

### Vorlesung Algorithmische Kartografie Beschriftung in Dynamischen Karten Teil 2

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Martin Nöllenburg 11.06.2013



### Die Ara der dynamischen Karten



Die meisten Karten sind heute nicht mehr statisch und allgemein, sondern dynamisch und individuell.







Kartenansicht bewegt sich kontinuierlich wenn der Nutzer

zoomt

- verschiebtrotiert

neigt

Layout und Beschriftung müssen sich an die dynamische Kartenbewegung anpassen

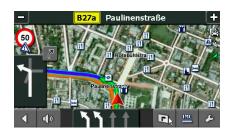
- → kontinuierliche Generalisierung
- → kontinuierliche Kartenbeschriftung

### Neue Verfahren sind notwendig



Die bisherigen Ansätze sind zwar schnell genug, aber die resultierenden Kartenanimationen sind oft unbefriedigend.

- jeder Frame wird unabhängig von Nachbarframes beschriftet
- Label neigen zu Flackern und Sprüngen
- zeitliche Kohärenz oder Konsistenz wird nicht betrachtet



Aktuelle reale Beispiele zeigen noch immer negative Effekte!



#### Konsistenzkriterien

[Been, Daiches, Yap '06]

- Label sollen beim Vergrößern nicht verschwinden und beim Verkleinern nicht auftauchen (Monotonität)
- sichtbare Label sollen Position und Größe kontinuierlich ändern
- Platzierung und Auswahl der Label soll eine Funktion des Kartenzustands sein und nicht von der Historie abhängen
- feste Labelgröße auf dem Bildschirm



# 1) Beschriftung für dynamisches Zoomen

[Been et al. 2010]

Heute: Ebenenbasierter Approximationsalgorithmus

### 3D Modell für dynamisches Beschriften



Dynamisches Beschriftungsmodell

[Been, Daiches, Yap '06]



- horizontale Scheibe bei  $z=z_0$  liefert Karte in Maßstab  $1/z_0$
- jedes Label an festem Punkt verankert

#### ⇒ kein Springen

- ullet verfügbares Maßstabsintervall  $S_L$  für jedes L
- berechne ein aktives Intervall  $A_L \subseteq S_L$

#### ⇒ kein Flackern

- aktive Intervalle müssen disjunkte Pyramidenstümpfe (bzw. allg. Labelkörper) induzieren  $\Rightarrow$  gültige Beschriftung
- Ziel: maximiere aktive Gesamthöhe  $\sum_L |A_L|$

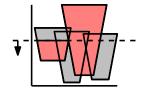
### Zusammenfassung letzte Vorlesung



 aktive Gesamthöhe zu maximieren ist NP-schwer (Gadgetreduktion von planarem 3-Sat)



Greedy Top-Down Sweep Algorithmus



- liefert 1/c Approximation, falls jedes Label zu jeder Zeit maximal c unabhängige andere Label blockieren kann
- rechteckige Einheitslabel:
  - c=4
  - Laufzeit  $O((n+k)\log^2 n)$  via Range Trees

### Ebenenbasierter Greedy-Algorithmus



#### Algorithmus 2

**Input**: Menge  $\mathcal{E}$  von quadratischen Labelpyramiden, verfügbare Intervalle  $(0, S_{\text{max}})$  für alle  $E \in \mathcal{E}$ 

**Output**: aktive Intervalle  $(0, A_E)$  für alle  $E \in \mathcal{E}$ 

**foreach**  $E \in \mathcal{E}$  **do** initialisiere E als inaktiv;  $A_E \leftarrow 0$ 

for 
$$i = 0$$
 to  $\log_2 n$  do

// Phase i

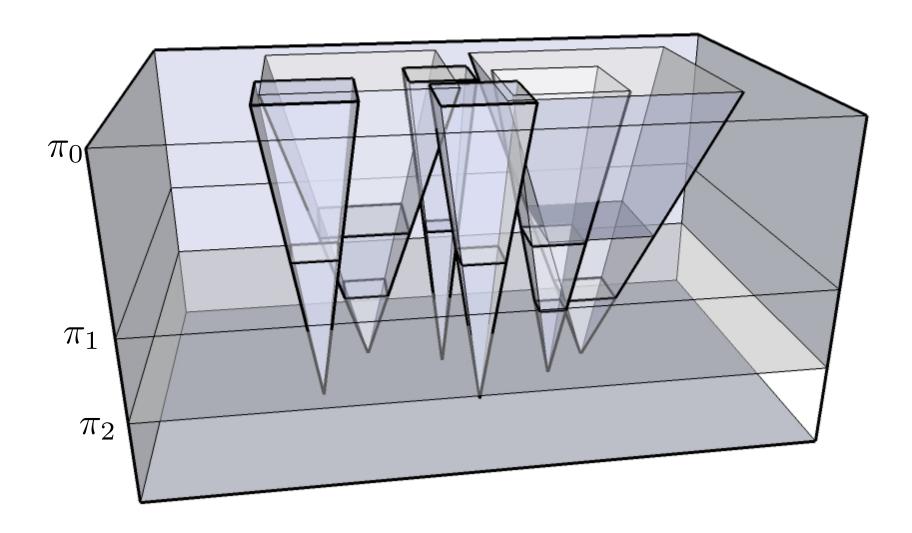
 $s_i \leftarrow S_{\max}/2^i$ 

 $C_i \leftarrow \text{Menge inaktiver Spuren in } \pi_i = \pi(s_i)$ , die keine aktiven Spuren in  $\pi_i$  schneiden

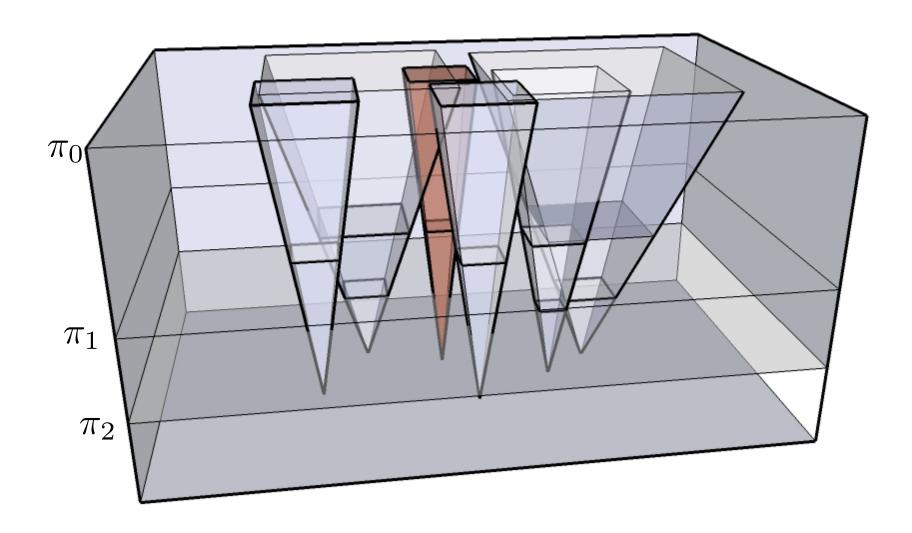
while  $\mathcal{C}_i 
eq \emptyset$  do

 $T \leftarrow$  kleinste Spur in  $C_i$ ;  $E \leftarrow$  Pyramide zu T markiere E und T aktiv und setze  $A_E \leftarrow s_i$  entferne T und alle geschnittenen Spuren aus  $C_i$ 

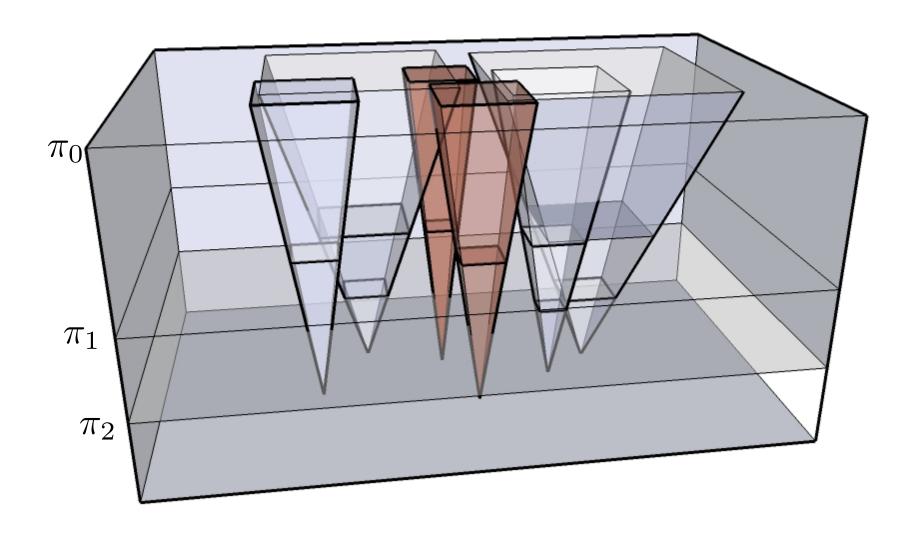




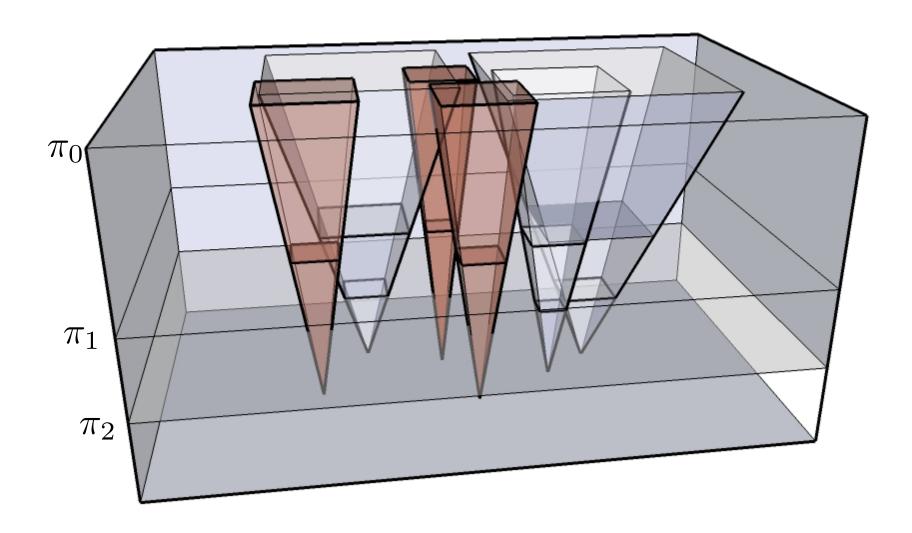




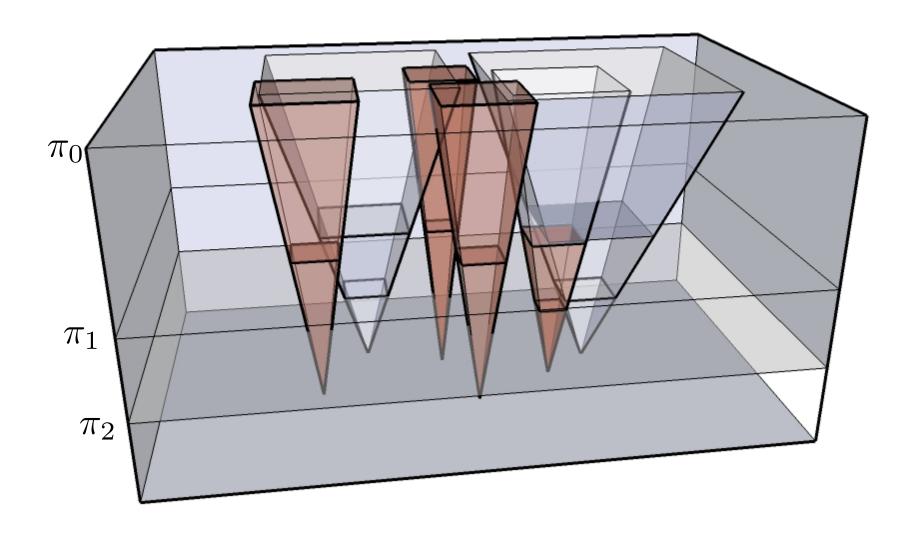




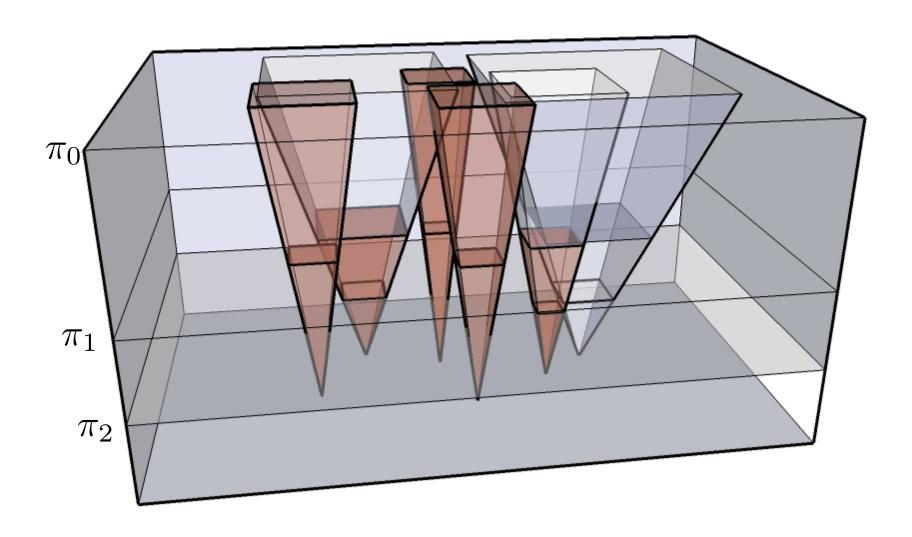




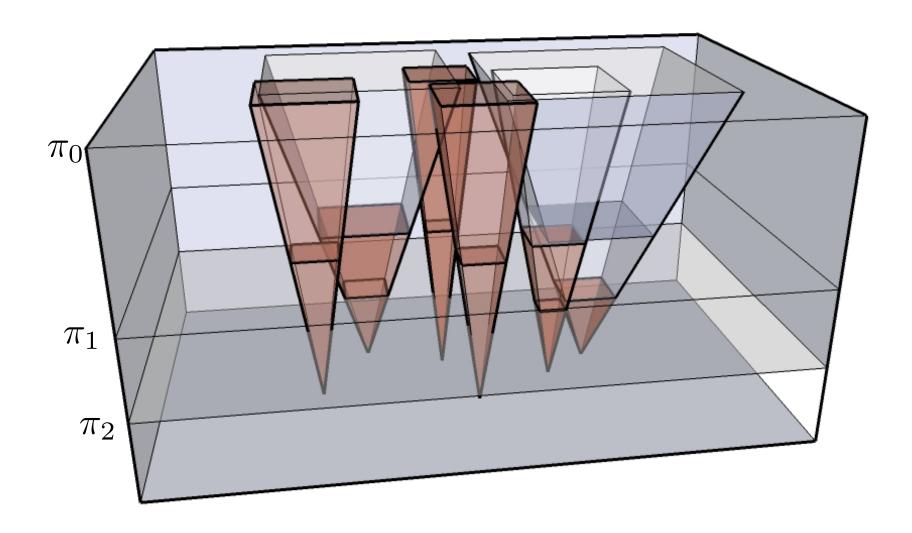












### Blocker-Zuordnung



Am Ende von Phase i schneiden alle inaktiven Spuren eine aktive Spur in Ebene  $\pi_i$ , sie werden **blockiert**.

Sei T eine blockierte Spur. Wir weisen T einer aktiven Spur zu:

- (A) falls T anfangs in  $\mathcal{C}_i$  war, wurde T durch neu aktivierte Spur T' blockiert; weise T der Spur T' zu
- (B) sonst weise T einer beliebigen blockierenden Spur T' zu, die schon am Anfang von Phase i aktiv war

### Blocker-Zuordnung



Am Ende von Phase i schneiden alle inaktiven Spuren eine aktive Spur in Ebene  $\pi_i$ , sie werden **blockiert**.

Sei T eine blockierte Spur. Wir weisen T einer aktiven Spur zu:

- (A) falls T anfangs in  $C_i$  war, wurde T durch neu aktivierte Spur T' blockiert; weise T der Spur T' zu
- (B) sonst weise T einer beliebigen blockierenden Spur T' zu, die schon am Anfang von Phase i aktiv war
  - **Lemma 3:** Sei T eine aktive Spur in Ebene  $\pi_i$  mit Seitenlänge  $\ell$ . Dann hat jede inaktive und T zugeordnete Spur Seitenlänge mindestens  $\ell/3$  und schneidet den Rand von T.

### Blocker-Zuordnung



Am Ende von Phase i schneiden alle inaktiven Spuren eine aktive Spur in Ebene  $\pi_i$ , sie werden **blockiert**.

Sei T eine blockierte Spur. Wir weisen T einer aktiven Spur zu:

- (A) falls T and angles in  $C_i$  war, wurde T durch neu aktivierte Spur T' blockiert; weise T der Spur T' zu
- (B) sonst weise T einer beliebigen blockierenden Spur T' zu, die schon am Anfang von Phase i aktiv war
  - **Lemma 3:** Sei T eine aktive Spur in Ebene  $\pi_i$  mit Seitenlänge  $\ell$ . Dann hat jede inaktive und T zugeordnete Spur Seitenlänge mindestens  $\ell/3$  und schneidet den Rand von T.

**Beweis:** Sei  $T = tr_i(E)$  aktiv und  $T' = tr_i(E')$  inaktiv und T zugeordnet Fall (A) ist klar, Fall (B): Tafel

### Abschätzung aktive Gesamthöhe



Sei S optimale Lösung und A Lösung des Algorithmus 2.

Sei 
$$\pi_{\log_2 n + 1} = \pi(0)$$
.

Definiere  $\mathcal{S}_i$  und  $\mathcal{A}_i$  als Menge der aktiven Pyramidenstümpfe

von S bzw. A zwischen  $\pi_{i-1}$  und  $\pi_i$ .



### Abschätzung aktive Gesamthöhe

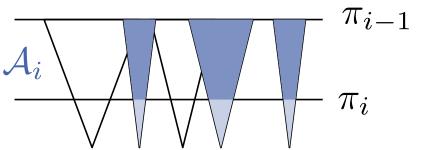


Sei  $\mathcal S$  optimale Lösung und  $\mathcal A$  Lösung des Algorithmus 2.

Sei 
$$\pi_{\log_2 n + 1} = \pi(0)$$
.

Definiere  $\mathcal{S}_i$  und  $\mathcal{A}_i$  als Menge der aktiven Pyramidenstümpfe

von S bzw. A zwischen  $\pi_{i-1}$  und  $\pi_i$ .



Weise aktive Gesamthöhe  $H(\mathcal{S}_i)$  der Gesamthöhe  $H(\mathcal{A}_{i+1})$  zu; weise  $H(\mathcal{S}_{\log_2 n})$  und  $H(\mathcal{S}_{\log_2 n+1})$  der Gesamthöhe  $H(\mathcal{A}_1)$  zu.

**Lemma 4:** Es gilt  $H(\mathcal{A}_1) \geq (H(\mathcal{S}_{\log_2 n}) + H(\mathcal{S}_{\log_2 n+1}))/4$ . Wenn nicht mehr als c Spuren in  $\mathcal{S}$  einer beliebigen Spur in  $\mathcal{A}$  zugeordnet sind, dann gilt für  $1 \leq i < \log_2 n$ :  $H(\mathcal{A}_{i+1}) \geq H(\mathcal{S}_i)/(2c)$ .

### Zusammenfassung



Satz 3: Für n achsenparallele quadratische Label beliebiger Größe berechnet Algorithmus 2 eine 1/24-Approximation der optimalen aktiven Gesamthöhe. Der Algorithmus lässt sich in  $O(n\log^3 n)$  Zeit und  $O(n\log n)$  Platz implementieren.

### Zusammenfassung



Satz 3: Für n achsenparallele quadratische Label beliebiger Größe berechnet Algorithmus 2 eine 1/24-Approximation der optimalen aktiven Gesamthöhe. Der Algorithmus lässt sich in  $O(n\log^3 n)$  Zeit und  $O(n\log n)$  Platz implementieren.

#### **Abschlussfrage:**

Was macht Algorithmus 2 für Label einheitlicher Größe?