c)(d-m)}{L} \leq \frac{L(\Lambda^+(c) - \Lambda^-(d))}{4}$$

LEMMA: Closed Form of Maximum Absolute Error

[Kontogianis-Zaroliagis (2013)]

$$\text{MAE}(c,d) = (\Lambda^+(c) - \Lambda^-(d)) \cdot \frac{(m-c)(d-m)}{L} \leq \frac{L(\Lambda^+(c) - \Lambda^-(d))}{4}$$
Approximating $D[o,d]$: Basic Idea (I)

- Approximations of $D[o,d]$: For given $\epsilon > 0$, and $\forall t \in [0,T)$,

$$D[o,d](t) \leq D[o,d](t) \leq \overline{D}[o,d](t) \leq (1 + \epsilon) \cdot D[o,d](t)$$
Approximating $D[o,d]$: Basic Idea (I)

- **Approximations of $D[o,d]$:** For given $\varepsilon > 0$, and $\forall t \in [0,T)$,

 \[
 D[o,d](t) \leq D[o,d](t) \leq \overline{D}[o,d](t) \leq (1 + \varepsilon) \cdot D[o,d](t)
 \]

- **FACT:** if $D[o,d]$ was a priori known then a **linear scan** gives a space-optimal $(1 + \varepsilon)$–upper-approximation (i.e., with the MIN #BPs).
Approximating $D[o,d]$: Basic Idea (I)

- **Approximations of $D[o,d]$:** For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $$D[o,d](t) \leq D[o,d](t) \leq \bar{D}[o,d](t) \leq (1 + \varepsilon) \cdot D[o,d](t)$$

- **FACT:** If $D[o,d]$ was a priori known then a **linear scan** gives a space-optimal $(1 + \varepsilon)$—upper-approximation (i.e., with the MIN #BPs).

- **PROBLEM:** Prohibitively expensive to compute/store $D[o,d]$ before approximating it. We must be based only on a few **samples** of $D[o,d]$.
Approximating $D[o,d]$: Basic Idea (I)

- Approximations of $D[o,d]$: For given $\epsilon > 0$, and $\forall t \in [0,T)$,

 \[
 D[o,d](t) \leq D[o,d](t) \leq \overline{D}[o,d](t) \leq (1 + \epsilon) \cdot D[o,d](t)
 \]

- **FACT:** if $D[o,d]$ was a priori known then a linear scan gives a space-optimal $(1 + \epsilon)$—upper-approximation (i.e., with the MIN #BPs).

- **PROBLEM:** Prohibitively expensive to compute/store $D[o,d]$ before approximating it. We must be based only on a few samples of $D[o,d]$.

- **FOCUS:** Linear arc-delays. Later extend to pw1 arc-delays.
Approximating $D[o,d]$: Basic Idea (I)

- Approximations of $D[o,d]$: For given $\epsilon > 0$, and $\forall t \in [0, T)$,

\[
D[o,d](t) \leq D[o,d](t) \leq \overline{D}[o,d](t) \leq (1 + \epsilon) \cdot D[o,d](t)
\]

- **FACT:** if $D[o,d]$ was a priori known then a **linear scan** gives a space-optimal $(1 + \epsilon)$—upper-approximation (i.e., with the MIN #BPs).

- **PROBLEM:** Prohibitively expensive to compute/store $D[o,d]$ before approximating it. We must be based only on a few samples of $D[o,d]$.

- **FOCUS:** Linear arc-delays. Later extend to pwl arc-delays.

- $D[o,d]$ lies entirely in a **bounding box** that we can easily determine, with only 3 TD-Dijkstra probes.
Approximating $D[o,d]$: Basic Idea (II)

- Make the sampling so that\n\[\forall t \in [0, T], \quad \bar{D}[o,d](t) \leq (1 + \varepsilon) \cdot D[o,d](t). \]

- Keep sampling always the fastest-growing axis wrt to $D[o,d]$.
while slope of $D[o,d] \geq 1$ do

$\begin{align*}
 t_0 &\xrightarrow{\text{Forward Dijkstra}} t_0 + D[o,d](t_0) \\
 t_1 &\xleftarrow{\text{Backward Dijkstra}} t_0 + (1+\varepsilon)^{1/2} D[o,d](t_0) = t_1 + D[o,d](t_1) \\
 t_2 &\xleftarrow{\text{Backward Dijkstra}} t_1 + (1+\varepsilon)^{1/2} D[o,d](t_1) = t_2 + D[o,d](t_2)
\end{align*}$
while slope of $D[o,d] \geq 1$ do

Bad Case for [Foschini-Hersberger-Suri (2011)]:

$D(1+\epsilon)D(1+\epsilon)2D(1+\epsilon)3D(1+\epsilon)4D$
One-To-One Approximation: PHASE-1

[Foschini-Hershberger-Suri (2011)]

\[
\text{while slope of } D[o,d] \geq 1 \text{ do}
\]

[Kontogiannis-Zaroliagis (2013)]:

\[
t_0 \xrightarrow{\text{Forward Dijkstra}} t_0 + D[o,d](t_0)
\]

\[
t_1 = t_{1,k} \xrightarrow{\text{Backward Dijkstra}} t_0 + (1+\epsilon)^k D[o,d](t_0) = t_1 + D[o,d](t_1)
\]

\[
t_{1,k+1} \xrightarrow{\text{Backward Dijkstra}} t_0 + (1+\epsilon)^{k+1} D[o,d](t_0)
\]

\[
t_{2,1} \xrightarrow{\text{Backward Dijkstra}} \text{MAX} \{ t_{\text{fail}}, t_1 + (1+\epsilon) D[o,d](t_1) \}
\]

\[
\text{MaxAbsError} < \epsilon D[o,d](t_0)
\]

\[
\text{MaxAbsError} < \epsilon D[o,d](t_0)
\]

\[
\text{MaxAbsError} > \epsilon D[o,d](t_0)
\]

\[
\text{MaxAbsError} < \epsilon D[o,d](t_1)
\]
One-To-One Approximation: PHASE-2

[Sloschini-Hershberger-Suri (2011)]

Slope of $D[o,d] \leq 1$:

repeat

Apply **BISECTION** to the remaining time-interval(s)

until desired approximation guarantee (wrt **Max Absolute Error**) is achieved.
ASSUMPTION 1: Concavity of arc-delays. /* to be removed later */

- Implies concavity of the unknown function $D[o,d]$.

S. Kontogiannis: TDSP Basics [42 / 69]
ASSUMPTION 1: Concavity of arc-delays.

- Implies concavity of the unknown function $D[o,d]$.

/* to be removed later */

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl) arc-delay functions.

- **Verified** by TD-traffic data for road network of Berlin [TomTom (February 2013)] that all arc-delay slopes are in $[-0.5, 0.5]$.

- Slopes of **shortest-travel-time** function $D[o,d]$ from $[-\Lambda_{\text{min}}, \Lambda_{\text{max}}]$, for some constants $\Lambda_{\text{max}} > 0$, $\Lambda_{\text{min}} \in [0, 1)$.
Under ASSUMPTIONS 1-2: Execute Bisection to *sample simultaneously* all distance values from \(o \), at mid-points of time intervals, until required approximation guarantee is achieved *for each destination node*.

Example of Bisection Execution: INPUT = *UNKNOWN BLUE* function
Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node.

Example of Bisection Execution: **ORANGE** = Upper Bound, **YELLOW** = Lower Bound
Under ASSUMPTIONS 1-2: Execute Bisection to \textit{sample simultaneously} all distance values from \(o \), at mid-points of time intervals, until required approximation guarantee is achieved \textit{for each destination node}.

Example of Bisection Execution: Level-1 Recursion
Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from o, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node.
Only under ASSUMPTION 2: For continuous, pwl arc-delays.

1. Call Reverse TD-Dijkstra to project each concavity-spoiling PB to a PI of the origin o.

2. For each pair of consecutive PIs at o, run Bisection for the corresponding departure-times interval.

3. Return the concatenation of approximate distance summaries.
Approximating $D[o, d]$: Space/Time Complexity

THEOREM: Space Complexity [Kontogiannis-Zaroliagis (2013)]

Let K^* be the total number of concavity-spoiling BPs among all the arc-delay functions in the instance.

Space Complexity: For a given origin $o \in V$ and all possible destinations $d \in V$, the following complexity bounds hold for creating all the approximation functions $\overline{D}[o, *] = (\overline{D}[o, d])_{d \in V}$:

1. $O\left(\frac{K^*}{\varepsilon} \log \left(\frac{D_{\text{max}}[o, *](0, T)}{D_{\text{min}}[o, *](0, T)}\right)\right)$

2. In each interval of consecutive PIs, $|UBP[o, d]| \leq 4 \cdot (\text{minimum } \#\text{BPs for any } (1 + \varepsilon)-\text{approximation.})$

Time Complexity: The number of shortest-path probes executed for the computation of the approximate distance functions is:

$TDSP[o, d] \in O\left(\log \left(\frac{T}{\varepsilon \cdot D_{\text{min}}[o, d]}\right) \cdot \frac{K^*}{\varepsilon} \log \left(\frac{D_{\text{max}}[o, *](0, T)}{D_{\text{min}}[o, *](0, T)}\right)\right)$
One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a label-setting approximation method that provably works space/time optimally (within constant factors) wrt concave continuous pwl arc-delay functions.
Implementation Issues wrt One-To-All Bisection

😊 One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a label-setting approximation method that provably works space/time optimally (within constant factors) wrt concave continuous pwl arc-delay functions.

😢 Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)] and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer from linear dependence in the degree of disconcavity (value of K^*) in the TD Instance.
Implementation Issues wrt One-To-All Bisection

😊 One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a label-setting approximation method that provably works space/time optimally (within constant factors) wrt concave continuous pwl arc-delay functions.

😢 Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)] and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer from linear dependence in the degree of disconcavity (value of K^*) in the TD Instance.

😊 A novel one-to-all (again label-setting) approximation technique, called the Trapezoidal method ([Kontogiannis-Wagner-Zaroliagis (2014)] avoids entirely the dependence of the required space from the network structure (and, of course, the degree of disconcavity).
Any Questions?

<table>
<thead>
<tr>
<th>Next Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-Dependent Oracles</td>
</tr>
<tr>
<td>Wednesday, June 18 2014, 11:30</td>
</tr>
</tbody>
</table>
Distance Oracles
Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a *large scale* graph with arc-travel-times, create a data structure (*oracle*) that requires *reasonable space* requirements and allows answering *distance queries* *efficiently.*
Distance Oracles

A Success Story in Static Graphs

CHALLENGE: Given a *large scale* graph with arc-travel-times, create a data structure (*oracle*) that requires *reasonable space* requirements and allows answering *distance queries efficiently*.

- **Trivial solution:** Preprocess by executing and storing *APSP*.
 - $O(n^2)$ size.
 - $O(1)$ query time.
 - 1-stretch.

S. Kontogiannis: TD Oracles [49 / 69]
Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a *large scale* graph with arc-travel-times, create a data structure (oracle) that requires *reasonable space* requirements and allows answering *distance queries efficiently*.

- **Trivial solution:** Preprocess by executing and storing APSP.
 - ![Sad] \(O(n^2)\) size.
 - ![Sad] \(O(1)\) query time.
 - ![Happy] \(1\)–stretch.

- **Trivial solution:** No preprocessing, respond to queries by running Dijkstra.
 - ![Sad] \(O(n + m)\) size.
 - ![Sad] \(O(m + n \log(n))\) query time.
 - ![Happy] \(1\)–stretch.
Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a large scale graph with arc-travel-times, create a data structure (oracle) that requires reasonable space requirements and allows answering distance queries efficiently.

- **Trivial solution:** Preprocess by executing and storing APSP.
 - \(O(n^2)\) size.
 - \(O(1)\) query time.
 - 1-stretch.

- **Trivial solution:** No preprocessing, respond to queries by running Dijkstra.
 - \(O(n + m)\) size.
 - \(O(m + n \log(n))\) query time.
 - 1-stretch.

💡 Try to provide smooth tradeoffs among space / query time / stretch!!!
Distance Oracles: Generic Idea

1. **Metric-independent preprocessing:** Split the graph, essentially ignoring the distance metric.

2. **Metric-dependent preprocessing:** Equip the network with selective distance summaries, e.g., boundary-to-boundary / boundary-to-cell / boundary-to-all distances.

3. **Query Algorithm:** Respond fast to queries, based on the (hierarchical?) distance-independent division and/or the distance-dependent summaries.
Distance Oracles: Generic Idea

1. **Metric-independent preprocessing:** Split the graph, essentially ignoring the distance metric.
 - Roughly **equal size** per cell (in each level, if recursive division is applied).
 - Boundary vertices/arcs much less than the graph size (e.g., $O(\sqrt{n})$ in total).
 - Each cell may be required to be a **weakly connected** subgraph.

2. **Metric-dependent preprocessing:** Equip the network with selective distance summaries, e.g., boundary-to-boundary / boundary-to-cell / boundary-to-all distances.

3. **Query Algorithm:** Respond fast to queries, based on the (hierarchical?) distance-independent division and/or the distance-dependent summaries.
Distance Oracles: Generic Idea

1. **Metric-independent preprocessing**: Split the graph, essentially ignoring the distance metric.
 - Roughly **equal size** per cell (in each level, if *recursive division* is applied).
 - Boundary vertices/arcs much less than the graph size (e.g., $O(\sqrt{n})$ in total).
 - Each cell may be required to be a **weakly connected** subgraph.

2. **Metric-dependent preprocessing**: Equip the network with selective **distance summaries**, e.g., boundary-to-boundary / boundary-to-cell / boundary-to-all distances.
Distance Oracles: Generic Idea

1. **Metric-independent preprocessing:** Split the graph, essentially ignoring the distance metric.
 - Roughly equal size per cell (in each level, if recursive division is applied).
 - Boundary vertices/arcs much less than the graph size (e.g., $O(\sqrt{n})$ in total).
 - Each cell may be required to be a weakly connected subgraph.

2. **Metric-dependent preprocessing:** Equip the network with selective distance summaries, e.g., boundary-to-boundary / boundary-to-cell / boundary-to-all distances.

3. **Query Algorithm:** Respond fast to queries, based on the (hierarchical?) distance-independent division and/or the distance-dependent summaries.
Distance Oracles

- Extremely successful theme in static graphs.
 - In theory:
 - P-Space: Subquadratic (sometimes quasi-linear).
 - Q-Time: Constant.
 - Stretch: Small (sometimes PTAS).
 - In practice:
 - P-Space: A few GBs (sometimes less than 1 GB).
 - Q-Time: Miliseconds (sometimes microseconds).
 - Stretch: Exact distances (in most cases).
Distance Oracles

- Extremely successful theme in static graphs.
 - In theory:
 - **P-Space**: Subquadratic (sometimes quasi-linear).
 - **Q-Time**: Constant.
 - **Stretch**: Small (sometimes PTAS).
 - In practice:
 - **P-Space**: A few GBs (sometimes less than 1 GB).
 - **Q-Time**: Miliseconds (sometimes microseconds).
 - **Stretch**: Exact distances (in most cases).

- Some practical algorithms extended to time-dependent case.
Distance Oracles

- Extremely successful theme in static graphs.
 - In theory:
 - **P-Space**: Subquadratic (sometimes quasi-linear).
 - **Q-Time**: Constant.
 - **Stretch**: Small (sometimes PTAS).
 - In practice:
 - **P-Space**: A few GBs (sometimes less than 1 GB).
 - **Q-Time**: Miliseconds (sometimes microseconds).
 - **Stretch**: Exact distances (in most cases).

- Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with provably good preprocessing-space / query-time / stretch tradeoffs.
Theoretical Bounds for Static Graphs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Setting</th>
<th>Stretch</th>
<th>Query</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TZ05]</td>
<td>weighted graph</td>
<td>$2k - 1$, $k \geq 2$</td>
<td>$O(k)$</td>
<td>$O(kn^{1+1/k})$</td>
</tr>
<tr>
<td>[WN13]</td>
<td>weighted graph</td>
<td>$2k - 1$, $k \geq 2$</td>
<td>$O(\log(k))$</td>
<td>$O(kn^{1+1/k})$</td>
</tr>
<tr>
<td>[Che13]</td>
<td>weighted graph</td>
<td>$2k - 1$, $k \geq 2$</td>
<td>$O(1)$</td>
<td>$O(kn^{1+1/k})$</td>
</tr>
<tr>
<td>[AG13]</td>
<td>sparse weighted graph</td>
<td>$1 + \epsilon$</td>
<td>$o(n)$</td>
<td>$o(n^2)$</td>
</tr>
<tr>
<td>[Kle02]</td>
<td>planar weighted digraph</td>
<td>$1 + \epsilon$</td>
<td>$O(\epsilon^{-1})$</td>
<td>$O\left(\frac{n \log(n)}{\epsilon}\right)$</td>
</tr>
<tr>
<td>[Tho04]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[MN06]</td>
<td>metric</td>
<td>$O(k)$</td>
<td>$O(1)$</td>
<td>$O(kn^{1+1/k})$</td>
</tr>
<tr>
<td>[BGKRL11]</td>
<td>Doubling metric, dynamic</td>
<td>$1 + \epsilon$</td>
<td>$O(1)$</td>
<td>$\epsilon^{-O(ddim)} n + 2^{O(ddim \log(ddim))} n$</td>
</tr>
</tbody>
</table>

S. Kontogiannis: TD Oracles [52 / 69]
Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* graph with continuous, *pwl*, FIFO arc-delay functions, create a data structure (**oracle**) that requires reasonable *(subquadratic)* space and allows answering **distance queries** efficiently (in *sublinear* time).
Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* graph with continuous, pw1, FIFO arc-delay functions, create a data structure (oracle) that requires reasonable *(subquadratic)* space and allows answering *distance queries* efficiently (in *sublinear* time).

- **Trivial solution:** Precompute all the \((1 + \epsilon)\)-approximate distance summaries from every origin to every destination.
 - \(O(n^3)\) size (\(O(n^2)\), if all arc-delay functions *concave*).
 - \(O(\log \log(n))\) query time.
 - \((1 + \epsilon)\)-stretch.
Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* graph with continuous, pwl, FIFO arc-delay functions, create a data structure (oracle) that requires reasonable (subquadratic) space and allows answering distance queries efficiently (in sublinear time).

- **Trivial solution:** Precompute all the \((1 + \epsilon)\)–approximate distance summaries from every origin to every destination.
 - \(O(n^3)\) size \((O(n^2)\), if all arc-delay functions *concave*).
 - \(O(\log \log(n))\) query time.
 - \((1 + \epsilon)\)–stretch.

- **Trivial solution:** No preprocessing, respond to queries by running TD-Dijkstra.
 - \(O(n + m + K)\) size \((K = \text{total number of PBs of arc-delays})\).
 - \(O([m + n \log(n)] \times \log \log(K))\) query time.
 - \(1\)–stretch.
Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* graph with continuous, pwI, FIFO arc-delay functions, create a data structure (oracle) that requires reasonable *(subquadratic)* space and allows answering distance queries efficiently *(in sublinear time).*

- **Trivial solution:** Precompute all the \((1 + \epsilon)\)-approximate distance summaries from every origin to every destination.
 - \(O(n^3)\) size \((O(n^2)), if all arc-delay functions *concave*\).
 - \(O(\log \log(n))\) query time.
 - \((1 + \epsilon)\)–stretch.

- **Trivial solution:** No preprocessing, respond to queries by running TD-Dijkstra.
 - \(O(n + m + K)\) size \((K = total number of PBs of arc-delays)\).
 - \(O([m + n \log(n)] \times \log \log(K))\) query time.
 - 1 –stretch.

💡 Is there a smooth tradeoff among space / query time / stretch?
FLAT TD-Oracle
Choose a set L of landmarks.

- **In theory:** Each vertex $v \in V$ is chosen, *independently of other vertices*, to be included in the landmark set L w.p. $\rho \in (0, 1)$.

- **In practice:** Selection of landmark set either randomly, or as the set of *boundary vertices* of a given graph partition.
Choose a set L of landmarks.

- In theory: Each vertex $v \in V$ is chosen, independently of other vertices, to be included in the landmark set L w.p. $\rho \in (0, 1)$.

- In practice: Selection of landmark set either randomly, or as the set of boundary vertices of a given graph partition.

Preprocess $(1 + \epsilon)$-approximate distance summaries (functions) $\overline{D}[\ell, v]$ from every landmark $\ell \in L$ towards each destination $v \in V$.

- Label-setting approach.

- One-to-all approximation, for any given landmark $\ell \in L$.

S. Kontogiannis: TD Oracles
1 Choose a set L of landmarks.
 - In theory: Each vertex $v \in V$ is chosen, independently of other vertices, to be included in the landmark set L w.p. $\rho \in (0, 1)$.
 - In practice: Selection of landmark set either randomly, or as the set of boundary vertices of a given graph partition.

2 Preprocess $(1 + \epsilon)$-approximate distance summaries (functions) $\overline{D}[l,v]$ from every landmark $l \in L$ towards each destination $v \in V$.
 - Label-setting approach.
 - One-to-all approximation, for any given landmark $l \in L$.

3 Provide query algorithms (FCA/RQA) that return constant / $(1 + \sigma)$-approximate distance values, for arbitrary query (o,d,t_o).

S. Kontogiannis: TD Oracles [55 / 69]
FLAT TD-Oracle

selection & preprocessing of landmarks
Select each vertex \textit{independently and uniformly at random} w.p. $\rho \in (0, 1)$ for the \textbf{landmark set} $L \subseteq V$.

Preprocessing: $\forall \ell \in L$, precompute $(1 + \epsilon)$–approximate distance functions $\Delta[\ell, v]$ to all destinations $v \in V$.

\text{THEOREM:} \cite{Kontogiannis-Zaroliagis:2013} Using Bisection for computing approximate distance summaries:

\textbf{Pre-Space:} $O(K^* \cdot |L| \cdot |V| \cdot \epsilon \cdot \max_{(\ell, v) \in L \times V} \{ \log(D[\ell, v](0, T)) \})$

\textbf{Pre-Time (in number of TDSP-Probes):} $O(\max_{(\ell, v)} \{ \log(T \cdot (\Lambda_{\max} + 1) \epsilon D[\ell, v](0, T)) \}) \cdot K^* \cdot |L| \cdot \epsilon \max_{(\ell, v)} \{ \log(D[\ell, v](0, T)) \})$
Select each vertex \(\text{independently and uniformly at random} \) w.p. \(\rho \in (0, 1) \) for the landmark set \(L \subseteq V \).

Preprocessing: \(\forall \ell \in L \), precompute \((1 + \epsilon)-\)approximate distance functions \(\Delta[\ell, v] \) to all destinations \(v \in V \).

THEOREM: [Kontogiannis-Zaroliagis (2013)]

Using Bisection for computing approximate distance summaries:

- **Pre-Space:**
 \[
 \mathcal{O}\left(\frac{K^* \cdot |L| \cdot |V|}{\epsilon} \cdot \max_{(\ell, v) \in L \times V} \left\{ \log \left(\frac{D[\ell, v](0,T)}{D[\ell, v](0,T)} \right) \right\} \right)
 \]

- **Pre-Time (in number of TDSP-Probes):**
 \[
 \mathcal{O}\left(\max_{(\ell, v)} \left\{ \log \left(\frac{T \cdot (\Lambda_{\text{max}} + 1)}{\epsilon D[\ell, v](0,T)} \right) \right\} \cdot \frac{K^* \cdot |L|}{\epsilon} \max_{(\ell, v)} \left\{ \log \left(\frac{D[\ell, v](0,T)}{D[\ell, v](0,T)} \right) \right\} \right)
 \]
A recent development: Improved preprocessing time/space.

\[\text{Pre-Space: } E[S_{\text{BIS}} + \text{TRAP}] \in O(T(1+1/\epsilon) \Lambda_{\max} \cdot \rho n^2 \text{polylog}(n)) \]

\[\text{Pre-Time: } E[P_{\text{BIS}} + \text{TRAP}] \in O(T(1+1/\epsilon) \Lambda_{\max} \cdot \rho n^2 \text{polylog}(n) \loglog(K_{\max})) \]
Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space.

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2014)]

Using both Bisection (for *nearby* nodes) and Trapezoidal (for *faraway* nodes):

- **Pre-Space:**

 $$\mathbb{E} [S_{\text{BIS+TRAP}}] \in O\left(T \left(1 + \frac{1}{\epsilon} \right) \Lambda_{\text{max}} \cdot \rho n^2 \text{polylog}(n) \right)$$

- **Pre-Time:**

 $$\mathbb{E} [P_{\text{BIS+TRAP}}] \in O\left(T \left(1 + \frac{1}{\epsilon} \right) \Lambda_{\text{max}} \cdot \rho n^2 \text{polylog}(n) \log \log(K_{\text{max}}) \right)$$
FLAT TD-Oracle

FCA: constant-approximation query
Forward Constant Approximation: \[FCA(o,d,t_o, (\Delta[\ell,v])_{(\ell,v) \in L \times V}) \]

1. **Exploration:** Grow a TD-Dijkstra forward ball \(B(o,t_o) \) until the closest landmark \(\ell_o \) is settled.

2. **return** \(sol_o = D[o,\ell_o](t_o) + \Delta[\ell_o,d](t_o + D[o,\ell_o](t_o)) \).
ASSUMPTION 3: Bounded Opposite Trips.

exists \(\zeta \geq 1 \) such that for all \((o,d) \in V \times V \), all \(t \in [0,T] \),

\[
D[o,d](t) \leq \zeta \cdot D[d,o](t_o).
\]
ASSUMPTION 3: Bounded Opposite Trips.
\[\exists \zeta \geq 1 : \forall (o, d) \in V \times V, \ \forall t \in [0, T], \ D[o, d](t) \leq \zeta \cdot D[d, o](t_o). \]

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request \((o, d, t_o)\), FCA achieves the following performance:

- **Approximation guarantee:**
 \[D[o, d](t_o) \leq R_o + \Delta[\ell_o, d](t_o + R_o) \leq (1 + \epsilon)D[o, d](t_o) + \psi R_o \]
 \[\leq \left(1 + \epsilon + \psi \cdot \frac{R_o}{D[o, d](t_o)} \right) \cdot D[o, d](t_o) \]
 where \(\psi = 1 + \Lambda_{\max}(1 + \epsilon)(1 + 2\zeta + \Lambda_{\max}\zeta) + (1 + \epsilon)\zeta. \]
ASSUMPTION 3: Bounded Opposite Trips.

\[\exists \zeta \geq 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], \; D[o, d](t) \leq \zeta \cdot D[d, o](t_0). \]

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request \((o, d, t_0)\), FCA achieves the following performance:

- **Approximation guarantee:**
 \[
 D[o, d](t_0) \leq R_o + \Delta[\ell_o, d](t_0 + R_o) \leq (1 + \epsilon)D[o, d](t_0) + \psi R_o \]
 \[
 \leq \left(1 + \epsilon + \psi \cdot \frac{R_o}{D[o, d](t_0)}\right) \cdot D[o, d](t_0)
 \]
 where \(\psi = 1 + \Lambda_{\text{max}}(1 + \epsilon)(1 + 2\zeta + \Lambda_{\text{max}}\zeta) + (1 + \epsilon)\zeta. \)

- **Query-time complexity:**
 \[
 \mathbb{E}[Q_{FCA}] \in O\left(\frac{1}{\rho} \cdot \ln\left(\frac{1}{\rho}\right)\right)
 \]
 \[
 \mathbb{P}\left[Q_{FCA} \in \Omega\left(\frac{1}{\rho} \cdot \ln^2\left(\frac{1}{\rho}\right)\right)\right] \in O(\rho)
 \]
FLAT TD-Oracle

RQA: boosting approximation guarantee
Recursive Query Approximation:
\(RQA(o, d, t_o, (\Delta[\ell, v])_{(\ell, v) \in L \times V}, R) \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>while recursion budget (R) not exhausted do</td>
</tr>
<tr>
<td>2.</td>
<td>Exploration: Grow a TD-Dijkstra forward-ball (B(w_i, t_i)) until the closest landmark (\ell_i) is settled.</td>
</tr>
<tr>
<td>3.</td>
<td>(sol_i = Do, w_i + Dw_i, \ell_i + \Delta[\ell_i, d](t_i + Dw_i, \ell_i)).</td>
</tr>
<tr>
<td>4.</td>
<td>Recursion: Execute RQA centered at each boundary node of (B(w_i, t_i)) with recursion budget (R - 1).</td>
</tr>
<tr>
<td>5.</td>
<td>endwhile</td>
</tr>
<tr>
<td>6.</td>
<td>return best possible solution found.</td>
</tr>
</tbody>
</table>
RQA: Overview

Recursive Query Approximation: $RQA(o, d, t_o, (\Delta[\ell, v])_{(\ell, v) \in L \times V}, R)$

1. **while** recursion budget R not exhausted **do**
2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until the closest landmark ℓ_i is settled.
3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$.
4. **Recursion:** Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget $R - 1$.
5. **endwhile**
6. **return** best possible solution found.
RQA: Overview

<table>
<thead>
<tr>
<th>Recursive Query Approximation: $\text{RQA}(o,d,t_o, (\Delta[\ell,v])_{(\ell,v) \in L \times V}, R)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. while recursion budget R not exhausted do</td>
</tr>
<tr>
<td>2. Exploration: Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until the closest landmark ℓ_i is settled.</td>
</tr>
<tr>
<td>3. $\text{sol}_i = Do,w_i + Dw_i,\ell_i + \Delta[\ell_i,d](t_i + Dw_i,\ell_i)$.</td>
</tr>
<tr>
<td>4. Recursion: Execute RQA centered at each boundary node of $B(w_i, t_i)$ with recursion budget $R - 1$.</td>
</tr>
<tr>
<td>5. endwhile</td>
</tr>
<tr>
<td>6. return best possible solution found.</td>
</tr>
</tbody>
</table>

Growing level-0 ball...
RQA: Overview

Recursive Query Approximation: \(RQA(o, d, t_o, (\Delta[\ell, v]))_{(\ell, v) \in L \times V, R} \)

1. while recursion budget \(R \) not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball \(B(w_i, t_i) \) until the closest landmark \(\ell_i \) is settled.
3. \(sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i)) \).
4. Recursion: Execute RQA centered at each boundary node of \(B(w_i, t_i) \) with recursion budget \(R - 1 \).
5. endwhile
6. return best possible solution found.

Growing level-0 ball...
Growing level-1 balls...
RQA: Overview

Recursive Query Approximation: \(RQA(o,d,t_o,(\Delta[\ell,v])_{(\ell,v)\in L\times V},R) \)

1. **while** recursion budget \(R \) not exhausted **do**

2. **Exploration:** Grow a TD-Dijkstra forward-ball \(B(w_i,t_i) \) until the closest landmark \(\ell_i \) is settled.

3. \(sol_i = D[o,w_i](t_o) + D[w_i,\ell_i](t_i) + \Delta[\ell_i,d](t_i + D[w_i,\ell_i](t_i)). \)

4. **Recursion:** Execute RQA centered at each boundary node of \(B(w_i,t_i) \) with recursion budget \(R - 1 \).

5. **endwhile**

6. **return** best possible solution found.

![Growing level-0 ball…](image)

![Growing level-1 balls…](image)
RQA: Overview

Recursive Query Approximation: \(RQA(o, d, t_o, (\Delta[\ell, v])_{(\ell, v) \in L \times V}, R) \)

1. while recursion budget \(R \) not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball \(B(w_i, t_i) \) until the closest landmark \(\ell_i \) is settled.
3. \(sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i)) \).
4. Recursion: Execute RQA centered at each boundary node of \(B(w_i, t_i) \) with recursion budget \(R - 1 \).
5. endwhile
6. return best possible solution found.

Growing level-0 ball...
Growing level-1 balls...
RQA: Overview

Recursive Query Approximation: \(RQA(o,d,t_o, (\Delta[\ell,v])_{(\ell,v) \in L \times V}, R) \)

1. \textbf{while} recursion budget \(R \) not exhausted \textbf{do}
2. \textbf{Exploration:} Grow a TD-Dijkstra forward-ball \(B(w_i,t_i) \) until the closest landmark \(\ell_i \) is settled.
3. \(sol_i = D[o,w_i](t_o) + D[w_i,\ell_i](t_i) + \Delta[\ell_i,d](t_i + D[w_i,\ell_i](t_i)) \).
4. \textbf{Recursion:} Execute \(RQA \) centered at each boundary node of \(B(w_i,t_i) \) with recursion budget \(R - 1 \).
5. \textbf{endwhile}
6. \textbf{return} best possible solution found.
RQA: Overview

Recursive Query Approximation: \(RQA(o, d, t_o, (\Delta[\ell, v])(\ell, v) \in L \times V, R) \)

1. while recursion budget \(R \) not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball \(B(w_i, t_i) \) until the closest landmark \(\ell_i \) is settled.
3. \(sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i)) \).
4. Recursion: Execute RQA centered at each boundary node of \(B(w_i, t_i) \) with recursion budget \(R - 1 \).
5. endwhile
6. return best possible solution found.
One of the discovered approximate od−paths has all its ball centers at nodes of the (unknown) shortest od-path.

Optimal prefix subpaths improve approximation guarantee:
\[\forall \beta > 1, \forall \lambda \in (0, 1), \lambda \cdot \text{OPT} + (1 - \lambda) \cdot \beta \cdot \text{OPT} < \beta \cdot \text{OPT} \]

Quality of approximation guarantee of FCA (per ball) for remaining suffix subpath to the destination depends on ball radius (distance from the closest landmark to the ball center).

A constant number of recursion depth \(R \) suffices to assure guarantee close to \(1 + \epsilon \).
One of the discovered approximate od–paths has all its ball centers at nodes of the (unknown) shortest od-path.
RQA: Why Does Recursion Boost Approximation?

1. One of the discovered approximate od–paths has all its ball centers at nodes of the (unknown) shortest od-path.

2. Optimal prefix subpaths improve approximation guarantee:

\[\forall \beta > 1, \ \forall \lambda \in (0, 1), \ \lambda \cdot OPT + (1 - \lambda) \cdot \beta \cdot OPT < \beta \cdot OPT \]
One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path.

Optimal prefix subpaths improve approximation guarantee:

$$\forall \beta > 1, \forall \lambda \in (0,1), \lambda \cdot OPT + (1 - \lambda) \cdot \beta \cdot OPT < \beta \cdot OPT$$

Quality of approximation guarantee of FCA (per ball) for remaining suffix subpath to the destination depends on ball radius (distance from the closest landmark to the ball center).
1. One of the discovered approximate od−paths has all its ball centers at nodes of the (unknown) shortest od-path.

2. Optimal prefix subpaths improve approximation guarantee:

\[
\forall \beta > 1, \ \forall \lambda \in (0, 1), \ \lambda \cdot OPT + (1 - \lambda) \cdot \beta \cdot OPT < \beta \cdot OPT
\]

3. Quality of approximation guarantee of FCA (per ball) for remaining suffix subpath to the destination depends on ball radius (distance from the closest landmark to the ball center).

4. A constant number of recursion depth \(R \) suffices to assure guarantee close to \(1 + \epsilon \).
RQA: Performance

THEOREM: Complexity of RQA

For sparse networks (i.e., having \(\mu = |A|/|V| \in O(1) \)), the complexity of RQA with recursion budget \(R \) for obtaining \((1+\sigma)\)–approximate distances (for any constant \(\sigma > \epsilon \)) to arbitrary \((o,d,t_o)\) queries, is:

\[
\mathbb{E} [Q_{RQA}] \in O \left(\left(\frac{1}{\rho} \right)^{R+1} \cdot \ln \left(\frac{1}{\rho} \right) \right).
\]

\[
\mathbb{P} \left[Q_{RQA} \in O \left(\left(\frac{\ln(n)}{\rho} \right)^{R+1} \cdot \left[\ln \ln(n) + \ln \left(\frac{1}{\rho} \right) \right] \right) \right] \in 1 - O \left(\frac{1}{n} \right).
\]
TD Distance Oracle: Recap

<table>
<thead>
<tr>
<th>What is preprocessed</th>
<th>Space: $E[S]$</th>
<th>Preprocessing: $E[P]$</th>
<th>Query: $E[Q_{RQA}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-To-All</td>
<td>$O\left((K^* + 1)n^2U\right)$</td>
<td>$O\left(n^2 \log(n) \cdot \log\log(K_{\text{max}}) \cdot (K^* + 1) TDP\right)$</td>
<td>$O(\log\log(K^*))$</td>
</tr>
<tr>
<td>Nothing</td>
<td>$O(n + m + K)$</td>
<td>$O(1)$</td>
<td>$O\left(\frac{n \log(n) \cdot \log\log(K_{\text{max}})}{\log\log(K_{\text{max}})}\right)$</td>
</tr>
<tr>
<td>Landmarks-To-All</td>
<td>$O\left(\rho n^2 (K^* + 1)U\right)$</td>
<td>$O\left(\rho n^2 \log(n) \cdot \log\log(K_{\text{max}}) \cdot (K^* + 1) TDP\right)$</td>
<td>$O\left((\frac{1}{\rho})^{R+1} \cdot \log\left(\frac{1}{\rho}\right) \cdot \log\log(K_{\text{max}})\right)$</td>
</tr>
</tbody>
</table>

- $K_{\text{max}} \in O(1)$
- $\rho = n^{-\alpha}$
- $U, TDP \in O(1)$
- $K^* \in O(\text{polylog}(n))$
TD Distance Oracle: Towards Implementation...

![Map of Berlin showing route planning](https://via.placeholder.com/150)

<table>
<thead>
<tr>
<th></th>
<th>8:00 – 20:00</th>
<th>20:00 – 08:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel Time</td>
<td>46.5 mins</td>
<td>45.1 mins</td>
</tr>
<tr>
<td>FCA Response Time</td>
<td>< 0.2 ms</td>
<td>< 0.2 ms</td>
</tr>
<tr>
<td>RQA(1) Response Time</td>
<td>< 1 ms</td>
<td>< 1 ms</td>
</tr>
<tr>
<td>P2P Dist. Summary Construction</td>
<td>120 ms</td>
<td></td>
</tr>
<tr>
<td>One-To-All Dist. Summary Construction</td>
<td>< 40 sec</td>
<td></td>
</tr>
</tbody>
</table>
TD Distance Oracle: Towards Implementation...
Related Literature

Any Questions?

Next Lecture

Time-Dependent Speed-up Techniques

Wednesday, July 2 2014, 11:30