

Algorithmen für Routenplanung

6. Sitzung, Sommersemester 2013 Julian Dibbelt | 8. Mai 2013

Hierarchische Techniken

Bisher: bidirektionale Suche, zielgerichtete Suche (ALT, Arc-Flags)

Heute: Nutze "Hierarchie" im Graphen

in etwa: Seiten-, Haupt-, Land-, Bundesstraßen, Autobahnen

Ideensammlung:

Hierarchische Techniken

Bisher: bidirektionale Suche, zielgerichtete Suche (ALT, Arc-Flags)

Heute: Nutze "Hierarchie" im Graphen

in etwa: Seiten-, Haupt-, Land-, Bundesstraßen, Autobahnen

Ideensammlung:

- identifiziere wichtige Knoten mit Zentralitätsmaß
- überspringe unwichtige Teile des Graphen

Motivation 1: Netzwerkanalyse

- Zentralitätsmaße bewerten Wichtigkeit von Knoten oder Kanten in einem Netzwerk
- Geläufige Beispiele
 - Google Page Rank
 - Erdös-Zahl

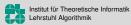
degree centrality

$$C_D(v) = \frac{\deg(v)}{n-1} \in [0,1]$$

degree centrality

$$C_D(v) = \frac{\deg(v)}{n-1} \in [0,1]$$

Geeignetes Maß?



degree centrality

$$C_D(v) = \frac{\deg(v)}{n-1} \in [0,1]$$

betweenness centrality

$$C_{B}(v) = \sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}} \in [0, 1]$$

wobei

- σ_{st} die Anzahl der kürzesten s-t-Wege ist (meistens 1)
- $\sigma_{st}(v)$ die Anzahl solcher Wege, die durch v gehen

degree centrality

$$C_D(v) = \frac{\deg(v)}{n-1} \in [0,1]$$

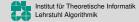
betweenness centrality

$$C_B(v) = \sum_{\substack{s \neq v \neq t \in V \\ s \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}} \in [0, 1]$$

wobei

- σ_{st} die Anzahl der kürzesten s-t-Wege ist (meistens 1)
- $\sigma_{st}(v)$ die Anzahl solcher Wege, die durch v gehen

Geeignetes Maß?



Motivation 1: Netzwerkanalyse

Reach:

 Zentralitätsmaß, das groß ist, falls eine Kante in der Mitte eines langen kürzesten Weges liegt.

Motivation 2

- Zeichne um jede Kante (u, v) Kreis mit Radius r(u, v), so dass gilt:
 - Für jedes Paar s, t für das (u, v) auf einem kürzesten s-t-Weg liegt gilt, dass entweder s oder t in dem Kreis liegt.

Motivation 2

- Zeichne um jede Kante (u, v) Kreis mit Radius r(u, v), so dass gilt:
 - Für jedes Paar s, t für das (u, v) auf einem kürzesten s-t-Weg liegt gilt, dass entweder s oder t in dem Kreis liegt.

Möglichkeiten für diesen Kreis

- "geometrischer Kreis" in euklidischer Ebene
- "graphentheoretischer Kreis" im Eingabegraph

Motivation 2

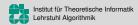
- Zeichne um jede Kante (u, v) Kreis mit Radius r(u, v), so dass gilt:
 - Für jedes Paar s, t für das (u, v) auf einem kürzesten s-t-Weg liegt gilt, dass entweder s oder t in dem Kreis liegt.

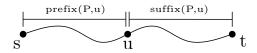
Möglichkeiten für diesen Kreis

- "geometrischer Kreis" in euklidischer Ebene
- "graphentheoretischer Kreis" im Eingabegraph

Strategie für Beschleunigungstechnik:

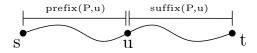
- Beachte Kante (u, v) nicht, wenn s und t nicht im Kreis um (u, v) liegen.
- wie überprüfen?





Definition:

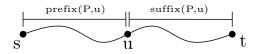
- Sei $P = \langle s, \dots, u, \dots, t \rangle$ Pfad durch u
- dann Reach von u bezüglich P:



Definition:

- Sei $P = \langle s, \dots, u, \dots, t \rangle$ Pfad durch u
- dann Reach von u bezüglich P:

$$r_P(u) := \min\{\text{len}(prefix(P, u)), \text{len}(suffix(P, u))\}$$

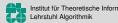


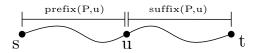
Definition:

- Sei $P = \langle s, \dots, u, \dots, t \rangle$ Pfad durch u
- dann Reach von u bezüglich P:

$$r_P(u) := \min\{ \mathsf{len}(\textit{prefix}(P, u)), \mathsf{len}(\textit{suffix}(P, u)) \}$$

Reach von u:





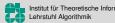
Definition:

- Sei $P = \langle s, \dots, u, \dots, t \rangle$ Pfad durch u
- dann Reach von u bezüglich P:

$$r_P(u) := \min\{ len(prefix(P, u)), len(suffix(P, u)) \}$$

Reach von u: Maximum seiner Reachwerte bezüglich aller kürzesten Pfade durch u:

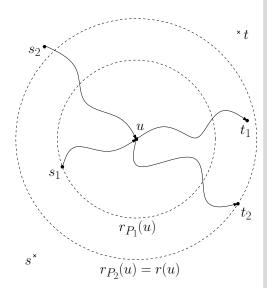
$$r(u) := \max\{r_P(u) \mid P \text{ kürzester Weg mit } u \in P\}$$



Reach-Pruning

somit:

- Reach r(u) von u gibt Suffix oder Prefix des längsten kürzesten Weges durch u
- wenn für u während Query r(u) < d(s, u) und r(u) < d(u, t) gilt, muss u nicht beachtet werden

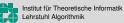


Uni Reach Dijkstra - Pseudocode


```
ReachDijkstra(G = (V, E), s, t)
 1 d[s] = 0
2 Q.clear(), Q.add(s, 0)
3 while !Q.empty() do
       u \leftarrow Q.deleteMin()
 4
       if r(u) < d[u] and r(u) < d(u,t) then continue
 5
       forall edges e = (u, v) \in E do
6
           if d[u] + len(e) < d[v] then
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
               if v \in Q then Q.decreaseKey(v, d[v])
 9
              else Q.insert(v, d[v])
10
```

Problem

Problem?



Problem

Problem:

• Abfrage r(u) < d(u, t)

Problem

Problem:

- Abfrage r(u) < d(u, t)
- Im geometrischen Fall ist die Überprüfung einfach
- Auch möglich: benutze Landmarken
- Weiteres?

Bidir. Self-Bounding Reach-Dijkstra

Idee (für Vorwärtssuche):

- ignoriere knoten u wenn d[u] > r(u) gilt
- lacktriangle überlasse den Check d(u,t)>r(u) der Rückwärtssuche
- Rückwärtssuche analog (umgekehrt)
- ändere das Stoppkriterium

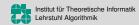
Bidir. Self-Bounding Reach-Dijkstra

Idee (für Vorwärtssuche):

- ignoriere knoten u wenn d[u] > r(u) gilt
- lacktriangle überlasse den Check d(u,t)>r(u) der Rückwärtssuche
- Rückwärtssuche analog (umgekehrt)
- ändere das Stoppkriterium

neues Stoppkriterium:

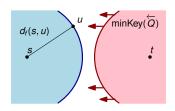
- stoppe Suche in eine Richtung wenn Queue leer oder es gilt: $\min Key(Q) > \mu/2$
- stoppe Anfrage, wenn beide Suchrichtungen gestoppt haben
- Korrektheit gute Fingerübung



Bidir. Dist.-Bounding Reach-Dijkstra

Idee (für Vorwärtssuche):

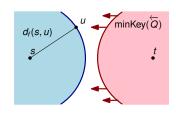
- wenn u von Rückwärtssuche noch nicht erreicht, ist minKey(Q) eine untere Schranke für d(u,t)
- wenn u von Rückwärtssuche abgearbeitet, d(u,t) bekannt



Bidir. Dist.-Bounding Reach-Dijkstra

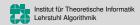
Idee (für Vorwärtssuche):

- wenn u von Rückwärtssuche noch nicht erreicht, ist minKey(Q) eine untere Schranke für d(u,t)
- wenn u von Rückwärtssuche abgearbeitet, d(u,t) bekannt



somit:

- ignoriere u, wenn $r(u) < d_f[u]$ und $r(u) < \min\{d_b[u], \min\{E(Q)\}\}$
- Stoppkriterium bleibt erhalten (also minKey $(\overrightarrow{m{Q}})+$ minKey $(\overleftarrow{m{Q}})\geq \mu)$
- wenn als Alternierungsstrategie min{minKey(\overrightarrow{Q}), minKey(\overleftarrow{Q})} gewählt, gilt für Vorwärtssuche: $d_f[u] \leq \min \text{Key}(\overleftarrow{Q})$



Optimierungen

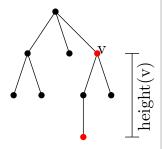
mögliche Verbesserungen:

- Early (Kanten-)Pruning: (u, v) muss nicht relaxiert werden, wenn gilt:
 - $d_f[u] + \text{len}(u, v) > r(v)$
 - und $r(v) < \min\{d_b[v], \min(\overleftarrow{Q})\}$
- Kanten sortieren:
 - sortiere ausgehende Kanten (u, v_i) absteigende nach $r(v_i)$
 - wenn Kante relaxiert wird mit $r(v_i) < \min \text{Key}(\overleftarrow{Q})$ und $r(v_i) < d_f[u]$ müssen die restlichen Kanten ausgehend von u nicht relaxiert werden

Vorberechnung: Erster Ansatz

Wie kann man Reach-Werte vorberechnen?

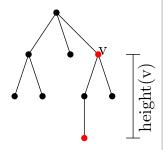
- initialisieren r(u) = 0 für alle Knoten
- für jeden Knoten u
 - konstruiere kürzeste Wege-Baum
 - höhe von Knoten v: Abstand von v zum am weitesten entfernten Nachfolger
 - für jeden Knoten v: r(v) = max{r(v), min{d(u, v), height(v)}}



Vorberechnung: Erster Ansatz

Wie kann man Reach-Werte vorberechnen?

- initialisieren r(u) = 0 für alle Knoten
- für jeden Knoten u
 - konstruiere kürzeste Wege-Baum
 - höhe von Knoten v: Abstand von v zum am weitesten entfernten Nachfolger
 - für jeden Knoten v: $r(v) = \max\{r(v), \min\{d(u, v), \text{height}(v)\}\}$



altes Problem:

Vorberechnung basiert auf all-pair-shortest paths

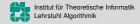
Approximation

Beobachtung:

 es genügt, für jeden Knoten eine obere Schranke des Reach-Wertes zu haben

Problem:

- untere Schranken einfach zu finden:
 - breche Konstruktion der Bäume einfach bei bestimmter Größe ab
- aber: untere Schranken sind unbrauchbar
- Berechnung von oberen Schranken deutlich schwieriger
- möglich, aber sehr aufwendig
- nicht (mehr) Bestandteil der Vorlesung



Literatur

Literatur (Reach, RE, REAL):

R. Gutman:

Reach-based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks

In: ALENEX, 2004

Andrew V. Goldberg and Haim Kaplan and Renato F. Werneck: Reach for A*: Shortest Path Algorithms with Preprocessing In: Shortest Paths: Ninth DIMACS Implementation Challenge, 2009.

Hierarchische Techniken

Ideensammlung:

- identifiziere wichtige Knoten mit Zentralitätsmaß
- überspringe unwichtige Teile des Graphen

Overlay Graph

Gegeben

- Eingabegraph G = (V, E, len)
- Knotenmenge $V \supseteq V_L$

Berechne

■ Berechne $G_L = (V_L, E_L, len_L)$, so dass Distanzen in G_L wie in G

Wahl der Knotenmenge

Ideensammlung

Wahl der Knotenmenge

Ideensammlung

Randknoten

Wahl der Knotenmenge

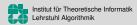
Ideensammlung

- Randknoten
- (approximiertes) Zentralitätsmaß

Partitionierung

Letztes Mal: Strassengraphen haben natürliche Schnitte

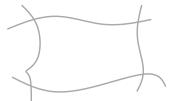
- Jeder Pfad durch eine Zelle betritt/verlässt die Zelle durch einen Randknoten
- ⇒ Minimiiere # Schnittkanten mit Zellgrösse ≤ U (Eingabeparameter)



Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

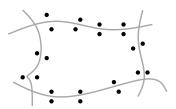
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



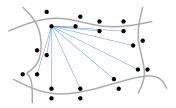
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



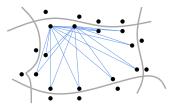
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



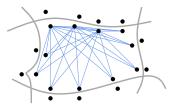
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



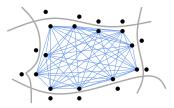
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



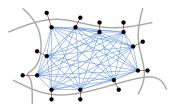
Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

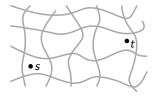
- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten

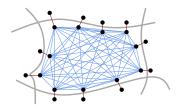


Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



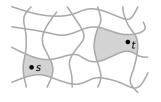


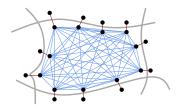
- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



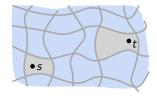


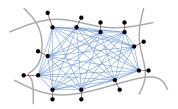
- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



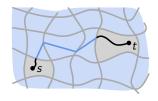


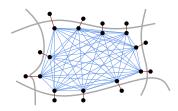
- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



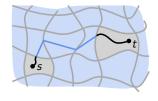


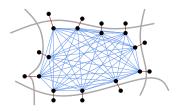
- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



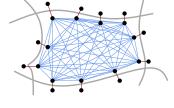


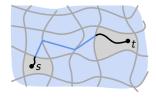
- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Idee: Berechne Distanzen zwischen Randknoten in jeder Zelle

Overlay Graph:

- Randknoten
- Cliquen in jeder Zelle
- Schnittkanten



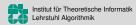


Suchgraph:

- Start- und Zielzelle...
- ...plus Overlaygraph.
- (bidirektionaler) Dijkstra

Example

 2^{15} Knoten pro Zelle, 626 Zellen \Rightarrow 34 k Knoten im Overlaygraphen



Worst-Case:

■ Kanten scans: O(∑ cliques + 2 · cell size). Grösse des Overlaygraphen is metrikunabhängig

Worst-Case:

■ Kanten scans: O(∑ cliques + 2 · cell size). Grösse des Overlaygraphen is metrikunabhängig

Beispiel:

	Metric Customization		Queries	
metric	time [s]	space [MB]	scans	time [ms]
Travel time	20	10	45134	10
Distance	20	10	47127	11

(partition: $\leq 2^{14}$ nodes/cell)

Worst-Case:

■ Kanten scans: O(∑ cliques + 2 · cell size). Grösse des Overlaygraphen is metrikunabhängig

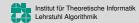
Beispiel:

	Metric Customization		Queries	
metric	time [s]	space [MB]	scans	time [ms]
Travel time	20	10	45134	10
Distance	20	10	47127	11
		(partition: < 214	nodoc/coll)	

(partition: $\leq 2^{14}$ nodes/cell)

West Europa (18 M nodes, 42 M edges)

Intel Core-i7 920 (four cores at 2.67 GHz)



Worst-Case:

• Kanten scans: $O(\sum \text{cliques} + 2 \cdot \text{cell size})$. Grösse des Overlaygraphen is metrikunabhängig

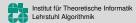
Beispiel:

	Metric Customization		Queries	
metric	time [s]	space [MB]	scans	time [ms]
Travel time	20	10	45134	10
Distance	20	10	47127	11
(partition: ≤ 2 ¹⁴ nodes/cell)				

West Europa (18 M nodes, 42 M edges)

Intel Core-i7 920 (four cores at 2.67 GHz)

Diskussion: Unterschied zu Multilevel-ArcFlags?



Diskussion

Verbesserungen?

Diskussion

Verbesserungen?

- Ausdünnung der Graphen
- Kombination mit zielgerichteter Suche
- Multi-Level Partitionierung

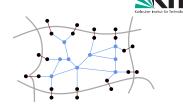
Ausdünnung des Overlaygraphen:

Ausdünnung des Overlaygraphen:

entferne unnötige Kanten

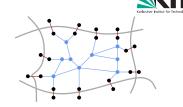
Ausdünnung des Overlaygraphen:

- entferne unnötige Kanten
- füge Knoten hinzu (aus Originalgraphen)



Ausdünnung des Overlaygraphen:

- entferne unnötige Kanten
- füge Knoten hinzu (aus Originalgraphen)
- etwas schnellere Anfragen



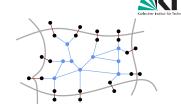
Ausdünnung des Overlaygraphen:

- entferne unnötige Kanten
- füge Knoten hinzu (aus Originalgraphen)
- etwas schnellere Anfragen

Kombination mit zielgerichteter Suche:

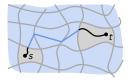
Ausdünnung des Overlaygraphen:

- entferne unnötige Kanten
- füge Knoten hinzu (aus Originalgraphen)
- etwas schnellere Anfragen



Kombination mit zielgerichteter Suche:

- nur auf (kleinem) Overlaygraphen
- ALT/Arc-Flags
- beschleunigt Anfragen, macht Vorberechnung und Queries komplizierter

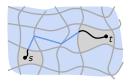


Ausdünnung des Overlaygraphen:

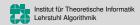
- entferne unnötige Kanten
- füge Knoten hinzu (aus Originalgraphen)
- etwas schnellere Anfragen

Kombination mit zielgerichteter Suche:

- nur auf (kleinem) Overlaygraphen
- ALT/Arc-Flags
- beschleunigt Anfragen, macht Vorberechnung und Queries komplizierter



Es geht besser (und einfacher!)



Multilevel-Overlay Graphs

Gegeben

- Eingabegraph G = (V, E, len)
- Folge $V := V_0 \supseteq V_1 \supseteq ... \supseteq V_L$ von Teilmengen von V.

Berechne

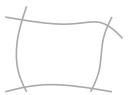
■ Folge $G_0 = (V_0, E_0, len_0), \dots, G_L = (V_L, E_L, len_L)$ von Graphen, so dass Distanzen in G_i wie in G_0

Multi-Level Partition:

benutze mehrere Partitionen (mit PUNCH)

Multi-Level Partition:

benutze mehrere Partitionen (mit PUNCH)



Multi-Level Partition:

benutze mehrere Partitionen (mit PUNCH)

Multi-Level Partition:

- benutze mehrere Partitionen (mit PUNCH)
- berechne Cliquen bottom-up
- benutze G_{i-1} um G_i zu bestimmen
- trade-off zwischen Platz und Suchzeiten

Multi-Level Partition:

- benutze mehrere Partitionen (mit PUNCH)
- berechne Cliquen bottom-up
- benutze G_{i-1} um G_i zu bestimmen
- trade-off zwischen Platz und Suchzeiten

Multi-Level Partition:

- benutze mehrere Partitionen (mit PUNCH)
- berechne Cliquen bottom-up
- benutze G_{i−1} um G_i zu bestimmen
- trade-off zwischen Platz und Suchzeiten

- Overlay auf obersten Level (G_L) ...
- und alle Ziel- und Startzellen (auf jedem Level)
- (bidirektionaler) Dijkstra

Phantom Level

Beobachtung: Viele Level ⇒ schnellere Vorberechnung, mehr Platz

Phantom Level

Beobachtung: Viele Level ⇒ schnellere Vorberechnung, mehr Platz

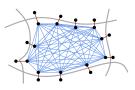
- Benutze mehr Level für Vorberechnung (32 Knoten pro Zelle)
- Speichere die unteren Level aber nicht dauerhaft
- Schnellere Vorberechnung
- Werden aber nicht für Queries benutzt

Cell Size	Cust Time				
[2 ¹⁴] [2 ⁸ : 2 ¹⁴]	20.0s				
$[2^8:2^{14}]$	4.9s				
(metric: travel time)					

Implementation

Repräsentation des Overlaygraphen:

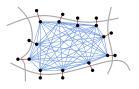
wirklich Graph-DS nötig?



Implementation

Repräsentation des Overlaygraphen:

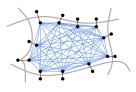
- wirklich Graph-DS nötig?
- speicher Cliquen als Matrizen
- Beschleunigt Vorberechnung und Queries um einen Faktor 2 Schneller als ausgedünnter Overlay!



Implementation

Repräsentation des Overlaygraphen:

- wirklich Graph-DS nötig?
- speicher Cliquen als Matrizen
- Beschleunigt Vorberechnung und Queries um einen Faktor 2
 Schneller als ausgedünnter Overlay!
- Entkoppelung von Metrik und Topology
- reduziert Platzverbrauch: 32 Bit pro Cliquenkante (pro Metrik) + 1 x 32 Bit fuer Topology



3-Phasen Algorithmus

1. Metrik-unabhängige Vorberechnung

- Partitionierung des Graphen
- Bauen der Topology des Overlay Graphen
- Linearer Platz f
 ür Partition, kann ein wenig dauern (nur einmal)
- PUNCH: 15-30 Minuten (mit aggressiven Parametern)

3-Phasen Algorithmus

1. Metrik-unabhängige Vorberechnung

- Partitionierung des Graphen
- Bauen der Topology des Overlay Graphen
- Linearer Platz f
 ür Partition, kann ein wenig dauern (nur einmal)
- PUNCH: 15-30 Minuten (mit aggressiven Parametern)

2. Metrik-abhängige Vorberechnung

- Berechnung der Gewicht der Matrix-Einträge
- Mit Hilfe von lokalen (hoch-parallelisierbaren) Dijkstra-Suchen
- Overhead pro Metrik gering (ein Array)

3-Phasen Algorithmus

1. Metrik-unabhängige Vorberechnung

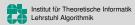
- Partitionierung des Graphen
- Bauen der Topology des Overlay Graphen
- Linearer Platz f
 ür Partition, kann ein wenig dauern (nur einmal)
- PUNCH: 15-30 Minuten (mit aggressiven Parametern)

2. Metrik-abhängige Vorberechnung

- Berechnung der Gewicht der Matrix-Einträge
- Mit Hilfe von lokalen (hoch-parallelisierbaren) Dijkstra-Suchen
- Overhead pro Metrik gering (ein Array)

3. Queries

- Benutze Graph und beide Vorberechnungen
- (paralleler) bidirektionaler Dijkstra



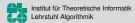
Performance

		Custo	omization	Queries	
	Algorithm	time [s]	space [MB]	scans	time [ms]
travel time	MLD-1 [2 ¹⁴]	4.9	9.8	45134	5.67
	MLD-2 [2 ¹² : 2 ¹⁸]	5.0	18.4	12722	1.79
	MLD-3 [2 ¹⁰ : 2 ¹⁵ : 2 ²⁰]	5.2	32.3	6074	0.91
	MLD-4 $[2^8 : 2^{12} : 2^{16} : 2^{20}]$	5.2	59.0	3897	0.71
distances	MLD-1 [2 ¹⁴]	4.7	9.8	47127	6.19
	MLD-2 [2 ¹² : 2 ¹⁸]	4.9	18.4	13114	1.85
	MLD-3 [2 ¹⁰ : 2 ¹⁵ : 2 ²⁰]	5.1	32.3	6315	1.01
ਚ	MLD-4 $[2^8:2^{12}:2^{16}:2^{20}]$	4.7	59.0	4102	0.77

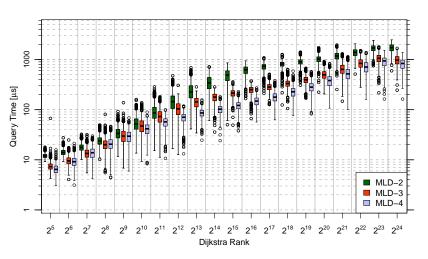
Performance

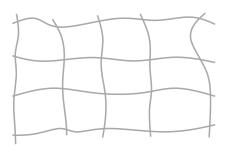
		Custo	mization	Queries	
	Algorithm	time [s]	space [MB]	scans	time [ms]
travel time	MLD-1 [2 ¹⁴]	4.9	9.8	45134	5.67
	MLD-2 [2 ¹² : 2 ¹⁸]	5.0	18.4	12722	1.79
	MLD-3 [2 ¹⁰ : 2 ¹⁵ : 2 ²⁰]	5.2	32.3	6074	0.91
	MLD-4 $[2^8:2^{12}:2^{16}:2^{20}]$	5.2	59.0	3897	0.71
distances	MLD-1 [2 ¹⁴]	4.7	9.8	47127	6.19
	MLD-2 [2 ¹² : 2 ¹⁸]	4.9	18.4	13114	1.85
	MLD-3 [2 ¹⁰ : 2 ¹⁵ : 2 ²⁰]	5.1	32.3	6315	1.01
	MLD-4 $[2^8:2^{12}:2^{16}:2^{20}]$	4.7	59.0	4102	0.77

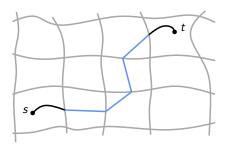
MLD: fast customization / compact / real-time queries / robust

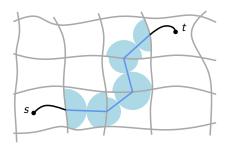


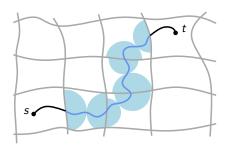
Local Queries



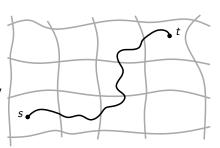






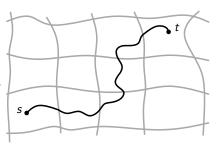


- bidirektionale Suche
- beschränkt auf die Zelle
- benutze untere Level rekursiv
- parallelisierbar
- benutze LRU-cache



Von Shortcuts zu vollen Pfaden:

- bidirektionale Suche
- beschränkt auf die Zelle
- benutze untere Level rekursiv
- parallelisierbar
- benutze LRU-cache



Kaum zusätzlicher Speicher, 20-30% Zeit-Overhead.

Customizable Route Planning

Eigenschaften:

- viele Metriken
- schnelle lokale and globale updates
 Zelle in Millisekunden, gesamter Graph in Sekunden
- real-time queries (5000× Dijkstra)
- Bing Maps Routing Engine

Partition ist der Schlüssel.

Literatur

Literatur (Multilevel Overlay Graph):

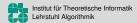
 Frank Schulz, Dorothea Wagner, Christos Zaroliagis
 Using Multi-Level Graphs for Timetable Information in Railway Systems

In: Proceedings of the 4th Workshop on Algorithm Engineering and Experiments (ALENEX'02), 2002

- Peter Sanders, Dominik Schultes
 Dynamic Highway Node Routing
 In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA '07), 2007
- Daniel Delling, Andrew V. Goldberg, Thomas Pajor, Renato Werneck

Customizable Route Planning

In: Proceedings of the 10th International Symposium on Experimental Algorithms (SEA '11), 2011



Hierarchische Techniken

Ideensammlung:

- identifiziere wichtige Knoten mit Zentralitätsmaß
- überspringe unwichtige Teile des Graphen

Overlay Graph

Gegeben

- Eingabegraph G = (V, E, len)
- Knotenmenge $V \supseteq V_L$

Berechne

■ Berechne $G_L = (V_L, E_L, len_L)$, so dass Distanzen in G_L wie in G

Multilevel-Overlay Graphs

Gegeben

- Eingabegraph G = (V, E, len)
- Folge $V := V_0 \supseteq V_1 \supseteq ... \supseteq V_L$ von Teilmengen von V.

Berechne

■ Folge $G_0 = (V_0, E_0, len_0), \dots, G_L = (V_L, E_L, len_L)$ von Graphen, so dass Distanzen in G_i wie in G_0

Wahl der Knotenmenge

- Randknoten
 - können auch beliebige Knotenmengen sein

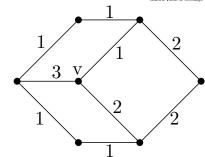
Zutaten:

- Ordne Knoten nach Wichtigkeit $r: V \rightarrow [0, ..., n-1]$
- Shortcut Operation

Zutaten:

- Ordne Knoten nach Wichtigkeit $r: V \rightarrow [0, \dots, n-1]$
- Shortcut Operation

Shortcut Operation (von Knoten *v*):

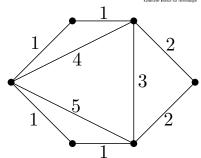


Zutaten:

- Ordne Knoten nach Wichtigkeit $r: V \rightarrow [0, \dots, n-1]$
- Shortcut Operation

Shortcut Operation (von Knoten v):

entferne v

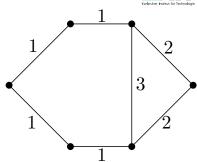


Zutaten:

- Ordne Knoten nach Wichtigkeit $r: V \rightarrow [0, ..., n-1]$
- Shortcut Operation

Shortcut Operation (von Knoten *v*):

- entferne v
- für jedes Paar u, w füge Kanten (u, w) zum Graphen wenn v auf dem einzigen kürzesten Weg von u nach w liegt

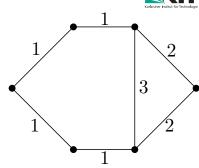


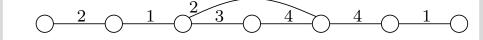
Zutaten:

- Ordne Knoten nach Wichtigkeit $r: V \rightarrow [0, ..., n-1]$
- Shortcut Operation

Shortcut Operation (von Knoten *v*):

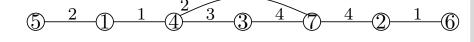
- entferne v
- für jedes Paar u, w füge Kanten (u, w) zum Graphen wenn v auf dem einzigen kürzesten Weg von u nach w liegt
- kann durch lokale Dijkstra Suchen von den Nachbarn berechnet werden



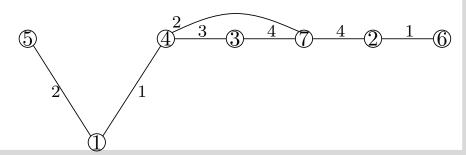


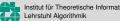
Vorberechnung:

ordne Knoten

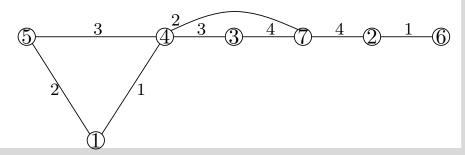


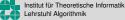
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)



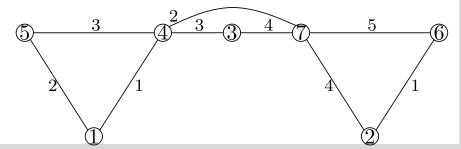


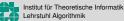
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)



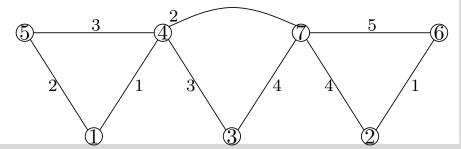


- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)

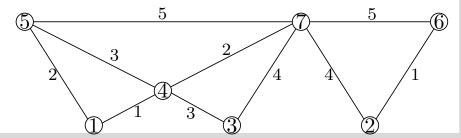


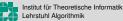


- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)

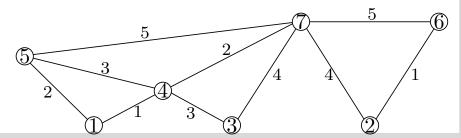


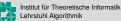
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)



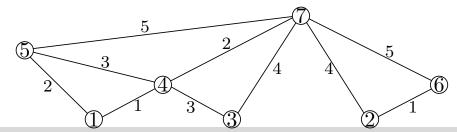


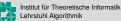
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)





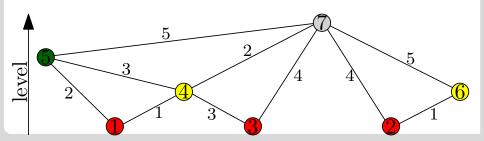
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)

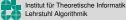




Vorberechnung:

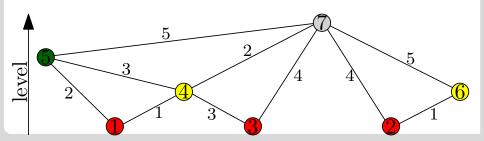
- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)
- bestimme Level des Knoten

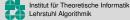




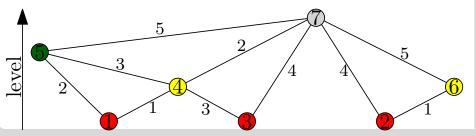
Vorberechnung:

- ordne Knoten
- bearbeite in der Reihenfolge
- shortcutten des Knoten, hinzufügen von Shortcuts (A+)
- bestimme Level des Knoten
- erzeugt einen Graph $G^+ = (V, A \cup A^+)$

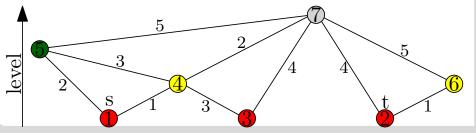


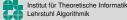


- modifizierter bidirektionaler Dijkstra
- folge nur Kanten zu wichtigeren Knoten Aufwärtsgraph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ Abwärtsgraph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- lacksquare Vorwärtssuche in G_{\uparrow} und Rückwärtssuche in G_{\downarrow}
- konservatives Stoppkriterium
- jede Suche stoppt wenn Queue leer oder $minKey(Q) > \mu$

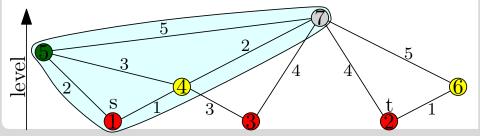


- modifizierter bidirektionaler Dijkstra
- folge nur Kanten zu wichtigeren Knoten Aufwärtsgraph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ Abwärtsgraph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- lacksquare Vorwärtssuche in G_{\uparrow} und Rückwärtssuche in G_{\downarrow}
- konservatives Stoppkriterium
- jede Suche stoppt wenn Queue leer oder $minKey(Q) > \mu$



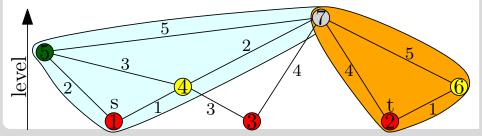


- modifizierter bidirektionaler Dijkstra
- folge nur Kanten zu wichtigeren Knoten
 Aufwärtsgraph $G_{\uparrow} := (V, E_{\uparrow}) \text{ with } E_{\uparrow} := \{(u, v) \in E : u < v\}$ Abwärtsgraph $G_{\downarrow} := (V, E_{\downarrow}) \text{ with } E_{\downarrow} := \{(u, v) \in E : u > v\}$
- lacktriangle Vorwärtssuche in G_{\uparrow} und Rückwärtssuche in G_{\downarrow}
- konservatives Stoppkriterium
- jede Suche stoppt wenn Queue leer oder $minKey(Q) > \mu$

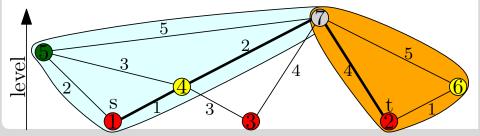


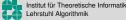
- modifizierter bidirektionaler Dijkstra
- folge nur Kanten zu wichtigeren Knoten

 Aufwärtsgraph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ Abwärtsgraph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u < v\}$
- Vorwärtssuche in G_↑ und Rückwärtssuche in G_↓
- konservatives Stoppkriterium
- jede Suche stoppt wenn Queue leer oder $minKey(Q) > \mu$



- modifizierter bidirektionaler Dijkstra
- folge nur Kanten zu wichtigeren Knoten
 Aufwärtsgraph $G_{\uparrow} := (V, E_{\uparrow}) \text{ with } E_{\uparrow} := \{(u, v) \in E : u < v\}$ Abwärtsgraph $G_{\downarrow} := (V, E_{\downarrow}) \text{ with } E_{\downarrow} := \{(u, v) \in E : u > v\}$
- lacktriangle Vorwärtssuche in G_{\uparrow} und Rückwärtssuche in G_{\downarrow}
- konservatives Stoppkriterium
- jede Suche stoppt wenn Queue leer oder $minKey(Q) > \mu$





Beobachtung:

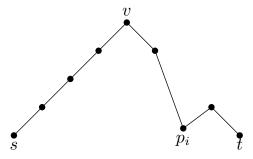
 der kürzeste s–t Weg P existiert auch in G⁺ (wir fügen nur Kanten hinzu)

- der kürzeste s-t Weg P existiert auch in G⁺ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts

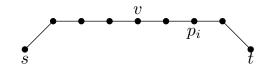
- der kürzeste s-t Weg P existiert auch in G+ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P

- der kürzeste s-t Weg P existiert auch in G+ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P
- wir müssen zeigen, dass es einen s-aufwärts-v-abwärts-t Pfad gibt

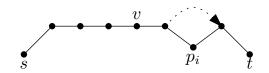
- der k\u00fcrzeste s-t Weg P existiert auch in G⁺ (wir f\u00fcgen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P
- wir müssen zeigen, dass es einen s-aufwärts-v-abwärts-t Pfad gibt



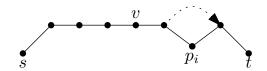
- der kürzeste s-t Weg P existiert auch in G+ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P
- wir müssen zeigen, dass es einen s-aufwärts-v-abwärts-t Pfad gibt



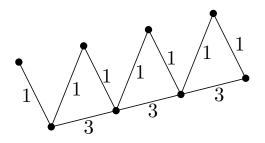
- der kürzeste s–t Weg P existiert auch in G⁺ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P
- wir müssen zeigen, dass es einen s-aufwärts-v-abwärts-t Pfad gibt



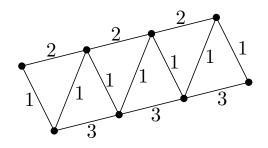
- der kürzeste s–t Weg P existiert auch in G⁺ (wir fügen nur Kanten hinzu)
- aber wir suchen nur aufwärts
- es gibt einen wichtigsten Knoten v auf P
- wir müssen zeigen, dass es einen s-aufwärts-v-abwärts-t Pfad gibt
- verändertes Stoppkriterium: es kann v = s oder v = t sein



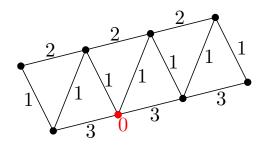
Beobachtung:



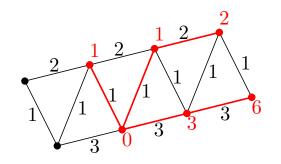
Beobachtung:



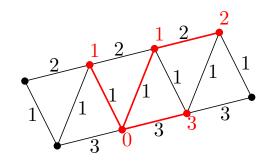
Beobachtung:



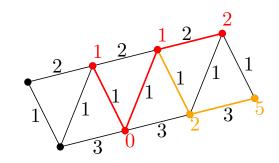
Beobachtung:



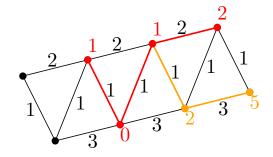
- Aufwärtssuchen können Knoten mit falscher Distanz scannen
- Heuristik versucht das durch scannen von Abwärtskanten zu verhindern
- diese Knoten werden deaktiviert, können aber wieder aktiviert werden



- Aufwärtssuchen können Knoten mit falscher Distanz scannen
- Heuristik versucht das durch scannen von Abwärtskanten zu verhindern
- diese Knoten werden deaktiviert, können aber wieder aktiviert werden



- Aufwärtssuchen können Knoten mit falscher Distanz scannen
- Heuristik versucht das durch scannen von Abwärtskanten zu verhindern
- diese Knoten werden deaktiviert, k\u00f6nnen aber wieder aktiviert werden
- reduziert Suchraum um einen Faktor 4



Nächste Termine

Montag, 13.5.2012 Mittwoch, 22.5.2012