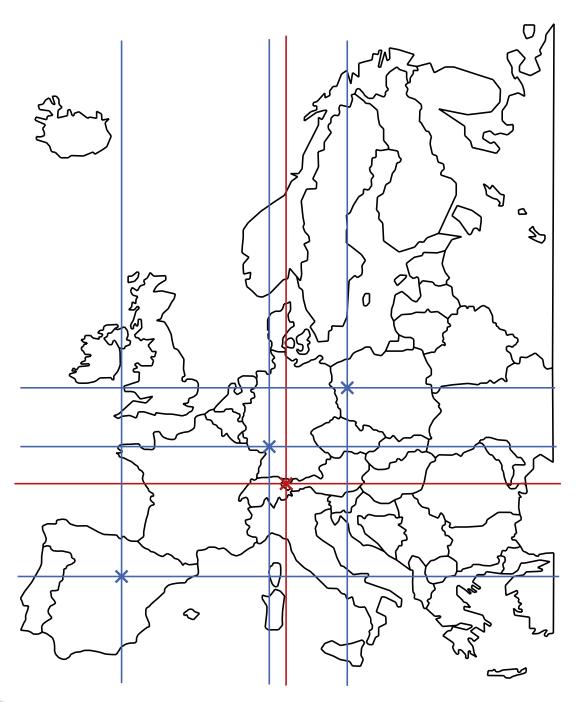


Vorlesung Algorithmische Geometrie Punktlokalisierung

INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Martin Nöllenburg 27.05.2014

Motivation

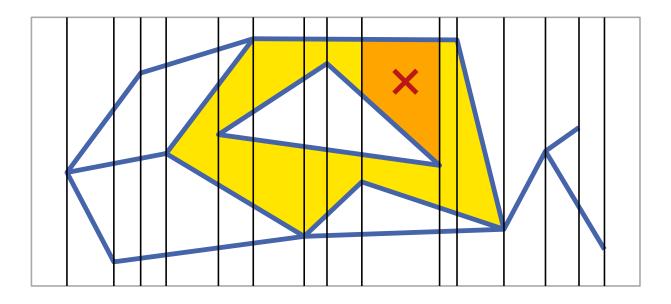


Gegeben eine Position $p=(p_x,p_y)$ in einer Landkarte, bestimme in welchem Land p liegt.

Genauer: Finde eine Datenstruktur, die solche Lokalisierungsanfragen effizient beantworten kann.

Dabei ist die Landkarte modelliert als Unterteilung der Ebene in disjunkte Polygone.

Problemstellung



Ziel:

Geg. eine Unterteilung S der Ebene mit n Strecken, erstelle Datenstruktur für schnelle Punktlokalisierung.

Lösung:

Zerteile ${\cal S}$ an Punkten in vertikale Streifen.

Anfrage: • finde richtigen Streifen• durchsuche diesen Streifen

Aber:

 $\Theta(n^2)$

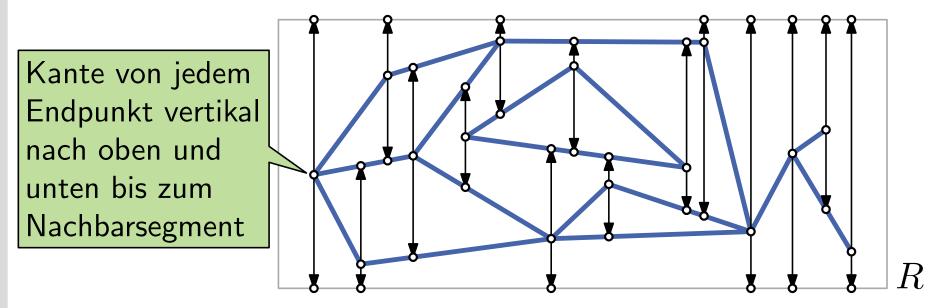
Frage: Bsp. für untere Schranke?

Verringern der Komplexität

Beob.: Die Streifenzerlegung ist eine Verfeinerung S' von S in (evtl. degenerierte) Trapeze.

Ziel: Finde geeignete Verfeinerung von S mit geringerer Komplexität!

Lösung: Trapezzerlegung $\mathcal{T}(S)$

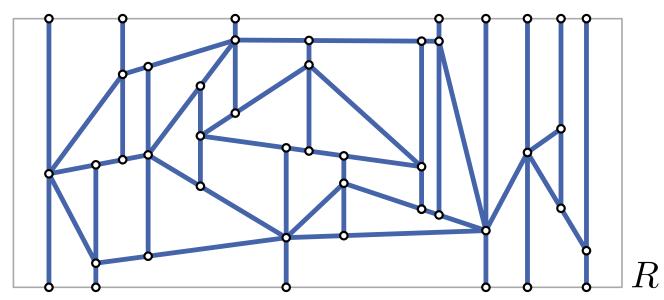


Verringern der Komplexität

Beob.: Die Streifenzerlegung ist eine Verfeinerung S' von S in (evtl. degenerierte) Trapeze.

Ziel: Finde geeignete Verfeinerung von S mit geringerer Komplexität!

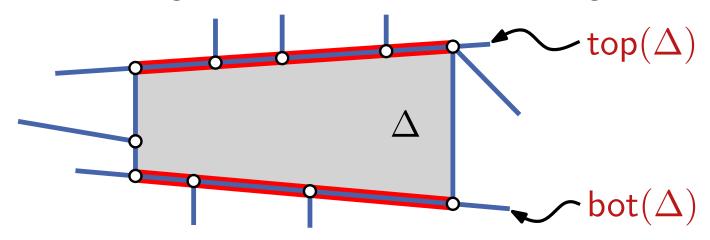
Lösung: Trapezzerlegung $\mathcal{T}(S)$



Annahme: S ist in *allgemeiner Lage*, d.h. keine zwei Knoten haben gleiche x-Koordinaten.

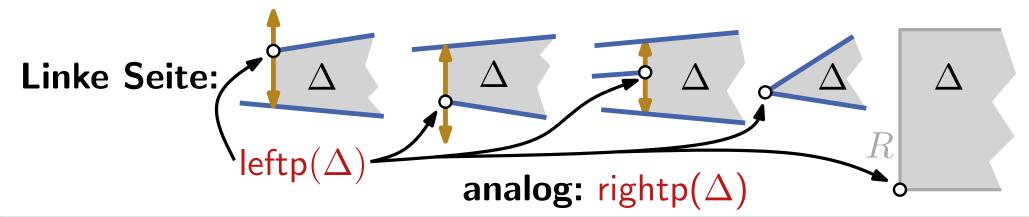
Notation

Definition: Eine *Seite* einer Facette von $\mathcal{T}(S)$ ist eine maximal lange Teilstrecke der Facettengrenze.



Beob.: S in allg. Lage \Rightarrow jede Facette Δ von $\mathcal{T}(S)$ hat:

- ein oder zwei vertikale Seiten
- zwei nicht-vertikale Seiten



Komplexität der Trapezzerlegung

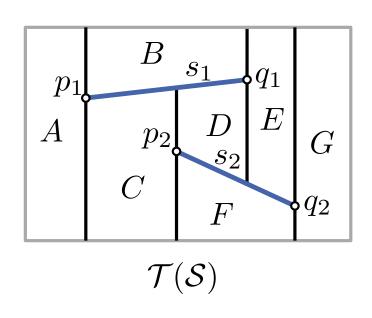
Beob.: Ein Trapez Δ wird eindeutig durch bot (Δ) , top (Δ) , leftp (Δ) und rightp (Δ) definiert. top (Δ)

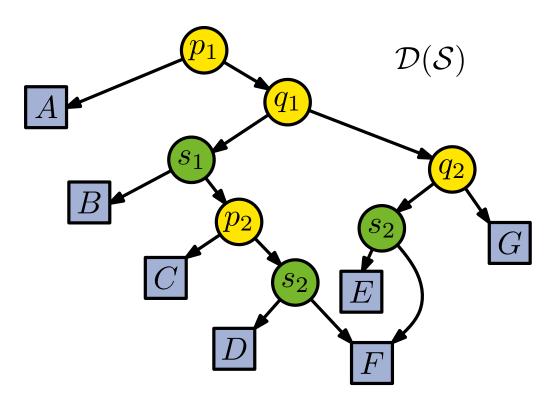
 $\mathsf{leftp}(\Delta) \qquad \qquad \mathsf{rightp}(\Delta)$ $\mathsf{bot}(\Delta) \qquad \mathsf{rightp}(\Delta)$

Lemma 1: Die Trapezzerlegung $\mathcal{T}(\mathcal{S})$ einer Menge \mathcal{S} von n Strecken in allgemeiner Lage enthält höchstens 6n+4 Knoten und höchstens 3n+1 Trapeze.

Suchstruktur

Ziel: Berechne die Trapezzerlegung $\mathcal{T}(\mathcal{S})$ und gleichzeitig eine Datenstruktur $\mathcal{D}(\mathcal{S})$ zur Lokalisierung in $\mathcal{T}(\mathcal{S})$.





 $\mathcal{D}(\mathcal{S})$ ist ein DAG mit:

- p x-Knoten für Punkt p testet auf links/rechts von p
- $m{s}$ y-Knoten für Strecke s testet auf oberhalb/unterhalb von s
- $oldsymbol{\Delta}$ Blattknoten für Trapez Δ

Inkrementeller Algorithmus

Trapezzerlegung(S)

Input: Menge $S = \{s_1, \dots, s_n\}$ von kreuzungsfreien Strecken

Output: Trapezzerlegung $\mathcal{T}(S)$ und Suchstruktur $\mathcal{D}(S)$

Initialisiere \mathcal{T} und \mathcal{D} für $R = \mathsf{BBox}(\mathcal{S})$

 $\mathcal{S} \leftarrow \mathsf{RandomPermutation}(\mathcal{S})$

for $i \leftarrow 1$ to n do

$$H \leftarrow \{ \Delta \in \mathcal{T} \mid \Delta \cap s_i \neq \emptyset \}$$

$$\mathcal{T} \leftarrow \mathcal{T} \setminus H$$

 $\mathcal{T} \leftarrow \mathcal{T} \cup$ neue durch s_i erzeugte Trapeze

 $\mathcal{D} \leftarrow$ ersetze Blätter für H durch Knoten und Blätter für neue

Trapeze

return $(\mathcal{T}, \mathcal{D})$

Problem: Größe von \mathcal{D} und Anfragezeit sind abhängig von

Einfügereihenfolge

Lösung: Randomisierung!

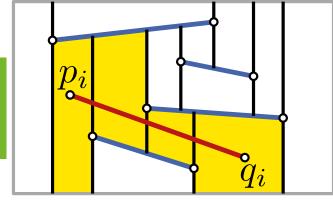
Randomisierter Inkrementeller Algorithmus

Invariante: \mathcal{T} ist Trapezzerlegung für $\mathcal{S}_i = \{s_1, \dots, s_i\}$ und \mathcal{D} passende Suchstruktur

Initialisierung: $\mathcal{T} = \mathcal{T}(\emptyset) = R$ und $\mathcal{D} = (R, \emptyset)$

Schritt 1: $H \leftarrow \{\Delta \in \mathcal{T} \mid \Delta \cap s_i \neq \emptyset\}$

Aufgabe: Wie findet man die Trapezmenge H von links nach rechts?



$$\Delta_0 \leftarrow \mathsf{FindeTrapez}(p_i, \mathcal{D}); \ j \leftarrow 0$$

$$\begin{tabular}{l} \textbf{while} \ \mathsf{rechter} \ \mathsf{Endpunkt} \ q_i \ \mathsf{rechts} \ \mathsf{von} \ \mathsf{rightp}(\Delta_j) \ \textbf{do} \\ \end{tabular}$$

$$\begin{tabular}{l} \textbf{if} \ \mathsf{rightp}(\Delta_j) \ \mathsf{über} \ s_i \ \textbf{then} \\ \end{tabular}$$

$$\begin{tabular}{l} \Delta_{j+1} \leftarrow \mathsf{unterer} \ \mathsf{rechter} \ \mathsf{Nachbar} \ \mathsf{von} \ \Delta_j \\ \end{tabular}$$

$$\begin{tabular}{l} \textbf{else} \\ \end{tabular}$$

$$\begin{tabular}{l} \Delta_{j+1} \leftarrow \mathsf{oberer} \ \mathsf{rechter} \ \mathsf{Nachbar} \ \mathsf{von} \ \Delta_j \\ \end{tabular}$$

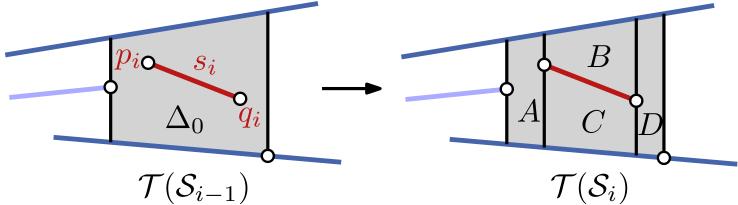
$$\begin{tabular}{l} j \leftarrow j+1 \\ \end{tabular}$$

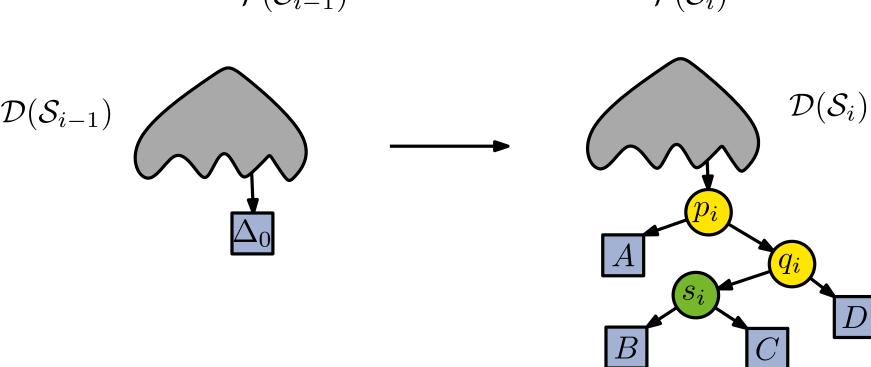
return $\Delta_0, \ldots, \Delta_j$

Update von $\mathcal{T}(\mathcal{S})$ und $\mathcal{D}(\mathcal{S})$

Schritt 2: Aktualisiere \mathcal{T} und \mathcal{D}

• Fall 1: $s_i \subset \Delta_0$

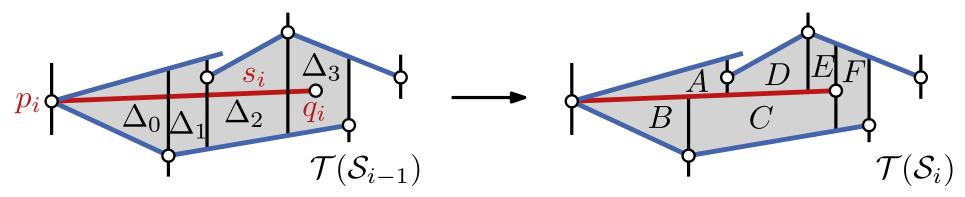


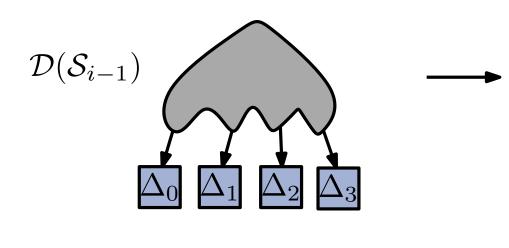


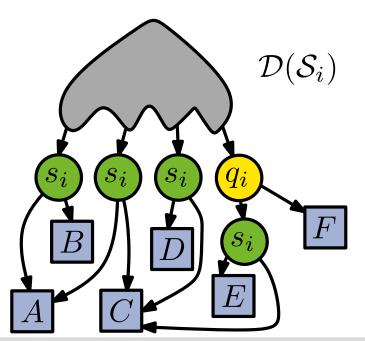
Update von $\mathcal{T}(\mathcal{S})$ und $\mathcal{D}(\mathcal{S})$

Schritt 2: Aktualisiere \mathcal{T} und \mathcal{D}

- Fall 1: $s_i \subset \Delta_0$
- Fall 2: $|\mathcal{T} \cap s_i| \geq 2$







Analyse

Satz 1: Der Algorithmus berechnet die Trapezzerlegung $\mathcal{T}(\mathcal{S})$ und die Suchstruktur \mathcal{D} für eine Menge \mathcal{S} von n Strecken in erwartet $O(n\log n)$ Zeit. Die erwartete Größe von \mathcal{D} ist O(n) und die erwartete Anfragezeit $O(\log n)$.

Beobachtungen:

- ullet im schlimmsten Fall kann $\mathcal D$ quadratisch groß werden und eine Anfrage lineare Zeit benötigen
- Hoffnung: das passiert nur selten!
- betrachte erwartete Laufzeit und Größe über alle n! möglichen Permutationen von $\mathcal S$
- ullet der Satz gilt unabhängig von der Eingabemenge ${\mathcal S}$

Worst-Case Abschätzung

Bislang: erwartete Anfragezeit für bel. Punkt ist $O(\log n)$

Aber: jede Permutation könnte einen sehr schlechten (worst-case) Anfragepunkt haben

Lemma 2: Sei $\mathcal S$ Menge von n kreuzungsfreien Strecken, q Anfragepunkt und $\lambda>0$. Dann gilt $\Pr[\operatorname{Suchpfad}\ \operatorname{für}\ q\ \operatorname{länger}\ \operatorname{als}\ 3\lambda\ln(n+1)]\leq 1/(n+1)^{\lambda\ln 1.25-1}.$

Lemma 3: Sei \mathcal{S} Menge von n kreuzungsfreien Strecken und $\lambda > 0$. Dann gilt $\Pr[\max. \text{Suchpfad in } \mathcal{D} \text{ länger als } 3\lambda \ln(n+1)] \leq 2/(n+1)^{\lambda \ln 1.25-3}$.

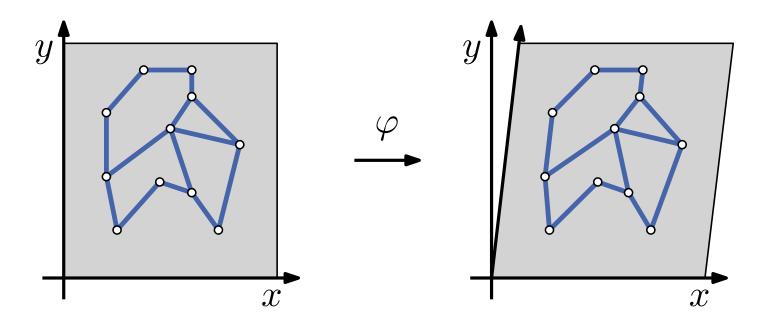
Satz 2: Sei $\mathcal S$ Unterteilung der Ebene mit n Kanten. Es gibt eine Suchstruktur zur Punktlokalisierung in $\mathcal S$ mit Platzbedarf O(n) und Anfragezeit $O(\log n)$.

Degenerierte Eingaben

Zwei Annahmen bislang:

- ullet keine zwei Streckenendpunkte habe gleiche x-Koordinate
- immer eindeutige Antworten (links/rechts) im Suchpfad

Ausweg: symbolische Scherung $\varphi:(x,y)\mapsto (x+\varepsilon y,y)$



Dabei ist $\varepsilon > 0$ so gewählt, dass sich die x-Ordnung < der Punkte nicht ändert.

Degenerierte Eingaben

- Effekt 1: lexikographische Ordnung
- Effekt 2: affine Abb. φ erhält Beziehung Punkt–Gerade
- Führe Algorithmus für $\varphi S = \{ \varphi s \mid s \in S \}$ und φp aus.
- lacktriangle Zwei elementare Operationen beim Aufbau von $\mathcal T$ und $\mathcal D$:
 - 1. liegt q links oder rechts der Vertikalen durch p?
 - 2. liegt q oberhalb oder unterhalb der Strecke s?
- Auch Lokalisierung eines Punktes q in $\mathcal{T}(S)$ geht durch Lokalisierung von φq in $\mathcal{T}(\varphi S)$.
- \rightarrow siehe Kap. 6.3 bei [De Berg et al. 2008]

Diskussion

Gibt es ähnliche Methoden auch für höhere Dimensionen?

Die derzeit beste Datenstruktur in drei Dimensionen benötigt $O(n \log n)$ Platz und $O(\log^2 n)$ Anfragezeit [Snoeyink '04]. Ob es mit linearem Platz und $O(\log n)$ Anfragezeit geht ist eine offene Frage. In höheren Dimensionen sind effiziente Verfahren nur für spezielle Unterteilungen durch Hyperebenen bekannt.

Gibt es dynamische Datenstrukturen, die Einfügen und Löschen zulassen?

Es gibt schon länger viele dynamische Datenstrukturen für Punktlokalisierung, siehe das Survey [Chiang, Tamassia '92]. Ein aktuelleres Beispiel von [Arge et al. '06] benötigt O(n) Platz, $O(\log n)$ Abfragezeit und $O(\log n)$ Updatezeit (Insertions).