
Algorithms for Route Planning
KIT/ITI, Lectures 14-15: Introduction to TDSP & TD-Oracles

Spyros Kontogiannis

Assistant Professor at Department of
Computer Science & Engineering

Guest Professor at Institute of
Theoretical Informatics (KIT/ITI)

June 11-18, 2014

Time DependentTime Dependent
Shortest PathShortest Path

S. Kontogiannis: TDSP Basics [2 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

Why Time-Dependent Shortest Paths?

Real-life networks: Elements demostrate temporal behavior.

Graph elements added/removed in real-time. /∗ Dynamic Shortest Path ∗/

Metric demonstrates stochastic behavior. /∗ Sthochastic Shortest Path ∗/

Graph is fixed, metric changes with the value of a parameter
γ ∈ [0,1] in a predetermined fashion. /∗ Parametric Shortest Path ∗/

Graph is fixed, metric changes over time in a predetermined
fashion. /∗ Time-Dependent Shortest Path ∗/

I Arcs are allowed to become occasionally unavailable (e.g., due
to periodic maintenance, saving consumption of resources, etc),
for predetermined unavailability time-intervals (discrete domain).

I Arc lengths (e.g., traversal-time / consumption) change with
departure-time from tail which is treated as a real-valued
variable (functions with continuous domain, but not necessarily
continuous range).

S. Kontogiannis: TDSP Basics [3 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

0.9

0.1

0.3

2.1

2

1

0

0.1

0.4

1.3

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)? Eg: to = 0

Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

8.1

2.1

9.3

5.1

3

1

1

3.1

4

8.2

u

v

o d

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0

Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 1 (Earliest Arrivals)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 How would you commute as fast as possible from o to d, for
a given departure time (from o)?

Eg: to = 0Eg: to = 1

Q2 What if you are not sure about the departure time?

A shortest od−path =


orange path, if to ∈ [0,0.03]
yellow path, if to ∈ [0.03,2.9]
purple path, if to ∈ [2.9,+∞)

S. Kontogiannis: TDSP Basics [4 / 69]

TDSP :: EXAMPLE 2 (Waiting Times)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions
of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present
at o at time to <1. Otherwise, traverse od immediately.

S. Kontogiannis: TDSP Basics [5 / 69]

TDSP :: EXAMPLE 2 (Waiting Times)

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Instance with ARC-ARRIVAL functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions
of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present
at o at time to <1. Otherwise, traverse od immediately.

S. Kontogiannis: TDSP Basics [5 / 69]

TDSP :: EXAMPLE 2 (Waiting Times)

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions
of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present
at o at time to <1. Otherwise, traverse od immediately.

S. Kontogiannis: TDSP Basics [5 / 69]

TDSP :: EXAMPLE 2 (Waiting Times)

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q1 Would waiting-at-nodes be worth it?

A1 NO, since arrival-time functions are non-decreasing functions
of departure-time from origin.

Q2 Would waiting-at-nodes be worth it in this case?

A2 YES, wait until time 1 and then traverse od, if already present
at o at time to <1. Otherwise, traverse od immediately.

S. Kontogiannis: TDSP Basics [5 / 69]

Waiting Policies

Unrestricted Waiting (UW) Unlimited waiting is allowed at every
node along an od-path.

Origin Waiting (OW) Unlimited waiting is only allowed at the
origin node of each od-path.

Forbidden Waiting (FW) No waiting is allowed at any node of
each od-path.

Depending on the waiting policy, the scheduler has to
decide not only for an optimal connecting path (that as-
sures the earliest arrival at the destination), but also for
the appropriate optimal waiting times at the nodes along
this path.

S. Kontogiannis: TDSP Basics [6 / 69]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay.

o d
δ 3− δ
o u o d
δ 1+δ

2
1
2

+ 1+δ
4

3− 1
2
− 1+δ

4
>2

o u o u o d
δ 1+δ

2
1
2

+ 1+δ
4

1
2

+ 1
4

+ 1+δ
8

1
2

+ 1
4

+ 1
8

+ 1+δ
16

3− 1
2
− 1

4
− 1

8
− 1+δ

16
>2

o u o <u, o, . . . , o, u, o > d
δ 1+δ

2
1
2

+ 1+δ
4

↑
∑∞

k=1

(
1
2

)k
= 1 td ↓ 2

Subpath optimality and shortest path simplicity not guar-
anteed for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis: TDSP Basics [7 / 69]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay.
o d
δ 3− δ

o u o d
δ 1+δ

2
1
2

+ 1+δ
4

3− 1
2
− 1+δ

4
>2

o u o u o d
δ 1+δ

2
1
2

+ 1+δ
4

1
2

+ 1
4

+ 1+δ
8

1
2

+ 1
4

+ 1
8

+ 1+δ
16

3− 1
2
− 1

4
− 1

8
− 1+δ

16
>2

o u o <u, o, . . . , o, u, o > d
δ 1+δ

2
1
2

+ 1+δ
4

↑
∑∞

k=1

(
1
2

)k
= 1 td ↓ 2

Subpath optimality and shortest path simplicity not guar-
anteed for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis: TDSP Basics [7 / 69]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay.

o d
δ 3− δ

o u o d
δ 1+δ

2
1
2

+ 1+δ
4

3− 1
2
− 1+δ

4
>2

o u o u o d
δ 1+δ

2
1
2

+ 1+δ
4

1
2

+ 1
4

+ 1+δ
8

1
2

+ 1
4

+ 1
8

+ 1+δ
16

3− 1
2
− 1

4
− 1

8
− 1+δ

16
>2

o u o <u, o, . . . , o, u, o > d
δ 1+δ

2
1
2

+ 1+δ
4

↑
∑∞

k=1

(
1
2

)k
= 1 td ↓ 2

Subpath optimality and shortest path simplicity not guar-
anteed for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis: TDSP Basics [7 / 69]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay.

o d
δ 3− δ
o u o d
δ 1+δ

2
1
2

+ 1+δ
4

3− 1
2
− 1+δ

4
>2

o u o u o d
δ 1+δ

2
1
2

+ 1+δ
4

1
2

+ 1
4

+ 1+δ
8

1
2

+ 1
4

+ 1
8

+ 1+δ
16

3− 1
2
− 1

4
− 1

8
− 1+δ

16
>2

o u o <u, o, . . . , o, u, o > d
δ 1+δ

2
1
2

+ 1+δ
4

↑
∑∞

k=1

(
1
2

)k
= 1 td ↓ 2

Subpath optimality and shortest path simplicity not guar-
anteed for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis: TDSP Basics [7 / 69]

TDSP :: EXAMPLE 2 (Waiting Times) – contd.

(1-x)/2, 0 x < 1
1, x 1

3 – 2x, 0 x < 1
1, x

(1-x)/2, 0 x < 1
1, x 1

u

o d

0 < to = δ < 1

Instance with ARC DELAY functions

(1+x)/2, 0 x < 1
x+1, x 1

3 – x, 0 x < 1
x+1, x

(1+x)/2, 0 x < 1
x+1, x 1

u

o d

0 < to = δ < 1

Instance with ARC ARRIVAL functions

Q3 What if waiting-at-nodes is forbidden?

A3 An infinite, non-simple TD shortest od-path with finite delay.

o d
δ 3− δ
o u o d
δ 1+δ

2
1
2

+ 1+δ
4

3− 1
2
− 1+δ

4
>2

o u o u o d
δ 1+δ

2
1
2

+ 1+δ
4

1
2

+ 1
4

+ 1+δ
8

1
2

+ 1
4

+ 1
8

+ 1+δ
16

3− 1
2
− 1

4
− 1

8
− 1+δ

16
>2

o u o <u, o, . . . , o, u, o > d
δ 1+δ

2
1
2

+ 1+δ
4

↑
∑∞

k=1

(
1
2

)k
= 1 td ↓ 2

Subpath optimality and shortest path simplicity not guar-
anteed for TDSP, if waiting-at-nodes is forbidden.

S. Kontogiannis: TDSP Basics [7 / 69]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

D[od](t) =

{
100, t ≤ 10,
1, t >10

⇒ Arr[od](t) =

{
t + 100, t ≤ 10,
t + 1, t >10

But this is due to the pathological discontinuity of the delay /
arrival-time function.

They always exist for continuous delay functions, as well as
for (possibly discontinuous) pwl functions for which:

limt↓tu D[uv](t) < limt↑tu D[uv](t)⇒ D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

D[od](t) =

{
100, t ≤ 10,
1, t >10

⇒ Arr[od](t) =

{
t + 100, t ≤ 10,
t + 1, t >10

But this is due to the pathological discontinuity of the delay /
arrival-time function.

They always exist for continuous delay functions, as well as
for (possibly discontinuous) pwl functions for which:

limt↓tu D[uv](t) < limt↑tu D[uv](t)⇒ D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

D[od](t) =

{
100, t ≤ 10,
1, t >10

⇒ Arr[od](t) =

{
t + 100, t ≤ 10,
t + 1, t >10

But this is due to the pathological discontinuity of the delay /
arrival-time function.

They always exist for continuous delay functions, as well as
for (possibly discontinuous) pwl functions for which:

limt↓tu D[uv](t) < limt↑tu D[uv](t)⇒ D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

D[od](t) =

{
100, t ≤ 10,
1, t >10

⇒ Arr[od](t) =

{
t + 100, t ≤ 10,
t + 1, t >10

But this is due to the pathological discontinuity of the delay /
arrival-time function.

They always exist for continuous delay functions, as well as
for (possibly discontinuous) pwl functions for which:

limt↓tu D[uv](t) < limt↑tu D[uv](t)⇒ D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]

Inexistence of Optimal Waiting Times

Do optimal waiting times at nodes always exist?

Unfortunately NOT! EXAMPLE:

D[od](t) =

{
100, t ≤ 10,
1, t >10

⇒ Arr[od](t) =

{
t + 100, t ≤ 10,
t + 1, t >10

But this is due to the pathological discontinuity of the delay /
arrival-time function.

They always exist for continuous delay functions, as well as
for (possibly discontinuous) pwl functions for which:

limt↓tu D[uv](t) < limt↑tu D[uv](t)⇒ D[uv](tu) = limt↓tu D[uv](t)

From now on we assume that optimal waiting times at
nodes exist (and are polynomial-time computable).

S. Kontogiannis: TDSP Basics [8 / 69]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay
functions are at least equal to (greater than) −1.

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property).

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately
available) (slower) local train.

FIFO arc delay example Non-FIFO arc delay example

S. Kontogiannis: TDSP Basics [9 / 69]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay
functions are at least equal to (greater than) −1.

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property).

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately
available) (slower) local train.

FIFO arc delay example Non-FIFO arc delay example

S. Kontogiannis: TDSP Basics [9 / 69]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay
functions are at least equal to (greater than) −1.

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property).

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately
available) (slower) local train.

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

FIFO arc delay example

Non-FIFO arc delay example

S. Kontogiannis: TDSP Basics [9 / 69]

FIFO vs non-FIFO Arc Delays

(Strict) FIFO Arc-Delays: The slopes of all the arc-delay
functions are at least equal to (greater than) −1.

Equivalently: Arc-arrival functions are
non-decreasing (aka no-overtaking property).

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

Non-FIFO Arc-Delays: Possibly preferrable to wait for some
period at the tail of an arc, before trespassing it. E.g.:

I Wait for the next (faster) IC train, than use the (immediately
available) (slower) local train.

2x – 5

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

(-8/13)x + 173/13

2+x

0

departure tu from tail[uv]

ar
c

de
la

y

26

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

FIFO arc delay example Non-FIFO arc delay example
S. Kontogiannis: TDSP Basics [9 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis: TDSP Basics [10 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis: TDSP Basics [10 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis: TDSP Basics [10 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis: TDSP Basics [10 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!

S. Kontogiannis: TDSP Basics [10 / 69]

Non-FIFO+UW Network ⇔ FIFO Network

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

(4/5)x + 1

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 24

x + 2

0

departure tu from tail[uv]

ar
c

de
la

y

26

-2x + 33

-x + 17

Non-FIFO+UW arc delay function Equivalent FIFO (+FW) arc delay function

A ‘‘scan’’ of the line with slope −1 from right to left suffices.

I Shortcircuit pieces of the arc-delay function lying above the line
of slope −1.

Identical arrival-times in Non-FIFO+UW and FIFO instances.

Need to consider latest departures given the arrival times, in
order to compute the optimal waiting times in the original
Non-FIFO+UW instance.

Interested in programming the transformation? Let me know!
S. Kontogiannis: TDSP Basics [10 / 69]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V,A) with succinctly
represented arc-travel-time functions
(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:

Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d,
Arr[p] = Arr[ak] ◦ · · · ◦Arr[a1] (composition of the involved
arc-arrivals). D[p] = Arr[p]− ID.

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d] = minp∈Po,d { Arr[p] }, D[o, d] = Arr[o, d]− ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis: TDSP Basics [11 / 69]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V,A) with succinctly
represented arc-travel-time functions
(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:

Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d,
Arr[p] = Arr[ak] ◦ · · · ◦Arr[a1] (composition of the involved
arc-arrivals). D[p] = Arr[p]− ID.

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d] = minp∈Po,d { Arr[p] }, D[o, d] = Arr[o, d]− ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis: TDSP Basics [11 / 69]

Variants of Time-Dependent Shortest Path

DEFINITION: Time-Dependent Shortest Paths

INPUT:

Directed graph G = (V,A) with succinctly
represented arc-travel-time functions
(D[a])a∈A. (Arr[a] = ID + D[a])a∈A.

D[uv](tu)
v

= Arr[uv](tu)
= tu +

D[uv](tu)

u

DEFINITIONS:

Path arrival / travel-time functions: ∀p = (a1, . . . , ak) ∈ Po,d,
Arr[p] = Arr[ak] ◦ · · · ◦Arr[a1] (composition of the involved
arc-arrivals). D[p] = Arr[p]− ID.

Earliest-arrival / Shortest-travel-time functions:
Arr[o, d] = minp∈Po,d { Arr[p] }, D[o, d] = Arr[o, d]− ID.

GOAL1: For departure-time to from o, determine td = Arr[o, d](to).

GOAL2: Provide a succinct representation of Arr[o, d] (or D[o, d]).

S. Kontogiannis: TDSP Basics [11 / 69]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)!
Possessing the entire distance function D[o, d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the minimum travel /
ealriest-arrival time within a window of possible departure
times.

2 Need to respond efficiently (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in large-scale
nets, for any departure time and od−pair.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time
responses to queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires
to precompute functions instead of scalars.

S. Kontogiannis: TDSP Basics [12 / 69]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)!
Possessing the entire distance function D[o, d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the minimum travel /
ealriest-arrival time within a window of possible departure
times.

2 Need to respond efficiently (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in large-scale
nets, for any departure time and od−pair.

Preprocess (offline) towards GOAL2 (succinct representations of
selected D[o, d] functions) in order to support real-time
responses to queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires
to precompute functions instead of scalars.

S. Kontogiannis: TDSP Basics [12 / 69]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)!
Possessing the entire distance function D[o, d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the minimum travel /
ealriest-arrival time within a window of possible departure
times.

2 Need to respond efficiently (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in large-scale
nets, for any departure time and od−pair.

Preprocess (offline) towards GOAL2 (succinct representations
of selected D[o, d] functions) in order to support real-time
responses to queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires
to precompute functions instead of scalars.

S. Kontogiannis: TDSP Basics [12 / 69]

Why Care for Both Goals?

1 Not always sure when to depart (still think about it)!
Possessing the entire distance function D[o, d] allows for easy
answers (e.g., via look-ups) in several queries for varying
departure times, or even finding the minimum travel /
ealriest-arrival time within a window of possible departure
times.

2 Need to respond efficiently (in theory: sublinear time, in
practice: micro/miliseconds) to arbitrary queries in large-scale
nets, for any departure time and od−pair.

Preprocess (offline) towards GOAL2 (succinct representations
of selected D[o, d] functions) in order to support real-time
responses to queries of GOAL1.

Preprocessing of distance summaries (as in static case) requires
to precompute functions instead of scalars.

S. Kontogiannis: TDSP Basics [12 / 69]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in
Non-FIFO+UW networks (given that optimal waiting times
exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or
piecewise continuous with negative discontinuities1, then the
solution (path+waiting policy) in non-FIFO+UW network
induces a solution in non-FIFO+OW network using the same
path and appropriate waiting time only at the origin.
[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general)
subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d]
is non-decreasing (increasing).

1This means that: ∀tu, limt↑tu D[uv](t) ≥ limt↓tu D[uv](t))
S. Kontogiannis: TDSP Basics [13 / 69]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in
Non-FIFO+UW networks (given that optimal waiting times
exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or
piecewise continuous with negative discontinuities1, then the
solution (path+waiting policy) in non-FIFO+UW network
induces a solution in non-FIFO+OW network using the same
path and appropriate waiting time only at the origin.
[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general)
subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d]
is non-decreasing (increasing).

1This means that: ∀tu, limt↑tu D[uv](t) ≥ limt↓tu D[uv](t))
S. Kontogiannis: TDSP Basics [13 / 69]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in
Non-FIFO+UW networks (given that optimal waiting times
exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or
piecewise continuous with negative discontinuities1, then the
solution (path+waiting policy) in non-FIFO+UW network
induces a solution in non-FIFO+OW network using the same
path and appropriate waiting time only at the origin.

[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general)
subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d]
is non-decreasing (increasing).

1This means that: ∀tu, limt↑tu D[uv](t) ≥ limt↓tu D[uv](t))
S. Kontogiannis: TDSP Basics [13 / 69]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in
Non-FIFO+UW networks (given that optimal waiting times
exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or
piecewise continuous with negative discontinuities1, then the
solution (path+waiting policy) in non-FIFO+UW network
induces a solution in non-FIFO+OW network using the same
path and appropriate waiting time only at the origin.
[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general)
subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d]
is non-decreasing (increasing).

1This means that: ∀tu, limt↑tu D[uv](t) ≥ limt↓tu D[uv](t))
S. Kontogiannis: TDSP Basics [13 / 69]

Consequencies of Different Network Models

[Dreyfus (1969)] Prefix-subpath optimality holds in
Non-FIFO+UW networks (given that optimal waiting times
exist). The same applies for the FIFO networks.

[Orda-Rom (1990)] Prefix-subpath optimality does NOT hold in
non-FIFO+FW networks (cf. EXAMPLE of Slide 7).

[Orda-Rom (1990)] If arc-delay functions are continuous, or
piecewise continuous with negative discontinuities1, then the
solution (path+waiting policy) in non-FIFO+UW network
induces a solution in non-FIFO+OW network using the same
path and appropriate waiting time only at the origin.
[Kontogiannis-Zaroliagis (2013)] In strict-FIFO networks, (general)
subpath optimality holds also in the time-dependent case.

[Foschini-Hershberger-Suri (2011)] In (strict) FIFO networks, Arr[o, d]
is non-decreasing (increasing).

1This means that: ∀tu, limt↑tu D[uv](t) ≥ limt↓tu D[uv](t))
S. Kontogiannis: TDSP Basics [13 / 69]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):

I TD variants of Dijkstra and Bellman-Ford algorithms work
correctly in FIFO networks, and in non-FIFO+UW networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay functions are evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in non-FIFO+FW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay
functions are evaluated). Determining existence of a finite-hop
solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial on number of ‘‘elementary’’ functional
operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis: TDSP Basics [14 / 69]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):
I TD variants of Dijkstra and Bellman-Ford algorithms work

correctly in FIFO networks, and in non-FIFO+UW networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay functions are evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in non-FIFO+FW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay
functions are evaluated). Determining existence of a finite-hop
solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):

I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for
non-FIFO+UW networks.

Complexity is polynomial on number of ‘‘elementary’’ functional
operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis: TDSP Basics [14 / 69]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):
I TD variants of Dijkstra and Bellman-Ford algorithms work

correctly in FIFO networks, and in non-FIFO+UW networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay functions are evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in non-FIFO+FW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay
functions are evaluated). Determining existence of a finite-hop
solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):
I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for

non-FIFO+UW networks.

Complexity is polynomial on number of ‘‘elementary’’ functional
operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!

S. Kontogiannis: TDSP Basics [14 / 69]

Algorithms for TDSP

For arbitrary (o, d, to) queries (GOAL1):
I TD variants of Dijkstra and Bellman-Ford algorithms work

correctly in FIFO networks, and in non-FIFO+UW networks.
Time complexity slightly worse (when updating arc labels, some
arc-delay functions are evaluated).

I TD variants of Dijkstra and Bellman-Ford algorithms do NOT
work correctly in non-FIFO+FW networks. Time complexity
slightly worse (when updating arc labels, some arc-delay
functions are evaluated). Determining existence of a finite-hop
solution is NP−hard.

For arbitrary (o, d) queries (GOAL2):
I [Orda-Rom (1990)] Propose a TD-variant of Bellman-Ford, for

non-FIFO+UW networks.

Complexity is polynomial on number of ‘‘elementary’’ functional
operations. (EVAL, LINEAR COMBINATION, MIN, COMPOSITION)

Not so ‘‘elementary’’ operations after all (see next slides)!!!
S. Kontogiannis: TDSP Basics [14 / 69]

Algorithms for TDSPAlgorithms for TDSP
in FIFO, Continuous, Pwl Instancesin FIFO, Continuous, Pwl Instances

S. Kontogiannis: TDSP Basics [15 / 69]

Input/Output DataInput/Output Data

S. Kontogiannis: TDSP Basics [16 / 69]

PWL Arc Delays

Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

S. Kontogiannis: TDSP Basics [17 / 69]

PWL Arc Delays

Forward Description (as function of departure times from origin)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Reverse Description (as function of arrival times at destination)

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

arrival tv at head[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48 50-2-4

ooo

ooo
0

S. Kontogiannis: TDSP Basics [17 / 69]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R, −→D [uv](tu) =



4
3
tu + 1, 0 ≤ tu mod T ≤ 3

5, 3 ≤ tu mod T ≤ 5

2tu − 5, 5 ≤ tu mod T ≤ 7

− 8
13

tu + 173
13
, 7 ≤ tu mod T ≤ 20

1, 20 ≤ tu mod T ≤ 24

Representation: Array of (slope-constant) triples

(dep.time - delay) pairs

equipped
with advanced (eg, binary / predecessor) search capabilities.(
4
3
,1,3

)
(0,5,5) (2,−5,7)

(
− 8

13
, 173

13
,20

)
(0,1,24)

(0,1) (3,5) (5,5) (7,9) (20,1)

S. Kontogiannis: TDSP Basics [18 / 69]

How to Store/Access PWL Arc Delays

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

Exploit periodicity and piecewise-linearity:

∀tu ∈ R, −→D [uv](tu) =



4
3
tu + 1, 0 ≤ tu mod T ≤ 3

5, 3 ≤ tu mod T ≤ 5

2tu − 5, 5 ≤ tu mod T ≤ 7

− 8
13

tu + 173
13
, 7 ≤ tu mod T ≤ 20

1, 20 ≤ tu mod T ≤ 24

Representation: Array of

(slope-constant) triples

(dep.time - delay) pairs equipped
with advanced (eg, binary / predecessor) search capabilities.

(
4
3
,1,3

)
(0,5,5) (2,−5,7)

(
− 8

13
, 173

13
,20

)
(0,1,24)

(0,1) (3,5) (5,5) (7,9) (20,1)

S. Kontogiannis: TDSP Basics [18 / 69]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at
which D[e] changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o
s.t. earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e].

Minimization Breakpoint (MB): Departure-time bv from origin
o s.t. Arr[o, v] changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr[o, d].

S. Kontogiannis: TDSP Basics [19 / 69]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at
which D[e] changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o
s.t. earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e].

Minimization Breakpoint (MB): Departure-time bv from origin
o s.t. Arr[o, v] changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr[o, d].

S. Kontogiannis: TDSP Basics [19 / 69]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at
which D[e] changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o
s.t. earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e].

Minimization Breakpoint (MB): Departure-time bv from origin
o s.t. Arr[o, v] changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr[o, d].

S. Kontogiannis: TDSP Basics [19 / 69]

Piecewise Linearity of Path / Earliest Arrivals

Primitive Breakpoint (PB): Departure-time b′e from head[e] at
which D[e] changes slope (assume K ∈ O(m) PBs in total).

Primitive Image (PI): Latest departure-time be from origin o
s.t. earliest-arrival-time b′e = Arr[o, tail(e)](be) coincides with a
breakpoint for D[e].

Minimization Breakpoint (MB): Departure-time bv from origin
o s.t. Arr[o, v] changes slope due to application of MIN.

Periodicity of arc-delays implies periodicity of earliest-arrival
function Arr[o, d].

S. Kontogiannis: TDSP Basics [19 / 69]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing
shortest-travel-time functions) in overlay abstractions of the
road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d]
(or D[o, d]), even for linear arc-delays and planar graphs.

We need only O
(
1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε)

upper approximation D[o, d] of D[o, d], for the case of linear
arc-delays.

S. Kontogiannis: TDSP Basics [20 / 69]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing
shortest-travel-time functions) in overlay abstractions of the
road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d]
(or D[o, d]), even for linear arc-delays and planar graphs.

We need only O
(
1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε)

upper approximation D[o, d] of D[o, d], for the case of linear
arc-delays.

S. Kontogiannis: TDSP Basics [20 / 69]

Known Issues wrt Representations

Same representation both for arc-arrival (or delay) functions
and earliest-arrival (or shortest-travel-time) functions.

I Convenient for handling artificial arcs (representing
shortest-travel-time functions) in overlay abstractions of the
road network.

Too many (worst case: nΘ(log(n))) breakpoints to store Arr[o, d]
(or D[o, d]), even for linear arc-delays and planar graphs.

We need only O
(
1
ε · log

(
Dmax[o,d]
Dmin[o,d]

))
breakpoints for a (1 + ε)

upper approximation D[o, d] of D[o, d], for the case of linear
arc-delays.

S. Kontogiannis: TDSP Basics [20 / 69]

Complexity of TDSPComplexity of TDSP

S. Kontogiannis: TDSP Basics [21 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of monotone, pwl functions f and g, both their
composition f ◦ g and their minimum min{f, g} are monotone, pwl
functions as well.

Parametric Shortest Path (PSP): A Similar Problem

INPUT: G = (V,A), o, d ∈ V. A linear length function
`[a](γ) = λ[a] · γ + μ[a] per edge a ∈ A (negative lengths are
allowed).
DEFINITIONS:

I Path-length: ∀p ∈ G, L[p](γ) =
∑

a∈p `[a](γ).

I Min-length: ∀x, y ∈ V, L[x, y](γ) = minp∈Px,y{L[p](γ)}.

GOAL1: Compute L[o, d] for a given value of γ.
GOAL2: Compute L[o, d] for all (real) values of γ.

S. Kontogiannis: TDSP Basics [22 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (I)

A Useful Observation (L2.1-2.2 in FHS11)

For any pair of monotone, pwl functions f and g, both their
composition f ◦ g and their minimum min{f, g} are monotone, pwl
functions as well.

Parametric Shortest Path (PSP): A Similar Problem

INPUT: G = (V,A), o, d ∈ V. A linear length function
`[a](γ) = λ[a] · γ + μ[a] per edge a ∈ A (negative lengths are
allowed).
DEFINITIONS:

I Path-length: ∀p ∈ G, L[p](γ) =
∑

a∈p `[a](γ).

I Min-length: ∀x, y ∈ V, L[x, y](γ) = minp∈Px,y{L[p](γ)}.

GOAL1: Compute L[o, d] for a given value of γ.
GOAL2: Compute L[o, d] for all (real) values of γ.

S. Kontogiannis: TDSP Basics [22 / 69]

TDSP vs PSP?

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

TDSP: Delay composition along paths PSP: Delay addition along paths

S. Kontogiannis: TDSP Basics [23 / 69]

TDSP vs PSP?

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

Instance with ARC DELAY functions

Arr[oud](to) = Arr[ud](Arr[ou](to)) = 6to + 2.2

Arr[ovd](to) = Arr[vd](Arr[ov](to)) = 6to + 6.1
Arr[ouvd](to) = Arr[vd](Arr[uv](Arr[ou](to))) = 36to+1.3

Arr[ovud](to) = Arr[ud](Arr[vu](Arr[ov](to))) = 4to+8

3x+0.1

3x+0.1

4x

2x+2

2x+2

x+1

u

v

o d

L[oud](t) = 3t + 2.1

L[ovd](t) = 3t + 2.1

L[ouvd](t) = 7t+0.2

L[ovud](t) = 2t+5

2x+0.1

2x+0.1

3x

x+2

x+2

1

u

v

o d

TDSP: Delay composition along paths PSP: Delay addition along paths

S. Kontogiannis: TDSP Basics [23 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (II)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with nΩ(log n) BPs in L[o, d].

Main Steps for TDSP Lower Bound:

1 Assure non-negativity of lengths in the PSP instance, in the
departure-time interval of interest.

2 Scale properly the PSP instance.

3 Consider the corresponding TDSP instance, with parameter γ
handled as time.

4 Prove that L[o, d] (for PSP instance) and D[o, d] (for TDSP
instance) have (almost) the same number of BPs.

S. Kontogiannis: TDSP Basics [24 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (II)

Known Fact [Carstensen (1984), Mulmuley-Shah (2000)]

There exists (linear) PSP-instance with nΩ(log n) BPs in L[o, d].

Main Steps for TDSP Lower Bound:

1 Assure non-negativity of lengths in the PSP instance, in the
departure-time interval of interest.

2 Scale properly the PSP instance.

3 Consider the corresponding TDSP instance, with parameter γ
handled as time.

4 Prove that L[o, d] (for PSP instance) and D[o, d] (for TDSP
instance) have (almost) the same number of BPs.

S. Kontogiannis: TDSP Basics [24 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence
〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc

lengths by max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-lengths in PSP by a proper positive constant μ.
3 For the TDSP resulting from the scaled PSP when considering
γ as departure time, prove that ∀j ∈ {1, . . . , N− 1}, at ‘‘time’’
γ̄j ≡

γj+γj+1

2
both instances return the same shortest od−path pj.

S. Kontogiannis: TDSP Basics [25 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence
〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc

lengths by max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-lengths in PSP by a proper positive constant μ.
3 For the TDSP resulting from the scaled PSP when considering
γ as departure time, prove that ∀j ∈ {1, . . . , N− 1}, at ‘‘time’’
γ̄j ≡

γj+γj+1

2
both instances return the same shortest od−path pj.

S. Kontogiannis: TDSP Basics [25 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence
〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc

lengths by max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-lengths in PSP by a proper positive constant μ.

3 For the TDSP resulting from the scaled PSP when considering
γ as departure time, prove that ∀j ∈ {1, . . . , N− 1}, at ‘‘time’’
γ̄j ≡

γj+γj+1

2
both instances return the same shortest od−path pj.

S. Kontogiannis: TDSP Basics [25 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (III)

1 Construct a layered-graph, in a path-length-preserving manner:

0 0 0

0 0 0

0 0 0

0 0 0

u4

v4

w4

z4

u3

v3

w3

z3

u2

v2

w2

z2

u1

v1

w1

z1

o du dvo

w

z

Assure non-negativity of arc-lengths in PSP: For the sequence
〈γ1, γ2, . . . , γN〉 of breakpoints (BPs) wrt L[o, d], shift arc

lengths by max{0,−Lmin}, Lmin = minγ∈[γ1,γN],a∈A(G){L[a](γ)} .

2 Scale arc-lengths in PSP by a proper positive constant μ.
3 For the TDSP resulting from the scaled PSP when considering
γ as departure time, prove that ∀j ∈ {1, . . . , N− 1}, at ‘‘time’’
γ̄j ≡

γj+γj+1

2
both instances return the same shortest od−path pj.

S. Kontogiannis: TDSP Basics [25 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . , N− 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′j = minq∈Ps,d−{pj}{L[q](γ̄j), ∆j = L′j − L̄j >0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min

2n δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}

Arc-delay perturbations: Small-enough so as not to affect
optimality of pj in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj `[a](γ̄j + εa) ≤ L̄j +

∆j
2
<

L̄j+L′j
2

<L′j ≤
∑

a∈q `[a](γ̄j), ∀q 6= pj

Departure-time perturbations: Small-enough so as to cause not
too large arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis: TDSP Basics [26 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . , N− 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′j = minq∈Ps,d−{pj}{L[q](γ̄j), ∆j = L′j − L̄j >0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min

2n δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
Arc-delay perturbations: Small-enough so as not to affect
optimality of pj in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj `[a](γ̄j + εa) ≤ L̄j +

∆j
2
<

L̄j+L′j
2

<L′j ≤
∑

a∈q `[a](γ̄j), ∀q 6= pj

Departure-time perturbations: Small-enough so as to cause not
too large arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis: TDSP Basics [26 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (IV)

How it works: At given j ∈ {1, . . . , N− 1}:

γ̄j =
γj+γj+1

2
, L̄j = L[pj](γ̄j) = L[o, d](γ̄j).

L′j = minq∈Ps,d−{pj}{L[q](γ̄j), ∆j = L′j − L̄j >0.

∆min = minj∈[N−1] ∆j ε∗ = ∆min

2n δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
Arc-delay perturbations: Small-enough so as not to affect
optimality of pj in PSP instance: ∀εa ∈ (0, ε∗],∑
a∈pj `[a](γ̄j + εa) ≤ L̄j +

∆j
2
<

L̄j+L′j
2

<L′j ≤
∑

a∈q `[a](γ̄j), ∀q 6= pj

Departure-time perturbations: Small-enough so as to cause not
too large arc-delay perturbations: ∀a ∈ A, ∀δa ∈ (0, δ∗],

D[a](γ̄j + δa) = `[a](γ̄j + δa) ≤ `[a](γ̄j) + ε∗

S. Kontogiannis: TDSP Basics [26 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . , N− 1}:
Scale-invariance of time-perturbations: Scaling of all arc-delays
by a positive number μ >0 does not affect at all the range of

allowed time-perturbations δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by μ = δ∗
2(Lmax+∆min)

.

Handle the PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time
perturbations: Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) <γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj:

D[pj](γ̄j) ≤ μ · L̄j + μ · (n−1)∆min

2n

< μ · L′j − μ (n−1)∆min

2n ≤ D[q](γ̄j), ∀q 6= pj
QED

S. Kontogiannis: TDSP Basics [27 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . , N− 1}:
Scale-invariance of time-perturbations: Scaling of all arc-delays
by a positive number μ >0 does not affect at all the range of

allowed time-perturbations δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by μ = δ∗
2(Lmax+∆min)

.

Handle the PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time
perturbations: Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) <γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj:

D[pj](γ̄j) ≤ μ · L̄j + μ · (n−1)∆min

2n

< μ · L′j − μ (n−1)∆min

2n ≤ D[q](γ̄j), ∀q 6= pj
QED

S. Kontogiannis: TDSP Basics [27 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . , N− 1}:
Scale-invariance of time-perturbations: Scaling of all arc-delays
by a positive number μ >0 does not affect at all the range of

allowed time-perturbations δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by μ = δ∗
2(Lmax+∆min)

.

Handle the PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time
perturbations: Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) <γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj:

D[pj](γ̄j) ≤ μ · L̄j + μ · (n−1)∆min

2n

< μ · L′j − μ (n−1)∆min

2n ≤ D[q](γ̄j), ∀q 6= pj
QED

S. Kontogiannis: TDSP Basics [27 / 69]

Lower Bound: |BP(Arrpwl[o, d])| = nΩ(log n) (V)

How it works (continued): At given j ∈ {1, . . . , N− 1}:
Scale-invariance of time-perturbations: Scaling of all arc-delays
by a positive number μ >0 does not affect at all the range of

allowed time-perturbations δ∗ = mina∈A:λ[a] 6=0

{
∆min

2n|λ[a]|

}
.

TDSP-instance: Scale the PSP-instance by μ = δ∗
2(Lmax+∆min)

.

Handle the PSP-parameter γ as time.

Proper scaling guarantees sufficiently small departure-time
perturbations: Arr[pj](γ̄j) = γ̄j + D[pj](γ̄j) <γ̄j + δ∗.

∴ Small time-perturbations guarantee sufficiently small arc-delay
perturbations, and thus, optimality of pj:

D[pj](γ̄j) ≤ μ · L̄j + μ · (n−1)∆min

2n

< μ · L′j − μ (n−1)∆min

2n ≤ D[q](γ̄j), ∀q 6= pj
QED

S. Kontogiannis: TDSP Basics [27 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj <tj+1,
Arr[o, d] forms a concave chain.

WHY?
Any arc-delay is linear (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear
functions, thus linear.
Arr[o, d] is the application of the min operator among linear
functions, thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis: TDSP Basics [28 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj <tj+1,
Arr[o, d] forms a concave chain.

WHY?
Any arc-delay is linear (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear
functions, thus linear.
Arr[o, d] is the application of the min operator among linear
functions, thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis: TDSP Basics [28 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj <tj+1,
Arr[o, d] forms a concave chain.

WHY?
Any arc-delay is linear (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear
functions, thus linear.
Arr[o, d] is the application of the min operator among linear
functions, thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis: TDSP Basics [28 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj <tj+1,
Arr[o, d] forms a concave chain.

WHY?
Any arc-delay is linear (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear
functions, thus linear.
Arr[o, d] is the application of the min operator among linear
functions, thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

S. Kontogiannis: TDSP Basics [28 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (I)

Observation: (L4.1 in FHS11)

Between any two consecutive Primitive Images (PIs) tj <tj+1,
Arr[o, d] forms a concave chain.

WHY?
Any arc-delay is linear (no primitive breakpoints occur at
edges), if the departure-time domain is restricted to (tj , tj+1).

Any path-arrival Arr[p](t) function is a composition of linear
functions, thus linear.
Arr[o, d] is the application of the min operator among linear
functions, thus concave.

Corollary: |BP(Arrpwl[o, d])| ≤ #different path slopes

Is this enough?

NO!!!

0

(-1+p1)*X

v3v2 ds vn-1vn-2

0

(-1+p2)*X

0

(-1+pn-2)*X

0

(-1+pn-1)*X

ooo

ooo

S. Kontogiannis: TDSP Basics [28 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in
FHS11)

|BP(Arrpwl[o, d])| ≤ K ·|BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤ (2n+1)1+log c

2
in a

layered graph with c layers of n
nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes
o, d ∈ V(G).

S. Kontogiannis: TDSP Basics [29 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in
FHS11)

|BP(Arrpwl[o, d])| ≤ K ·|BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤ (2n+1)1+log c

2
in a

layered graph with c layers of n
nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes
o, d ∈ V(G).

S. Kontogiannis: TDSP Basics [29 / 69]

Upper Bound: |BP(Arrpwl[o, d])| = K · nO(log n) (II)

OBSERVATION II: (L4.2 in
FHS11)

|BP(Arrpwl[o, d])| ≤ K ·|BP(Arrlin[o, d])|.

Lemma 4.3 (FHS11)

|BP(Arrlin[o, d])| ≤ (2n+1)1+log c

2
in a

layered graph with c layers of n
nodes each.

THM4.4 (FHS11)

|BP(Arrlin[o, d])| = nO(log n) in any graph G and pair of nodes
o, d ∈ V(G).

S. Kontogiannis: TDSP Basics [29 / 69]

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

(Exact) Output Sensitive Algorithm
for Earliest-Arrival Functions

S. Kontogiannis: TDSP Basics [30 / 69]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to
have from/to any origin/destination vertex.

2 We may need to compute exact distance summaries for
special pairs of vertices (eg, from/to hubs, all
superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad in real (e.g., road)
networks.

S. Kontogiannis: TDSP Basics [31 / 69]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to
have from/to any origin/destination vertex.

2 We may need to compute exact distance summaries for
special pairs of vertices (eg, from/to hubs, all
superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad in real (e.g., road)
networks.

S. Kontogiannis: TDSP Basics [31 / 69]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to
have from/to any origin/destination vertex.

2 We may need to compute exact distance summaries for
special pairs of vertices (eg, from/to hubs, all
superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad in real (e.g., road)
networks.

S. Kontogiannis: TDSP Basics [31 / 69]

Why Do We Need the Output Sensitive Algorithm?

1 It gives exactly the distance functions in question, ie, functional
descriptions of earliest-arrivals, that we would ideally like to
have from/to any origin/destination vertex.

2 We may need to compute exact distance summaries for
special pairs of vertices (eg, from/to hubs, all
superhub-to-superhub connections, etc).

3 Interesting to discover whether the complexity of the
earliest-arrival functions is indeed so bad in real (e.g., road)
networks.

S. Kontogiannis: TDSP Basics [31 / 69]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every
node in the graph is at most 2.

Given an arbitrary point in time (‘‘current
time’’) t0 ≥ 0 as departure time from origin
o, compute a TDSP tree.
Discover until when the TDSP tree is valid.

I ∀v ∈ V, two short alternatives when
departing from o at time t0: Earliest-arrival
to each parent, plus delay of corresponding
incoming arc.

I Minimization (vertex) Certificate tfail[v]: Earliest departure time
from o at which the two alternatives of v become equivalent.
Primitive (arc) Certificate tfail[e]: Primitive image of the next
(ie, after t0) breakpoint of the arc to come.

I All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis: TDSP Basics [32 / 69]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every
node in the graph is at most 2.

Given an arbitrary point in time (‘‘current
time’’) t0 ≥ 0 as departure time from origin
o, compute a TDSP tree.
Discover until when the TDSP tree is valid.

I ∀v ∈ V, two short alternatives when
departing from o at time t0: Earliest-arrival
to each parent, plus delay of corresponding
incoming arc.

0

0
0

x2

x3

x1

v

I Minimization (vertex) Certificate tfail[v]: Earliest departure time
from o at which the two alternatives of v become equivalent.
Primitive (arc) Certificate tfail[e]: Primitive image of the next
(ie, after t0) breakpoint of the arc to come.

I All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis: TDSP Basics [32 / 69]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every
node in the graph is at most 2.

Given an arbitrary point in time (‘‘current
time’’) t0 ≥ 0 as departure time from origin
o, compute a TDSP tree.

Discover until when the TDSP tree is valid.

I ∀v ∈ V, two short alternatives when
departing from o at time t0: Earliest-arrival
to each parent, plus delay of corresponding
incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time
from o at which the two alternatives of v become equivalent.
Primitive (arc) Certificate tfail[e]: Primitive image of the next
(ie, after t0) breakpoint of the arc to come.

I All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis: TDSP Basics [32 / 69]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every
node in the graph is at most 2.

Given an arbitrary point in time (‘‘current
time’’) t0 ≥ 0 as departure time from origin
o, compute a TDSP tree.
Discover until when the TDSP tree is valid.

I ∀v ∈ V, two short alternatives when
departing from o at time t0: Earliest-arrival
to each parent, plus delay of corresponding
incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time
from o at which the two alternatives of v become equivalent.
Primitive (arc) Certificate tfail[e]: Primitive image of the next
(ie, after t0) breakpoint of the arc to come.

I All (m + n) certificates temporarily stored in a priority queue.

S. Kontogiannis: TDSP Basics [32 / 69]

The Output-Sensitive Algorithm (I)

ASSUMPTION: The in-degree of every
node in the graph is at most 2.

Given an arbitrary point in time (‘‘current
time’’) t0 ≥ 0 as departure time from origin
o, compute a TDSP tree.
Discover until when the TDSP tree is valid.

I ∀v ∈ V, two short alternatives when
departing from o at time t0: Earliest-arrival
to each parent, plus delay of corresponding
incoming arc.

0

0
0

x2

x3

x1

v

v2

v3

v1

o

v4

v5

v6

v7

v8

v9

v10

v11

v12

d

v13

I Minimization (vertex) Certificate tfail[v]: Earliest departure time
from o at which the two alternatives of v become equivalent.
Primitive (arc) Certificate tfail[e]: Primitive image of the next
(ie, after t0) breakpoint of the arc to come.

I All (m + n) certificates temporarily stored in a priority queue.
S. Kontogiannis: TDSP Basics [32 / 69]

The Output-Sensitive Algorithm (II)

When current time t1 >t0 matches the earliest failure-time of a
certificate in the queue:

if minimization-certificate
failure, at node v ∈ V:

then (1) Update shortest ov−path
/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and
tfail[x], ∀x ∈ Tv.

(3) Update tfail[e],
∀e ∈ E : x = tail[e] ∈ Tv.

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail[y], ∀y ∈ Tx.

(2) Update tfail[e′], ∀e′ ∈ E : tail[e′] ∈ Tx.

S. Kontogiannis: TDSP Basics [33 / 69]

The Output-Sensitive Algorithm (II)

When current time t1 >t0 matches the earliest failure-time of a
certificate in the queue:

if minimization-certificate
failure, at node v ∈ V:

then (1) Update shortest ov−path
/∗ ONE-BIT change in combinatorial structure ∗/

(2) Update Arr[o, x] and
tfail[x], ∀x ∈ Tv.

(3) Update tfail[e],
∀e ∈ E : x = tail[e] ∈ Tv.

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = A-v t + B-v

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α3t + β3

Arr[o,v](t=t1+ε) = Awt + Bw + D[wv](Awt + Bw) = A+vt + B+v

TDSPT
Subtree

Arr[o,x](t=t1-ε) = A-vt + B-v + D[vx](A-vt + B-v)

Arr[o,x](t=t1+ε) = A+vt + B+v + D[vx](A+vt + B+v)
TDSPT-EDGE
NON-TDSPT-EDGE

u

w

v x

Arr[o,v](t=t1-ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

Au t + Βu = Arr[o,u](t)

Aw t + Bw = Arr[o,w](t)

α1t + β1

α2t + β2

α-3t + β-3

Arr[o,v](t=t1+ε) = Aut + Bu + D[uv](Aut + Bu) = Av t + Bv

TDSPT
Subtree

Arr[o,x](t=t1-ε) = Avt + Bv + D-[vx](Avt + Bv)

Arr[o,x](t=t1+ε) = Avt + Bv + D+[vx](Avt + Bv)

α+3t + β+3

TDSPT-EDGE
NON-TDSPT-EDGE

w

u

v x

else /∗ primitive-certificate failure, at arc e = vx ∈ E ∗/

(1) Update Arr[o, y] and tfail[y], ∀y ∈ Tx.

(2) Update tfail[e′], ∀e′ ∈ E : tail[e′] ∈ Tx.
S. Kontogiannis: TDSP Basics [33 / 69]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec| · log n). Ec is the set of arcs whose tails are in Tc, or
Thead[c]. Logarithmic factor is due to priority-queue operations.

I In the original graph (in worst-case): O
(
m× log2 n

)
. Second

logarithmic factor is due to updates of tournament trees
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m× log2 n× (PRIMBPs + MINBPs)

)

S. Kontogiannis: TDSP Basics [34 / 69]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec| · log n). Ec is the set of arcs whose tails are in Tc, or
Thead[c]. Logarithmic factor is due to priority-queue operations.

I In the original graph (in worst-case): O
(
m× log2 n

)
. Second

logarithmic factor is due to updates of tournament trees
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m× log2 n× (PRIMBPs + MINBPs)

)

S. Kontogiannis: TDSP Basics [34 / 69]

The Output-Sensitive Algorithm (III)

What to keep in memory:

I Breakpoint triples for earliest-arrival functions, plus ONE bit
(indicating the parent).

I Advanced search structures, if number of BPs is large.

I Only temporarily store certificates in a priority queue.

Response-time per certificate failure at c ∈ V ∪ E:
I In the in-degrees-2 graph (or any constant-in-degree graph):

O(|Ec| · log n). Ec is the set of arcs whose tails are in Tc, or
Thead[c]. Logarithmic factor is due to priority-queue operations.

I In the original graph (in worst-case): O
(
m× log2 n

)
. Second

logarithmic factor is due to updates of tournament trees
implementing the MIN operator at a particular node, upon
emergence of a single certificate failure.

Worst-case time-complexity of output-sensitive algorithm:

O
(
m× log2 n× (PRIMBPs + MINBPs)

)
S. Kontogiannis: TDSP Basics [34 / 69]

Poly-time Approximation AlgorithmsPoly-time Approximation Algorithms

S. Kontogiannis: TDSP Basics [35 / 69]

(1+ ε)−approximation of D[o, d] : Preliminaries

Why focus on shortest-travel-time (delays) functions, and not
on earliest-arrival-time functions?

Arc/Path Delay Reversal: Easy task!!!

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

departure tu from tail[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48-2-4 50

oo
o

ooo
0

2 4 6 8 10 12

2

4

6

8

10

14 16 18 20 22 240

arrival tv at head[uv]

ar
c

de
la

y

26 28 30 32 34 36 38 40 42 44 46 48 50-2-4

ooo

ooo
0

to =
←−Arr[o, v](tv) = tv −

←−D [o, v](tv): Latest-departure-time from o
to v, as a function of the arrival time tv at v.

S. Kontogiannis: TDSP Basics [36 / 69]

Approximating D[o, d] : Quality

Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:

c d

D(c)

Dmax = D(d)

Λ- (d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(a) Λ+(c) > Λ-(d) ≥ 0

c d

D(c)

D(d)

Dmax

Λ -(d) (x-d) + D(d)
m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(b) Λ+(c) > 0 > Λ-(d)

c d

Dmax = D(c)

D(d)

y(m)

Λ -(d) (x-d) + D(d)

m

Λ+(c) (x-c) + D(c)

(c) 0 ≥ Λ+(c) > Λ-(d)

Dm

Dm

Dm

LEMMA: Closed Form of Maximum Absolute Error
[Kontogianis-Zaroliagis (2013)]

MAE(c, d) = (Λ+(c)− Λ−(d)) · (m−c)·(d−m)
L ≤ L·(Λ+(c)−Λ−(d))

4

S. Kontogiannis: TDSP Basics [37 / 69]

Approximating D[o, d] : Quality

Maximum Absolute Error: A crucial quantity both for the
time-complexity and for the space-complexity of the algorithm:

c d

D(c)

Dmax = D(d)

Λ- (d) (x-d) + D(d)

m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(a) Λ+(c) > Λ-(d) ≥ 0

c d

D(c)

D(d)

Dmax

Λ -(d) (x-d) + D(d)
m

Λ
+ (c

) (
x-

c)
 +

 D
(c

)

y(m)

(b) Λ+(c) > 0 > Λ-(d)

c d

Dmax = D(c)

D(d)

y(m)

Λ -(d) (x-d) + D(d)

m

Λ+(c) (x-c) + D(c)

(c) 0 ≥ Λ+(c) > Λ-(d)

Dm

Dm

Dm

LEMMA: Closed Form of Maximum Absolute Error
[Kontogianis-Zaroliagis (2013)]

MAE(c, d) = (Λ+(c)− Λ−(d)) · (m−c)·(d−m)
L ≤ L·(Λ+(c)−Λ−(d))

4

S. Kontogiannis: TDSP Basics [37 / 69]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε >0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) ·D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN
#BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d]
before approximating it. We must be based only on a few
samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

S. Kontogiannis: TDSP Basics [38 / 69]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε >0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) ·D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN
#BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d]
before approximating it. We must be based only on a few
samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

S. Kontogiannis: TDSP Basics [38 / 69]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε >0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) ·D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN
#BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d]
before approximating it. We must be based only on a few
samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

S. Kontogiannis: TDSP Basics [38 / 69]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε >0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) ·D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN
#BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d]
before approximating it. We must be based only on a few
samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

S. Kontogiannis: TDSP Basics [38 / 69]

Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε >0, and ∀t ∈ [0, T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) ·D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN
#BPs).

PROBLEM: Prohibitively expensive to compute/store D[o, d]
before approximating it. We must be based only on a few
samples of D[o, d].

FOCUS: Linear arc-delays. Later extend to pwl arc-delays.

D[o, d] lies entirely in a bounding box that we can easily
determine, with only 3 TD-Djikstra probes.

S. Kontogiannis: TDSP Basics [38 / 69]

Approximating D[o, d]: Basic Idea (II)

t3t1

Dmin

t4 t5

(1+ε)Dmin

t0

(1+ε)2Dmin

(1+ε)3Dmin

(1+ε)4Dmin

Dmax

t6t2

Make the sampling so that
∀t ∈ [0, T], D[o, d](t) ≤ (1 + ε) ·D[o, d](t).

Keep sampling always the fastest-growing axis wrt to D[o, d].

S. Kontogiannis: TDSP Basics [39 / 69]

One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :[Kontogiannis-Zaroliagis (2013)] :

Forward Dijkstrat0

t1

t2

t0 + D[o,d](t0)

t0 + (1+ε)1/2 D[o,d](t0) = t1 + D[o,d](t1)Backward Dijkstra

t1 + (1+ε)1/2 D[o,d](t1) = t2 + D[o,d](t2)Backward Dijkstra

o
o
o

S. Kontogiannis: TDSP Basics [40 / 69]

One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2013)] :

D

(1+ε)D

(1+ε)2D

(1+ε)3D

(1+ε)4D

S. Kontogiannis: TDSP Basics [40 / 69]

One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2013)] :

Forward Dijkstrat0

t1,1

t0 + D[o,d](t0)

MAX{ tfail , t0 + (1+ε) D[o,d](t0) }Backward Dijkstra

t0 + (1+ε)k D[o,d](t0) = t1 + D[o,d](t1)Backward Dijkstra

o
o
o

t1,k+1 t0 + (1+ε)k+1 D[o,d](t0)Backward Dijkstra

t1 = t1,k

MaxAbsError < ε D[o,d](t0)

MaxAbsError < ε D[o,d](t0)

MaxAbsError > ε D[o,d](t0)

o
o
o

MAX{ tfail , t1 + (1+ε) D[o,d](t1) }Backward Dijkstrat2,1 MaxAbsError < ε D[o,d](t1)

S. Kontogiannis: TDSP Basics [40 / 69]

One-To-One Approximation: PHASE-2
[Foschini-Hershberger-Suri (2011)]

Slope of D[o, d] ≤ 1:

repeat

Apply BISECTION to the remaining time-interval(s)

until desired approximation guarantee (wrt Max Absolute Error) is
achieved.

S. Kontogiannis: TDSP Basics [41 / 69]

One-To-All Approximaton via Bisection (I)
[Kontogiannis-Zaroliagis (2013)]

ASSUMPTION 1: Concavity of arc-delays. /∗ to be removed later ∗/

I Implies concavity of the unknown function D[o, d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of
the (pwl) arc-delay functions.

I Verified by TD-traffic data for road network of Berlin [TomTom

(February 2013)] that all arc-delay slopes are in [−0.5,0.5].

I Slopes of shortest-travel-time function D[o, d] from [−Λmin,Λmax],
for some constants Λmax >0, Λmin ∈ [0,1).

S. Kontogiannis: TDSP Basics [42 / 69]

One-To-All Approximaton via Bisection (I)
[Kontogiannis-Zaroliagis (2013)]

ASSUMPTION 1: Concavity of arc-delays. /∗ to be removed later ∗/

I Implies concavity of the unknown function D[o, d].

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of
the (pwl) arc-delay functions.

I Verified by TD-traffic data for road network of Berlin [TomTom

(February 2013)] that all arc-delay slopes are in [−0.5,0.5].

I Slopes of shortest-travel-time function D[o, d] from [−Λmin,Λmax],
for some constants Λmax >0, Λmin ∈ [0,1).

S. Kontogiannis: TDSP Basics [42 / 69]

One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample
simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved for
each destination node.

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

S. Kontogiannis: TDSP Basics [43 / 69]

One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample
simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved for
each destination node.

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

S. Kontogiannis: TDSP Basics [43 / 69]

One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample
simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved for
each destination node.

Example of Bisection Execution : Level-1 Recursion

t1t0

D1

D0

t2

D2

S. Kontogiannis: TDSP Basics [43 / 69]

One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample
simultaneously all distance values from o, at mid-points of time
intervals, until required approximation guarantee is achieved for
each destination node.

Example of Bisection Execution : Level-2 Recursion

t1t0

D1

D0

t2

D2

t3

D3

S. Kontogiannis: TDSP Basics [43 / 69]

One-To-All Approximaton via Bisection (III)
[Kontogiannis-Zaroliagis (2013)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays.

1 Call Reverse TD-Dijkstra

to project each
concavity-spoiling PB to a
PI of the origin o.

2 For each pair of consecutive
PIs at o, run Bisection for
the corresponding
departure-times interval. departure time from u = tail[uv]

t1
ea

rl
ie

st
-a

rr
iv

al
 ti

m
es

 a
t v

 =
 h

ea
d[

uv
]

t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries.

S. Kontogiannis: TDSP Basics [44 / 69]

Approximating D[o, d] : Space/Time Complexity

THEOREM: Space Complexity [Kontogianis-Zaroliagis (2013)]

Let K∗ be the total number of concavity-spoiling BPs among all
the arc-delay functions in the instance.

Space Complexity: For a given orign o ∈ V and all possible
destinations d ∈ V, the following complexity bounds hold for

creating all the approximation functions D[o, *] = (D[o, d])d∈V:

1 O
(

K∗

ε
log
(

Dmax[o,*](0,T)
Dmin[o,*](0,T)

))
2 In each interval of consecutive PIs,
|UBP[o, d]| ≤ 4 · (minimum #BPs for any (1 + ε)−approximation.

Time Complexity: The number of shortest-path probes executed
for the computation of the approximate distance functions is:

TDSP[o, d] ∈ O
(
log
(

T
ε·Dmin[o,d]

)
· K∗ε log

(
Dmax[o,*](0,T)
Dmin[o,*](0,T)

))
S. Kontogiannis: TDSP Basics [45 / 69]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
label-setting approximation method that provably works
space/time optimally (within constant factors) wrt concave
continuous pwl arc-delay functions.

Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]

and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from linear dependence in the degree of disconcavity (value of
K∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation technique,
called the Trapezoidal method ([Kontogiannis-Wagner-Zaroliagis

(2014)]) avoids entirely the dependence of the required space
from the network structure (and, of course, the degree of
disconcavity).

S. Kontogiannis: TDSP Basics [46 / 69]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
label-setting approximation method that provably works
space/time optimally (within constant factors) wrt concave
continuous pwl arc-delay functions.

Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]

and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from linear dependence in the degree of disconcavity (value of
K∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation technique,
called the Trapezoidal method ([Kontogiannis-Wagner-Zaroliagis

(2014)]) avoids entirely the dependence of the required space
from the network structure (and, of course, the degree of
disconcavity).

S. Kontogiannis: TDSP Basics [46 / 69]

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] is a
label-setting approximation method that provably works
space/time optimally (within constant factors) wrt concave
continuous pwl arc-delay functions.

Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)]

and One-To-All Bisection of [Kontogiannis-Zaroliagis (2013)] suffer
from linear dependence in the degree of disconcavity (value of
K∗) in the TD Instance.

A novel one-to-all (again label-setting) approximation
technique, called the Trapezoidal method
([Kontogiannis-Wagner-Zaroliagis (2014)]) avoids entirely the
dependence of the required space from the network structure
(and, of course, the degree of disconcavity).

S. Kontogiannis: TDSP Basics [46 / 69]

Any Questions?

Next Lecture
Time-Dependent Oracles

Wednesday, June 18 2014, 11:30

S. Kontogiannis: TDSP Basics [47 / 69]

Distance OraclesDistance Oracles

S. Kontogiannis: TD Oracles [48 / 69]

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a large scale graph with arc-travel-times, create
a data structure (oracle) that requires reasonable space
requirements and allows answering distance queries efficiently.

Trivial solution: Preprocess by executing and storing APSP.
O
(
n2
)
size.

O(1) query time.
1−stretch.

Trivial solution: No preprocessing, respond to queries by
running Dijkstra.

O(n + m) size.
O(m + n log(n)) query time.
1−stretch.

Try to provide smooth tradeoffs among space / query time /
stretch!!!

S. Kontogiannis: TD Oracles [49 / 69]

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a large scale graph with arc-travel-times, create
a data structure (oracle) that requires reasonable space
requirements and allows answering distance queries efficiently.

Trivial solution: Preprocess by executing and storing APSP.
O
(
n2
)
size.

O(1) query time.
1−stretch.

Trivial solution: No preprocessing, respond to queries by
running Dijkstra.

O(n + m) size.
O(m + n log(n)) query time.
1−stretch.

Try to provide smooth tradeoffs among space / query time /
stretch!!!

S. Kontogiannis: TD Oracles [49 / 69]

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a large scale graph with arc-travel-times, create
a data structure (oracle) that requires reasonable space
requirements and allows answering distance queries efficiently.

Trivial solution: Preprocess by executing and storing APSP.
O
(
n2
)
size.

O(1) query time.
1−stretch.

Trivial solution: No preprocessing, respond to queries by
running Dijkstra.

O(n + m) size.
O(m + n log(n)) query time.
1−stretch.

Try to provide smooth tradeoffs among space / query time /
stretch!!!

S. Kontogiannis: TD Oracles [49 / 69]

Distance Oracles
A Success Story in Static Graphs

CHALLENGE: Given a large scale graph with arc-travel-times, create
a data structure (oracle) that requires reasonable space
requirements and allows answering distance queries efficiently.

Trivial solution: Preprocess by executing and storing APSP.
O
(
n2
)
size.

O(1) query time.
1−stretch.

Trivial solution: No preprocessing, respond to queries by
running Dijkstra.

O(n + m) size.
O(m + n log(n)) query time.
1−stretch.

Try to provide smooth tradeoffs among space / query time /
stretch!!!

S. Kontogiannis: TD Oracles [49 / 69]

Distance Oracles: Generic Idea

1 Metric-independent preprocessing: Split the graph, essentially
ignoring the distance metric.

I Roughly equal size per cell (in each level, if recursive division is
applied).

I Boundary vertices/arcs much less than the graph size (e.g.,
O
(√n) in total).

I Each cell may be required to be a weakly connected subgraph.

2 Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

3 Query Algorithm: Respond fast to queries, based on the
(hierarchical?) distance-independent division and/or the
distance-dependent summaries.

S. Kontogiannis: TD Oracles [50 / 69]

Distance Oracles: Generic Idea

1 Metric-independent preprocessing: Split the graph, essentially
ignoring the distance metric.

I Roughly equal size per cell (in each level, if recursive division is
applied).

I Boundary vertices/arcs much less than the graph size (e.g.,
O
(√n) in total).

I Each cell may be required to be a weakly connected subgraph.

2 Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

3 Query Algorithm: Respond fast to queries, based on the
(hierarchical?) distance-independent division and/or the
distance-dependent summaries.

S. Kontogiannis: TD Oracles [50 / 69]

Distance Oracles: Generic Idea

1 Metric-independent preprocessing: Split the graph, essentially
ignoring the distance metric.

I Roughly equal size per cell (in each level, if recursive division is
applied).

I Boundary vertices/arcs much less than the graph size (e.g.,
O
(√n) in total).

I Each cell may be required to be a weakly connected subgraph.

2 Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

3 Query Algorithm: Respond fast to queries, based on the
(hierarchical?) distance-independent division and/or the
distance-dependent summaries.

S. Kontogiannis: TD Oracles [50 / 69]

Distance Oracles: Generic Idea

1 Metric-independent preprocessing: Split the graph, essentially
ignoring the distance metric.

I Roughly equal size per cell (in each level, if recursive division is
applied).

I Boundary vertices/arcs much less than the graph size (e.g.,
O
(√n) in total).

I Each cell may be required to be a weakly connected subgraph.

2 Metric-dependent preprocessing: Equip the network with
selective distance summaries, e.g., boundary-to-boundary /
boundary-to-cell / boundary-to-all distances.

3 Query Algorithm: Respond fast to queries, based on the
(hierarchical?) distance-independent division and/or the
distance-dependent summaries.

S. Kontogiannis: TD Oracles [50 / 69]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis: TD Oracles [51 / 69]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis: TD Oracles [51 / 69]

Distance Oracles

Extremely successful theme in static graphs.

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear).

F Q-Time: Constant.

F Stretch: Small (sometimes PTAS).

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB).

F Q-Time: Miliseconds (sometimes microseconds).

F Stretch: Exact distances (in most cases).

Some practical algorithms extended to time-dependent case.

IN THIS TALK

The focus is on time-dependent oracles, with provably good
preprocessing-space / query-time / stretch tradeoffs.

S. Kontogiannis: TD Oracles [51 / 69]

Theoretical Bounds for Static Graphs

Reference Setting Stretch Query Space

[TZ05]
weighted
graph

2k − 1,
k ≥ 2

O(k) O
(
kn1+1/k)

[WN13]
weighted
graph

2k − 1,
k ≥ 2

O(log(k)) O
(
kn1+1/k)

[Che13]
weighted
graph

2k − 1,
k ≥ 2

O(1) O
(
kn1+1/k)

[AG13]
sparse
weighted
graph

1 + ε o(n) o
(
n2
)

[Kle02]

[Tho04]

planar
weighted
digraph

1 + ε O
(
ε−1

)
O
(

n log(n)
ε

)

[MN06] metric O(k) O(1) O
(
kn1+1/k)

[BGKRL11]
Doubling
metric,
dynamic

1 + ε O(1) ε−O(ddim)n
+2O(ddim log(ddim))n

S. Kontogiannis: TD Oracles [52 / 69]

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable (subquadratic) space and allows answering
distance queries efficiently (in sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate
distance summaries from every origin to every destination.

O
(
n3
)
size (O

(
n2
)
, if all arc-delay functions concave).

O(log log(n)) query time.
(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).
O([m + n log(n)]× log log(K)) query time.
1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis: TD Oracles [53 / 69]

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable (subquadratic) space and allows answering
distance queries efficiently (in sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate
distance summaries from every origin to every destination.

O
(
n3
)
size (O

(
n2
)
, if all arc-delay functions concave).

O(log log(n)) query time.
(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).
O([m + n log(n)]× log log(K)) query time.
1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis: TD Oracles [53 / 69]

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable (subquadratic) space and allows answering
distance queries efficiently (in sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate
distance summaries from every origin to every destination.

O
(
n3
)
size (O

(
n2
)
, if all arc-delay functions concave).

O(log log(n)) query time.
(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).
O([m + n log(n)]× log log(K)) query time.
1−stretch.

Is there a smooth tradeoff among space / query time / stretch?

S. Kontogiannis: TD Oracles [53 / 69]

Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that
requires reasonable (subquadratic) space and allows answering
distance queries efficiently (in sublinear time).

Trivial solution: Precompute all the (1 + ε)−approximate
distance summaries from every origin to every destination.

O
(
n3
)
size (O

(
n2
)
, if all arc-delay functions concave).

O(log log(n)) query time.
(1 + ε)−stretch.

Trivial solution: No preprocessing, respond to queries by
running TD-Dijkstra.

O(n + m + K) size (K = total number of PBs of arc-delays).
O([m + n log(n)]× log log(K)) query time.
1−stretch.

Is there a smooth tradeoff among space / query time / stretch?
S. Kontogiannis: TD Oracles [53 / 69]

FLAT TD-OracleFLAT TD-Oracle

S. Kontogiannis: TD Oracles [54 / 69]

FLAT TD-Oracle: Overall Idea

1 Choose a set L of landmarks.
I In theory: Each vertex v ∈ V is chosen, independently of other

vertices, to be included in the landmark set L w.p. ρ ∈ (0,1).

I In practice: Selection of landmark set either randomly, or as the
set of boundary vertices of a given graph partition.

2 Preprocess (1 + ε)-approximate distance summaries (functions)
D[`, v] from every landmark ` ∈ L towards each destination
v ∈ V.

I Label-setting approach.

I One-to-all approximation, for any given landmark ` ∈ L.

3 Provide query algorithms (FCA/RQA) that return constant /
(1 + σ)-approximate distance values, for arbitrary query
(o, d, to).

S. Kontogiannis: TD Oracles [55 / 69]

FLAT TD-Oracle: Overall Idea

1 Choose a set L of landmarks.
I In theory: Each vertex v ∈ V is chosen, independently of other

vertices, to be included in the landmark set L w.p. ρ ∈ (0,1).

I In practice: Selection of landmark set either randomly, or as the
set of boundary vertices of a given graph partition.

2 Preprocess (1 + ε)-approximate distance summaries (functions)
D[`, v] from every landmark ` ∈ L towards each destination
v ∈ V.

I Label-setting approach.

I One-to-all approximation, for any given landmark ` ∈ L.

3 Provide query algorithms (FCA/RQA) that return constant /
(1 + σ)-approximate distance values, for arbitrary query
(o, d, to).

S. Kontogiannis: TD Oracles [55 / 69]

FLAT TD-Oracle: Overall Idea

1 Choose a set L of landmarks.
I In theory: Each vertex v ∈ V is chosen, independently of other

vertices, to be included in the landmark set L w.p. ρ ∈ (0,1).

I In practice: Selection of landmark set either randomly, or as the
set of boundary vertices of a given graph partition.

2 Preprocess (1 + ε)-approximate distance summaries (functions)
D[`, v] from every landmark ` ∈ L towards each destination
v ∈ V.

I Label-setting approach.

I One-to-all approximation, for any given landmark ` ∈ L.

3 Provide query algorithms (FCA/RQA) that return constant /
(1 + σ)-approximate distance values, for arbitrary query
(o, d, to).

S. Kontogiannis: TD Oracles [55 / 69]

FLAT TD-OracleFLAT TD-Oracle
selection & preprocessing of landmarksselection & preprocessing of landmarks

S. Kontogiannis: TD Oracles [56 / 69]

Landmark Selection and Preprocessing (I)

Select each vertex independently and uniformly at random
w.p. ρ ∈ (0,1) for the landmark set L ⊆ V.
Preprocessing: ∀` ∈ L, precompute (1 + ε)−approximate
distance functions ∆[`, v] to all destinations v ∈ V.

THEOREM: [Kontogiannis-Zaroliagis (2013)]

Using Bisection for computing approximate distance summaries:

Pre-Space:

O
(
K∗·|L|·|V|

ε ·max(`,v)∈L×V
{
log
(
D[`,v](0,T)
D[`,v](0,T)

)})
Pre-Time (in number of TDSP-Probes):

O
(
max(`,v)

{
log
(
T·(Λmax+1)
εD[`,v](0,T)

)}
· K
∗·|L|
ε max(`,v)

{
log
(
D[`,v](0,T)
D[`,v](0,T)

)})

S. Kontogiannis: TD Oracles [57 / 69]

Landmark Selection and Preprocessing (I)

Select each vertex independently and uniformly at random
w.p. ρ ∈ (0,1) for the landmark set L ⊆ V.
Preprocessing: ∀` ∈ L, precompute (1 + ε)−approximate
distance functions ∆[`, v] to all destinations v ∈ V.

THEOREM: [Kontogiannis-Zaroliagis (2013)]

Using Bisection for computing approximate distance summaries:

Pre-Space:

O
(
K∗·|L|·|V|

ε ·max(`,v)∈L×V
{
log
(
D[`,v](0,T)
D[`,v](0,T)

)})
Pre-Time (in number of TDSP-Probes):

O
(
max(`,v)

{
log
(
T·(Λmax+1)
εD[`,v](0,T)

)}
· K
∗·|L|
ε max(`,v)

{
log
(
D[`,v](0,T)
D[`,v](0,T)

)})
S. Kontogiannis: TD Oracles [57 / 69]

Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space.

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2014)]

Using both Bisection (for nearby nodes) and Trapezoidal (for
faraway nodes):

Pre-Space:

E [SBIS+TRAP] ∈ O
(
T
(
1 + 1

ε

)
Λmax · ρn2 polylog(n)

)
Pre-Time:

E [PBIS+TRAP] ∈ O
(
T
(
1 + 1

ε

)
Λmax · ρn2 polylog(n) log log(Kmax)

)

S. Kontogiannis: TD Oracles [58 / 69]

Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space.

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2014)]

Using both Bisection (for nearby nodes) and Trapezoidal (for
faraway nodes):

Pre-Space:

E [SBIS+TRAP] ∈ O
(
T
(
1 + 1

ε

)
Λmax · ρn2 polylog(n)

)
Pre-Time:

E [PBIS+TRAP] ∈ O
(
T
(
1 + 1

ε

)
Λmax · ρn2 polylog(n) log log(Kmax)

)

S. Kontogiannis: TD Oracles [58 / 69]

FLAT TD-OracleFLAT TD-Oracle
FCA: constant-approximation queryFCA: constant-approximation query

S. Kontogiannis: TD Oracles [59 / 69]

FCA: A constant-approximation query algorithm (I)

td = to + D[o,d](to)

Ro

x

lo

w od
P SP[o,d](to)

to

Q SP[o,lo](to)

Π ASP[lo,d](to+Ro)

Forward Constant Approximation: FCA
(
o, d, to, (∆[`, v])(`,v)∈L×V

)
1. Exploration: Grow a TD-Dijkstra forward ball B(o, to) until

the closest landmark `o is settled.

2. return solo = D[o, `o](to) + ∆[`o, d](to + D[o, `o](to)).

S. Kontogiannis: TD Oracles [60 / 69]

FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V× V, ∀t ∈ [0, T], D[o, d](t) ≤ ζ ·D[d, o](to).

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o, d, to), FCA achieves the following performance:

Approximation guarantee:

D[o, d](to) ≤ Ro + ∆[`o, d](to + Ro) ≤ (1 + ε)D[o, d](to) +ψRo

≤
(
1 + ε +ψ · Ro

D[o,d](to)

)
·D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ.
Query-time complexity:

I E [QFCA] ∈ O
(

1
ρ · ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ · ln

2
(

1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [61 / 69]

FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V× V, ∀t ∈ [0, T], D[o, d](t) ≤ ζ ·D[d, o](to).

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o, d, to), FCA achieves the following performance:

Approximation guarantee:

D[o, d](to) ≤ Ro + ∆[`o, d](to + Ro) ≤ (1 + ε)D[o, d](to) +ψRo

≤
(
1 + ε +ψ · Ro

D[o,d](to)

)
·D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ.

Query-time complexity:

I E [QFCA] ∈ O
(

1
ρ · ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ · ln

2
(

1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [61 / 69]

FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V× V, ∀t ∈ [0, T], D[o, d](t) ≤ ζ ·D[d, o](to).

THEOREM: FCA Performance

Under ASSUMPTIONS 2-3, and any route planning request
(o, d, to), FCA achieves the following performance:

Approximation guarantee:

D[o, d](to) ≤ Ro + ∆[`o, d](to + Ro) ≤ (1 + ε)D[o, d](to) +ψRo

≤
(
1 + ε +ψ · Ro

D[o,d](to)

)
·D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ.
Query-time complexity:

I E [QFCA] ∈ O
(

1
ρ · ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ · ln

2
(

1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [61 / 69]

FLAT TD-OracleFLAT TD-Oracle
RQA: boosting approximation guaranteeRQA: boosting approximation guarantee

S. Kontogiannis: TD Oracles [62 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

do
to

Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

d

w3

w1o
to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

l1

d

w3

w1

t4

o

w4

to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

l1

d

w3

l2

w1

t4

o

w4

to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

l1

d

w3

l3

l2

w1

t4

o

w4

to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to, (∆[`, v])(`,v)∈L×V, R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi, ti) un-

til the closest landmark `i is settled.

3. soli = D[o,wi](to) + D[wi, `i](ti) + ∆[`i, d](ti + D[wi, `i](ti)).

4. Recursion: Execute RQA centered at each boundary node
of B(wi, ti) with recursion budget R− 1.

5. endwhile
6. return best possible solution found.

t1

t2

t3lo

l1

d

w3

l3

l2

l4

w1

t4

o

w4

to

w2
Growing level-0
ball...

Growing level-1
balls...

Growing level-2
balls...

...

S. Kontogiannis: TD Oracles [63 / 69]

RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball
centers at nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β >1, ∀λ ∈ (0,1), λ ·OPT + (1− λ) · β ·OPT <β ·OPT

3 Quality of approximation guarantee of FCA (per ball) for
remaining suffix subpath to the destination depends on ball
radius (distance from the closest landmark to the ball center).

4 A constant number of recursion depth R suffices to assure
guarantee close to 1 + ε.

S. Kontogiannis: TD Oracles [64 / 69]

RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball
centers at nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β >1, ∀λ ∈ (0,1), λ ·OPT + (1− λ) · β ·OPT <β ·OPT

3 Quality of approximation guarantee of FCA (per ball) for
remaining suffix subpath to the destination depends on ball
radius (distance from the closest landmark to the ball center).

4 A constant number of recursion depth R suffices to assure
guarantee close to 1 + ε.

S. Kontogiannis: TD Oracles [64 / 69]

RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball
centers at nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β >1, ∀λ ∈ (0,1), λ ·OPT + (1− λ) · β ·OPT <β ·OPT

3 Quality of approximation guarantee of FCA (per ball) for
remaining suffix subpath to the destination depends on ball
radius (distance from the closest landmark to the ball center).

4 A constant number of recursion depth R suffices to assure
guarantee close to 1 + ε.

S. Kontogiannis: TD Oracles [64 / 69]

RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball
centers at nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β >1, ∀λ ∈ (0,1), λ ·OPT + (1− λ) · β ·OPT <β ·OPT

3 Quality of approximation guarantee of FCA (per ball) for
remaining suffix subpath to the destination depends on ball
radius (distance from the closest landmark to the ball center).

4 A constant number of recursion depth R suffices to assure
guarantee close to 1 + ε.

S. Kontogiannis: TD Oracles [64 / 69]

RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk SP[wk , lk](tk)

Πk ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball
centers at nodes of the (unknown) shortest od-path.

2 Optimal prefix subpaths improve approximation guarantee:

∀β >1, ∀λ ∈ (0,1), λ ·OPT + (1− λ) · β ·OPT <β ·OPT

3 Quality of approximation guarantee of FCA (per ball) for
remaining suffix subpath to the destination depends on ball
radius (distance from the closest landmark to the ball center).

4 A constant number of recursion depth R suffices to assure
guarantee close to 1 + ε. S. Kontogiannis: TD Oracles [64 / 69]

RQA: Performance

THEOREM: Complexity of RQA

For sparse networks (i.e., having μ = |A|/|V| ∈ O(1)), the
complexity of RQA with recursion budget R for obtaining
(1 + σ)−approximate distances (for any constant σ >ε) to arbitrary
(o, d, to) queries, is:

E
[
QRQA

]
∈ O

((
1
ρ

)R+1
· ln
(
1
ρ

))
.

P
[
QRQA ∈ O

((
ln(n)
ρ

)R+1
·
[
ln ln(n) + ln

(
1
ρ

)])]
∈ 1−O

(
1
n

)
.

S. Kontogiannis: TD Oracles [65 / 69]

TD Distance Oracle: Recap

what is preprocessed space : E [S] preprocessing : E [P] query : E
[
QRQA

]
All-To-All O

(
(K∗ + 1)n2U

)
O

 n2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O(log log(K∗))

Nothing O(n + m + K) O(1) O

(
n log(n)·

log log(Kmax)

)

Landmarks-To-All O
(
ρn2(K∗ + 1)U

)
O

 ρn2 log(n)
· log log(Kmax)
·(K∗ + 1)TDP

 O

((
1
ρ

)R+1
· log

(
1
ρ

)
· log log(Kmax)

)
Kmax ∈ O(1)
ρ = n−a

U,TDP ∈ O(1)
K∗ ∈ O(polylog(()n))

Õ
(
n2−a

)
Õ
(
n2−a

)
Õ
(
n(r+1)·a

)

S. Kontogiannis: TD Oracles [66 / 69]

TD Distance Oracle: Towards Implementation...TD Route Planning
Di t O lDistance Oracle

Departure 8:00 – 20:00 20:00 – 08:00Departure 8:00 – 20:00 20:00 – 08:00

Travel Time 46.5 mins 45.1 mins

FCA Response Time < 0.2 ms < 0.2 ms

RQA(1) Repsponse Time <1 ms <1 ms

05.12.2013 92nd eCOMPASS Review, Brussels, BE

P2P Dist.Summary Construction 120 ms

One‐To‐All Dist.Summary Construction < 40 sec

S. Kontogiannis: TD Oracles [67 / 69]

TD Distance Oracle: Towards Implementation...Google Maps Query
(T d 15 45)(Tuesday, 15:45)

05.12.2013 102nd eCOMPASS Review, Brussels, BE

S. Kontogiannis: TD Oracles [67 / 69]

Related Literature

[Dreyfus (1969)] S. E. Dreyfus. An appraisal of some shortest-path
algorithms. In Operations Research, 17(3):395–412, 1969.

[Orda-Rom (2000)] A. Orda, R. Rom. Shortest-path and minimum
delay algorithms in networks with time-dependent edge-length. In J.
ACM, 37(3):607–625, 1990.

[Dean (2004)] B. C. Dean. Shortest paths in FIFO time-dependent
networks: Theory and algorithms. Technical report. MIT, 2004.

[Dehne-Omran-Sack (2010)] F. Dehne, O. T. Masoud, J. R. Sack.
Shortest paths in time-dependent FIFO networks. In Algorithmica,
62(1-2):416–435, 2012.

[Foschini-Hershberger-Suri (2011)] L. Foschini, J. Hershberger, S. Suri. On
the complexity of time-dependent shortest paths. In Algorithmica,
68(4), pp. 1075–1097, 2014. Prelim. version in SODA 2011.

[Kontogiannis-Zaroliagis (2013)] 14. S. Kontogiannis, C. Zaroliagis.
Distance oracles for time dependent networks. In Automata,
Languages and Programming (ICALP-A 2014), Springer, 2014.

S. Kontogiannis: TD Oracles [68 / 69]

Any Questions?

Next Lecture
Time-Dependent Speed-up Techniques

Wednesday, July 2 2014, 11:30

S. Kontogiannis: TD Oracles [69 / 69]

	Problem Statement & Examples
	Problem Statements

	Algorithms for TDSP on FIFO, Continuous, Pwl Instances
	Input/Output Data
	Complexity Results
	Lower Bound on Number of Breakpoints
	Upper Bound on Number of Breakpoints
	An Exact (output-sensitive) Algorithm for Arr[o,]
	Poly-time Approximation Algorithms for D[o,d] and D[o,]

	Distance Oracles
	Distance Oracles
	Distance Oracle for TDSP
	STEP 2: Selection & Preprocessing of Landmarks
	STEP 3: All-To-All Constant-Approximation Queries (FCA)
	STEP 4: Boosting Approximation Guarantee (RQA)

