

Algorithmen für Routenplanung

1. Sitzung, Sommersemester 2013 Thomas Pajor | 15. April 2013

Organisatorisches

Dozent

Julian Dibbelt

- Karlsruher Institut f
 ür Technologie
- Mail: julian.dibbelt@kit.edu
- Raum 318

Dozent

Thomas Pajor

- Karlsruher Institut für Technologie
- Mail: pajor@kit.edu
- Raum 246

Organisatorisches

Vorlesung

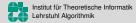
- Montags 14:00–15:30 Uhr, SR 301 (hier)
- Mittwochs 11:30–13:00 Uhr, SR 301 (hier)

Prüfung

- Prüfbar im Hauptstudium (Diplom) und Master
- Im Master: 5 ECTS Kredite
- VF: 1 (Theoretische Grundlagen), 2 (Algorithmentechnik)

Vorlesungswebseite:

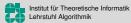
http://illwww.iti.uni-karlsruhe.de/teaching/sommer2013/routenplanung/index



Vorläufige Termine

#	Tag	Datum	Dozent	#	Tag	Datum	Dozent
1	Montag	15. April	Thomas	11	Montag	03. Juni	
2	Montag	22. April		12	Montag	10. Juni	Julian
3	Mittwoch	24. April		13	Mittwoch	12. Juni	Julian
4	Montag	29. Arpil		14	Montag	17. Juni	
5	Montag	06. Mai		15	Montag	24. Juni	
6	Mittwoch	08. Mai		16	Mittwoch	26. Juni	
7	Montag	13. Mai		17	Montag	08. Juli	
8	Mittwoch	22. Mai		18	Mittwoch	10. Juli	
9	Montag	27. Mai		19	Montag	15. Juli	
10	Mittwoch	29. Mai					

Siehe auch Vorlesungswebseite!



Weitere Vorlesungen

Algorithmische Kartografie

- Dozenten: Dr. Martin Nöllenburg und Benjamin Niedermann
- Vorlesung: donnerstags 9:45–11:15 Uhr (SR 301)
- Übung: donnerstags 10:15–11:00 (SR 301)

Algorithmen für planare Graphen

- Dozent: Dr. Ignaz Rutter
- Vorlesung: dienstags 14:00–15:30 Uhr (SR 301)
- Vorlesung: donnerstags 14:00–15:30 Uhr (SR 301)
- Übungs: zusätzlich an einigen Vorlesungsterminen

0. Motivation

Worum geht es bei der Routenplanung?

Problemstellung

Gesucht:

finde die beste Verbindung in einem Transportnetzwerk

Idee:

- Netzwerk als Graphen G = (V, E)
- Kantengewichte sind Reisezeiten
- kürzeste Wege in G entsprechen schnellsten Verbindungen
- klassisches Problem (Dijkstra)

Probleme

- Transportnetzwerke sind groß
- Dijkstra zu langsam (> 1 Sekunde

Problemstellung

Gesucht:

finde die beste Verbindung in einem Transportnetzwerk

Idee:

- Netzwerk als Graphen G = (V, E)
- Kantengewichte sind Reisezeiten
- kürzeste Wege in *G* entsprechen schnellsten Verbindungen
- klassisches Problem (Dijkstra)

Probleme

- Transportnetzwerke sind groß
- Dijkstra zu langsam (> 1 Sekunde

Problemstellung

SKIT

Gesucht:

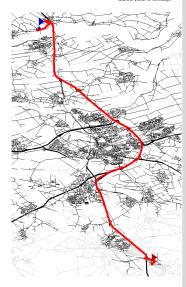
finde die beste Verbindung in einem Transportnetzwerk

Idee:

- Netzwerk als Graphen G = (V, E)
- Kantengewichte sind Reisezeiten
- kürzeste Wege in G entsprechen schnellsten Verbindungen
- klassisches Problem (Dijkstra)

Probleme:

- Transportnetzwerke sind groß
- Dijkstra zu langsam (> 1 Sekunde)



Beschleunigungstechniken

Beobachtungen:

- viele Anfragen in (statischem) Netzwerk
- manche Berechnungen scheinen unnötig

Idee:

- Zwei-Phasen Algorithmus:
 - offline: berechne Zusatzinformation während Vorberechnung
 - online: beschleunige Berechung mit diesen Zusatzinformationen
- drei Kriterien:
 - wenig Zusatzinformation $\mathcal{O}(n)$
 - kurze Vorberechnung (im Bereich Stunden/Minuten)
 - hohe Beschleunigung

Beschleunigungstechniken

Beobachtungen:

- viele Anfragen in (statischem) Netzwerk
- manche Berechnungen scheinen unnötig

Idee:

- Zwei-Phasen Algorithmus:
 - offline: berechne Zusatzinformation während Vorberechnung
 - online: beschleunige Berechung mit diesen Zusatzinformationen
- drei Kriterien:
 - wenig Zusatzinformation $\mathcal{O}(n)$
 - kurze Vorberechnung (im Bereich Stunden/Minuten)
 - hohe Beschleunigung

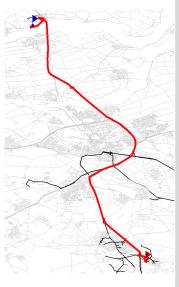
Beschleunigungstechniken

Beobachtungen:

- viele Anfragen in (statischem) Netzwerk
- manche Berechnungen scheinen unnötig

Idee:

- Zwei-Phasen Algorithmus:
 - offline: berechne Zusatzinformation während Vorberechnung
 - online: beschleunige Berechung mit diesen Zusatzinformationen
- drei Kriterien:
 - wenig Zusatzinformation $\mathcal{O}(n)$
 - kurze Vorberechnung (im Bereich Stunden/Minuten)
 - hohe Beschleunigung



Unterschiede zur Industrie

Industrie:

- Falk, TomTom, bahn.de, usw.
- alles heuristische Verfahren
 - betrachte nur noch "wichtige" Kanten wenn mehr als x Kilometer von Start weg
 - Kombination mit A*-Suche
 - langsam!
- Ausnahme: Bing Maps, Google Maps

ESS IED ESS Berlin-Zentrum 11:02 ----11:26 100 --- Tointom

Unser Anspruch:

- Anfragen sollen beweisbar korrekt sein
- ⇒ weniger Ausnahmeregelungen
- \Rightarrow schneller (!)
 - Verfahren sollen nach und nach in der Industrie eingesetzt werden

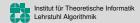
Ergebnisse

Eingabe: Straßennetzwerk von Westeuropa

- 18 Mio. Knoten
- 42 Mio. Kanten

		Vorberechnung		Anf	RAGE
		Zeit	Platz	Zeit	
	Jahr	[h:m]	[byte/n]	[ms]	Beschl.
Dijkstra	1959*	0:00	0	5 153.0	0
Arc-Flags	2004	17:08	19	1.6	3 2 2 1
Transit-Node Routing	2006	1:15	226	0.0043	1.2 Mio.
Contraction Hier.	2008	0:29	0	0.19	27 121
CH + Arc-Flags	2008	1:39	12	0.017	ca. 300 000
TNR + AF	2008	3:49	312	0.0019	ca. 3 Mio.
Hub Labels	2011	≈ 4:30	1 241	≈ 0.0005	ca. 11 Mio.

^{*} Damalige Variante deutlich langsamer, wir sehen nachher, warum



Schwerpunkte

- Algorithm Engineering + ein bisschen Theorie
- Beschleunigungstechniken
- Implementierungsdetails
- Ergebnisse auf Real-Welt Daten
- aktuellster Stand der Forschung (Veröffentlichungen bis 2013)
- ideale Grundlage für Bachelor, Master und Diplomarbeiten

Was diese Vorlesung nicht ist

keine Algorithmen III

- Vertiefung von kürzesten Wegen (Dijkstra)
 - Grundlagen sind Stoff von Algo I/II; heute nochmal Crashkurs
- Grundvorlesung "vereinfachen" Wahrheit oft
- Implementierung
- Betonung auf Messergebnisse

keine reine Theorievorlesung

- relativ wenig Beweise (wenn doch, eher kurz)
- reale Leistung vor Asymptotik
- lacktriangle Vielen vorkommende Optimierungsproblemen sind \mathcal{NP} -schwer

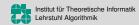
Inhalt der Vorlesung

1. Grundlagen

- Algorithm Engineering
- Graphen, Modelle, usw.
- Kürzeste Wege
- Dijkstra's Algorithmus

2. Beschleunigung von (statischen) Punkt-zu-Punkt Anfragen

- zielgerichtete Verfahren
- hierarchische Techniken
- many-to-many-Anfragen und Distanztabellen
- Kombinationen



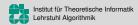
Inhalt der Vorlesung

3. Theorie

- Theoretische Charakterisierung von Straßennetzwerken
- Highway-Dimension
- Komplexität von Beschleunigungstechniken

4. Fortgeschrittene Szenarien

- schnelle many-to-many und all-pairs shortest-paths
- Alternativrouten
- zeitabhängige Routenplanung
- Fahrplanauskunft
- multi-modale Routenplanung



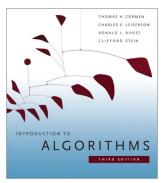
Nützliche Vorkenntnisse

- Informatik I/II oder Algorithmen I
- Algorithmentechnik oder Algorithmen II (muss aber nicht sein)
- ein bisschen Rechnerarchitektur
- passive Kenntnisse von C++/Java

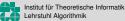
Vertiefungsgebiet: Algorithmentechnik, (Theoretische Grundlagen)

Material

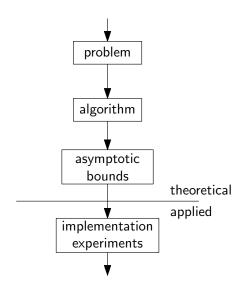
- Folien
- wissenschaftliche Aufsätze (siehe Vorlesunghomepage)
- Basiskenntnisse:



1. Grundlagen



Klassischer Ansatz

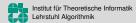


Lücke Theorie vs. Praxis

Theorie	vs.	Praxis
einfach	Problem-Modell	komplex
einfach	Maschinenmodell	komplex
komplex	Algorithmen	einfach
fortgeschritten	Datenstrukturen	einfach
worst-case asymptotisch	Komplexitäts-Messung Effizienz	typische Eingaben konstante Faktoren

hier:

- sehr anwendungsnahes Gebiet
- Eingaben sind echte Daten
 - Straßengraphen
 - Eisenbahn (Fahrpläne)
 - Flugpläne

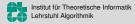


Lücke Theorie vs. Praxis

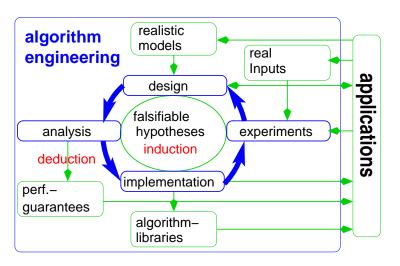
Theorie	vs.	Praxis
einfach	Problem-Modell	komplex
einfach	Maschinenmodell	komplex
komplex	Algorithmen	einfach
fortgeschritten	Datenstrukturen	einfach
worst-case asymptotisch	Komplexitäts-Messung Effizienz	typische Eingaben konstante Faktoren

hier:

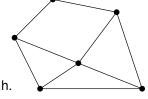
- sehr anwendungsnahes Gebiet
- Eingaben sind echte Daten
 - Straßengraphen
 - Eisenbahn (Fahrpläne)
 - Flugpläne



Algorithm Engineering



- Graph: Tupel G := (V, E)
 - endliche Knotenmenge V
 - endliche Kantenmenge E
 - n := |V|, m := |E|

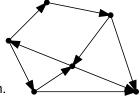


ungerichtet: Kanten sind Knotenpaar, d.h.

$$E\subseteq \binom{V}{2}=\big\{\{u,v\}\mid u\neq v,\ u,v\in V\big\}$$

- Grad: $deg(u) = \sum_{\{u,v\} \in E}$
- **gerichtet:** Kanten sind geordnete Paare, d.h. $E \subseteq \{(u, v) \mid u \neq v, u, v \in V\}$
 - Ausgangsgrad: $deg_{out}(u) = \sum_{(u,v) \in E} e^{-u}$
 - Eingangsgrad: $deg_{in}(u) = \sum_{(v,u) \in E} u$
- **einfach:** keine Multi-Kanten (*E* ist normale Menge)

- **Graph:** Tupel *G* := (*V*, *E*)
 - endliche Knotenmenge V
 - endliche Kantenmenge E
 - n := |V|, m := |E|



ungerichtet: Kanten sind Knotenpaar, d.h.

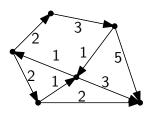
$$E \subseteq \binom{V}{2} = \big\{ \{u, v\} \mid u \neq v, \ u, v \in V \big\}$$

- Grad: $deg(u) = \sum_{\{u,v\} \in E}$
- **gerichtet:** Kanten sind geordnete Paare, d.h.

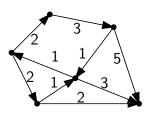
$$E \subseteq \{(u, v) \mid u \neq v, u, v \in V\}$$

- Ausgangsgrad: $deg_{out}(u) = \sum_{(u,v) \in E}$
- Eingangsgrad: $deg_{in}(u) = \sum_{(v,u) \in E}$
- einfach: keine Multi-Kanten (*E* ist normale Menge)

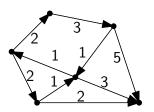
- **dünn**: $m \in \mathcal{O}(n)$
- planar: kreuzungsfrei einbettbar



- **gewichtet:** Kantengewichtsfunktion
 - lacksquare erstmal len : $E o \mathbb{R}^+$
- **dünn:** $m \in \mathcal{O}(n)$
- planar: kreuzungsfrei einbettbar



- **gewichtet:** Kantengewichtsfunktion
 - lacksquare erstmal len : $E o \mathbb{R}^+$
- **dünn:** $m \in \mathcal{O}(n)$
- planar: kreuzungsfrei einbettbar



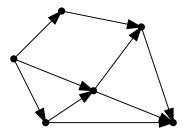
Spezielle Graphen

DAG:

- directed acyclic graph
- gerichtet, zyklenfrei

Baum:

- zyklenfrei
- = m = n 1
- alle Knoten von Wurzelknoten erreichbar



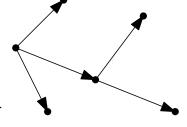
Spezielle Graphen

DAG:

- directed acyclic graph
- gerichtet, zyklenfrei

Baum:

- zyklenfrei
- m = n − 1
- alle Knoten von Wurzelknoten erreichbar



Weg:

Zu gegebenen Knoten $s, t \in V$ ist $P := (v_1 = s, v_2, \dots, v_k = t)$ ein s-t-Weg, g. d. w. für alle $v_i, v_{i+1} \in P$ gilt $(v_i, v_{i+1}) \in E$.

Länge

Die Länge eines Weges P ist $|P| := \sum_{(v_i, v_{i+1}) \in P} \text{len}(v_i, v_{i+1})$.

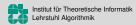
kürzester Weg:

Der kürzeste s-t-Weg $\Pi(s,t)$ ist ein s-t-Weg $P:=(s,\ldots,t)$ mit minimaler Länge |P|.

Distanz:

Die Distanz d(s, t) für zwei Knoten $s, t \in V$ ist definiert als

$$d(s,t) = \begin{cases} |\Pi(s,t)| & \text{wenn } \exists \text{ Weg von } s \text{ nach } t \text{ in } G \\ \infty & \text{sonst} \end{cases}$$



Weg:

Zu gegebenen Knoten $s, t \in V$ ist $P := (v_1 = s, v_2, \dots, v_k = t)$ ein s-t-Weg, g. d. w. für alle $v_i, v_{i+1} \in P$ gilt $(v_i, v_{i+1}) \in E$.

Länge:

Die Länge eines Weges P ist $|P| := \sum_{(v_i, v_{i+1}) \in P} \text{len}(v_i, v_{i+1})$.

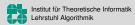
kürzester Weg

Der kürzeste s-t-Weg $\Pi(s,t)$ ist ein s-t-Weg $P:=(s,\ldots,t)$ mit minimaler Länge |P|.

Distanz:

Die Distanz d(s, t) für zwei Knoten $s, t \in V$ ist definiert als

$$d(s,t) = \begin{cases} |\Pi(s,t)| & \text{wenn } \exists \text{ Weg von } s \text{ nach } t \text{ in } G \\ \infty & \text{sonst} \end{cases}$$



Weg:

Zu gegebenen Knoten $s, t \in V$ ist $P := (v_1 = s, v_2, \dots, v_k = t)$ ein s-t-Weg, g. d. w. für alle $v_i, v_{i+1} \in P$ gilt $(v_i, v_{i+1}) \in E$.

Länge:

Die Länge eines Weges P ist $|P| := \sum_{(v_i, v_{i+1}) \in P} \text{len}(v_i, v_{i+1})$.

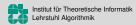
kürzester Weg:

Der kürzeste s-t-Weg $\Pi(s,t)$ ist ein s-t-Weg $P:=(s,\ldots,t)$ mit minimaler Länge |P|.

Distanz:

Die Distanz d(s, t) für zwei Knoten $s, t \in V$ ist definiert als

$$d(s,t) = \begin{cases} |\Pi(s,t)| & \text{wenn } \exists \text{ Weg von } s \text{ nach } t \text{ in } G \\ \infty & \text{sonst} \end{cases}$$



Weg:

Zu gegebenen Knoten $s, t \in V$ ist $P := (v_1 = s, v_2, \dots, v_k = t)$ ein s-t-Weg, g. d. w. für alle $v_i, v_{i+1} \in P$ gilt $(v_i, v_{i+1}) \in E$.

Länge:

Die Länge eines Weges P ist $|P| := \sum_{(v_i, v_{i+1}) \in P} \text{len}(v_i, v_{i+1})$.

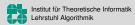
kürzester Weg:

Der kürzeste s-t-Weg $\Pi(s,t)$ ist ein s-t-Weg $P := (s, \dots, t)$ mit minimaler Länge |P|.

Distanz:

Die Distanz d(s, t) für zwei Knoten $s, t \in V$ ist definiert als

$$d(s,t) = \left\{ egin{array}{ll} |\Pi(s,t)| & {
m wenn} \ \exists \ {
m Weg} \ {
m von} \ s \ {
m nach} \ t \ {
m in} \ G \ & {
m sonst} \end{array}
ight.$$

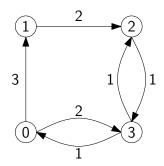


Drei klassische Ansätze:

Adjazenzmatrix

Adjazenziisten

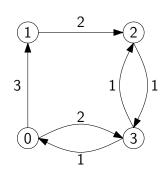
Adjazenzarray



Drei klassische Ansätze:

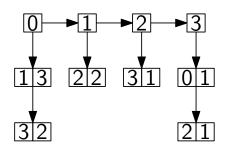
- Adjazenzmatrix
- Adjazenzlisten
- Adjazenzarray

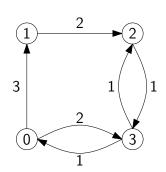
	0	1	2	3
0	_	3	_	2
1	_	_	2	_
2	_	_	_	1
3	1	_	1	_



Drei klassische Ansätze:

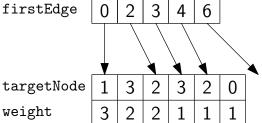
- Adjazenzmatrix
- Adjazenzlisten
- Adjazenzarray

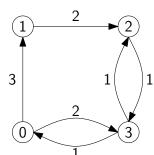




Drei klassische Ansätze:

- Adjazenzmatrix
- Adjazenzlisten
- Adjazenzarray



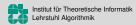


Was brauchen wir?

Eigenschaften:	Matrix	Liste	Array
Speicher	$\mathcal{O}(n^2)$	$\mathcal{O}(n+m)$	$\mathcal{O}(n+m)$
Ausgehende Kanten iterieren	$\mathcal{O}(n)$	$\mathcal{O}(\deg u)$	$\mathcal{O}(\deg u)$
Kantenzugriff (u, v)	<i>O</i> (1)	$\mathcal{O}(\deg u)$	$\mathcal{O}(\deg u)$
Effizienz (Speicherlayout)	+	_	+
Updates (topologisch)	+	+	_
Updates (Gewicht)	+	+	+

Fragen:

- Was brauchen wir?
- Was muss nicht super effizient sein?
- erstmal Modelle anschauen!

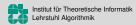


Was brauchen wir?

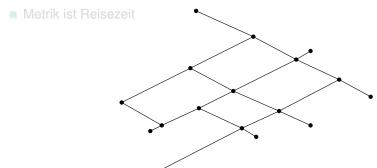
Eigenschaften:	Matrix	Liste	Array
Speicher	$\mathcal{O}(n^2)$	$\mathcal{O}(n+m)$	$\mathcal{O}(n+m)$
Ausgehende Kanten iterieren	$\mathcal{O}(n)$	$\mathcal{O}(\deg u)$	$\mathcal{O}(\deg u)$
Kantenzugriff (u, v)	O(1)	$\mathcal{O}(\deg u)$	$\mathcal{O}(\deg u)$
Effizienz (Speicherlayout)	+	_	+
Updates (topologisch)	+	+	_
Updates (Gewicht)	+	+	+

Fragen:

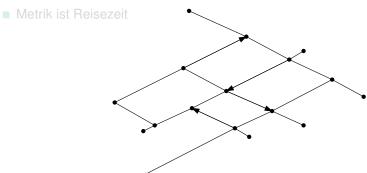
- Was brauchen wir?
- Was muss nicht super effizient sein?
- erstmal Modelle anschauen!



- Knoten sind Kreuzungen
- Kanten sind Straßen
- Einbahnstraßen

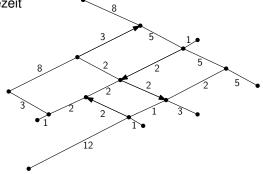


- Knoten sind Kreuzungen
- Kanten sind Straßen
- Einbahnstraßen

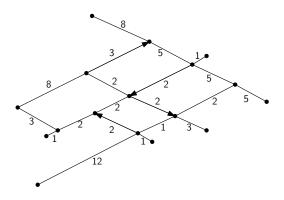


- Knoten sind Kreuzungen
- Kanten sind Straßen
- Einbahnstraßen

Metrik ist Reisezeit

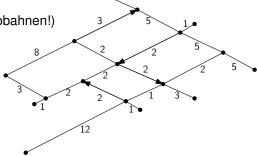


Eigenschaften (sammeln):



Eigenschaften:

- dünn
- (fast) ungerichtet
- geringer Knotengrad
- Kantenzüge
- Hierarchie (Autobahnen!)

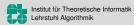


Eigenschaften der Graphen

- dünn (!)
- gerichtet
- geringer Knotengrad
- meist verborgene Hierarchie (Autobahnen, ICE)
- Einbettung vorhanden (fast planar?)
- teilweise zeitabhängig
- Kantengewichte nicht-negativ
- zusammenhängend

Diskussion:

- berechnen beste Verbindungen in solchen Netzwerken
- zeitabhängigkeit (war lange) ein Problem
- ab jetzt: zeitunabhängige Netze (Straßen)
- später: zeitabhängig

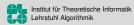


Eigenschaften der Graphen

- dünn (!)
- gerichtet
- geringer Knotengrad
- meist verborgene Hierarchie (Autobahnen, ICE)
- Einbettung vorhanden (fast planar?)
- teilweise zeitabhängig
- Kantengewichte nicht-negativ
- zusammenhängend

Diskussion:

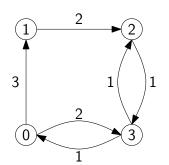
- berechnen beste Verbindungen in solchen Netzwerken
- zeitabhängigkeit (war lange) ein Problem
- ab jetzt: zeitunabhängige Netze (Straßen)
- später: zeitabhängig



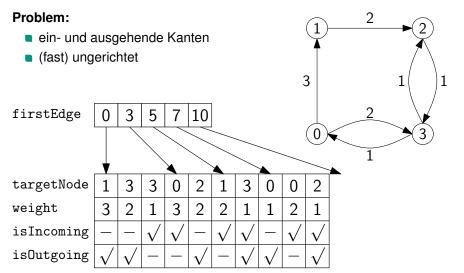
Datenstruktur

Problem:

- ein- und ausgehende Kanten
- (fast) ungerichtet



Datenstruktur



2. Kürzeste Wege

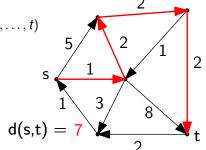
Problemstellung

Gegeben:

Graph G=(V,E,len) mit positiver Kantenfunktion len : $E\to\mathbb{R}_{\geq 0}$, Knoten $s,t\in V$

Mögliche Aufgaben

- Berechne Distanz d(s,t)
- Finde kürzesten s-t-Pfad $P := (s, \dots, t)$



Eigenschaften von kürzesten Wegen

Azyklität:

Kürzeste Wege sind zyklenfrei

Aufspannungseigenschaft:

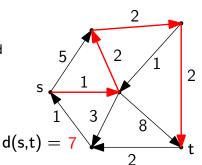
Alle kürzesten Wege von s aus bilden DAG bzw. Baum

Vererbungseigenschaft:

 Subwege von kürzesten Wegen sind kürzeste Wege

Abstand:

 Steigender Abstand von Wurzel zu Blättern

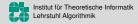


Wiederholung: Priority Queues

Priority Queue: Datenstruktur die folgende Operationen erfüllt.

Operation	Beschreibung
Empty() Clear()	Prüft ob die Queue leer ist Löscht alle Elemente aus der Queue
Insert(e, k) DecreaseKey(e, k) DeleteMin()	Fügt Element <i>e</i> mit Key <i>k</i> ein Senkt den Key von Element <i>e</i> auf den Wert <i>k</i> Löscht das Element mit kleinstem Key und gibt es zurück
MinKey()	Gibt den Key des kleinsten Elements zurück

Näheres in jedem Algorithmik-Standardlehrbuch.



Dijkstra


```
\overline{\mathsf{DIJ}}\mathsf{KSTRA}(G=(V,E),s)
 1 forall the nodes v \in V do
2 d[v] = \infty, p[v] = \text{NULL}
                                                  // distances, parents
d[s] = 0
4 Q.clear(), Q.insert(s, 0)
                                                                // container
 5 while !Q.empty() do
       u \leftarrow Q.deleteMin()
6
                                                      // settling node u
       forall the edges e = (u, v) \in E do
           // relaxing edges
           if d[u] + len(e) < d[v] then
 8
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 9
              p[v] \leftarrow u
10
               if v \in Q then Q.decreaseKey(v, d[v])
11
12
               else Q.insert(v, d[v])
13
```