

Algorithmen für Routenplanung

2. Sitzung, Sommersemester 2012 Thomas Pajor | 23. April 2012

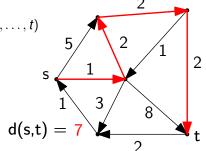
Problemstellung

Gegeben:

Graph G=(V,E,len) mit positiver Kantenfunktion len : $E\to\mathbb{R}_{\geq 0}$, Knoten $s,t\in V$

Mögliche Aufgaben

- Berechne Distanz d(s,t)
 - Finde kürzesten s-t-Pfad $P := (s, \dots, t)$



Eigenschaften von kürzesten Wegen

Azyklität:

Kürzeste Wege sind zyklenfrei

Aufspannungseigenschaft:

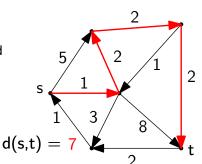
Alle kürzesten Wege von s aus bilden DAG bzw. Baum

Vererbungseigenschaft:

 Subwege von kürzesten Wegen sind kürzeste Wege

Abstand:

Steigender Abstand von Wurzel zu Blättern

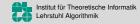


Wiederholung: Priority Queues

Priority Queue: Datenstruktur die folgende Operationen erfüllt.

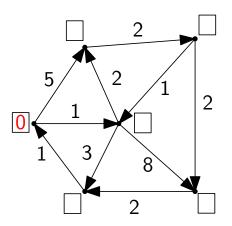
Operation	Beschreibung
Empty() Clear()	Prüft ob die Queue leer ist Löscht alle Elemente aus der Queue
Insert(e, k) DecreaseKey(e, k) DeleteMin()	Fügt Element <i>e</i> mit Key <i>k</i> ein Senkt den Key von Element <i>e</i> auf den Wert <i>k</i> Löscht das Element mit kleinstem Key und gibt es zurück
MinKey()	Gibt den Key des kleinsten Elements zurück

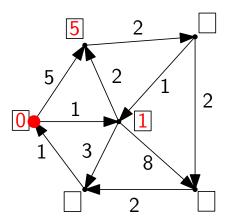
Näheres in jedem Algorithmik-Standardlehrbuch.

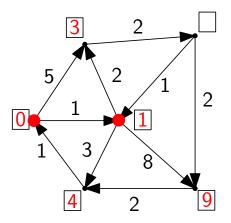


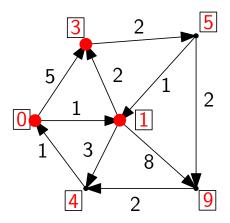
Dijkstra

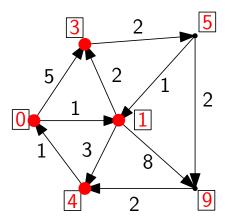

```
\mathsf{DIJKSTRA}(G = (V, E), s)
1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                // distances, parents
d[s] = 0
 4 Q.clear(), Q.insert(s, 0)
                                                              // container
 5 while !Q.empty() do
      u \leftarrow Q.deleteMin()
6
                                                    // settling node u
      for all the edges e = (u, v) \in E do
 7
          // relaxing edges
          if d[u] + len(e) < d[v] then
8
              d[v] \leftarrow d[u] + \operatorname{len}(e)
 9
              p[v] \leftarrow u
10
              if v \in Q then Q.decreaseKey(v, d[v])
11
              else Q.insert(v, d[v])
12
```

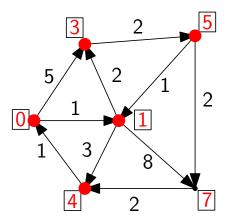



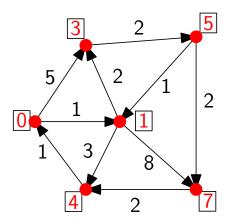


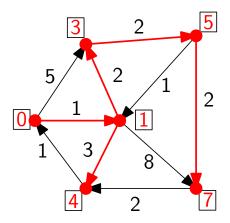












Kantenrelaxierung


```
\mathsf{DIJKSTRA}(G = (V, E), s)
 1 forall the nodes v \in V do
  d[v] = \infty, p[v] = \text{NULL}
                                                // distances, parents
d[s] = 0
 4 Q.clear(), Q.insert(s, 0)
                                                             // container
 5 while !Q.empty() do
      u \leftarrow Q.deleteMin()
                                                    // settling node u
6
      for all the edges e = (u, v) \in E do
 7
          // relaxing edges
          if d[u] + len(e) < d[v] then
8
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 9
              p[v] \leftarrow u
10
              if v \in Q then Q.decreaseKey(v, d[v])
11
              else Q.insert(v, d[v])
12
```

Definitionen

Kantenrelaxierung: Der Vorgang

1 if d[u] + len(u, v) < d[v] then $d[v] \leftarrow d[u] + \text{len}(u, v)$ heißt Kantenrelaxierung.

Definitionen

Kantenrelaxierung: Der Vorgang

1 if d[u] + len(u, v) < d[v] then $d[v] \leftarrow d[u] + \text{len}(u, v)$ heißt Kantenrelaxierung.

Besuchte Knoten: Ein Knoten heißt (zu einem Zeitpunkt) besucht (visited) wenn er (zu diesem Zeitpunkt) schon in die Queue eingefügt wurde (unabhängig davon, ob er noch in der Queue ist).

Definitionen

Kantenrelaxierung: Der Vorgang

1 if d[u] + len(u, v) < d[v] then $d[v] \leftarrow d[u] + \text{len}(u, v)$ heißt Kantenrelaxierung.

Besuchte Knoten: Ein Knoten heißt (zu einem Zeitpunkt) besucht (visited) wenn er (zu diesem Zeitpunkt) schon in die Queue eingefügt wurde (unabhängig davon, ob er noch in der Queue ist).

Abgearbeitete Knoten: Ein Knoten heißt (zu einem Zeitpunkt) abgearbeitet (settled) wenn er (zu diesem Zeitpunkt) schon in die Queue eingefügt und wieder extrahiert wurde.

Beh: Dijkstra terminiert mit d[v] = d(s, v) für alle $v \in V$

drei Schritte:

- (i) alle erreichbaren Knoten werden abgearbeitet
- (ii) es ist immer $d[v] \ge d(s, v)$
- (iii) wenn v abgearbeitet wird, ist d[v] = d(s, v)

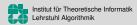
Beh: Dijkstra terminiert mit d[v] = d(s, v) für alle $v \in V$

drei Schritte:

- (i) alle erreichbaren Knoten werden abgearbeitet
- (ii) es ist immer $d[v] \ge d(s, v)$
- (iii) wenn v abgearbeitet wird, ist d[v] = d(s, v)

Beweis (i):

- Beh: *v* wird nicht abgearbeitet, ist aber erreichbar
- es gibt kürzesten s-t-Weg ($s = v_1, \dots, v_k = v$)
- s wird abgearbeitet
- **also gibt es** v_i mit v_{i-1} abgearbeitet und v_i nicht
- also wird v_i in die Queue eingefügt
- Widerspruch zu v_i wird nicht abgearbeitet



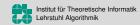
Beh: Dijkstra terminiert mit d[v] = d(s, v) für alle $v \in V$

drei Schritte:

- (i) alle erreichbaren Knoten werden abgearbeitet
- (ii) es ist immer $d[v] \ge d(s, v)$
- (iii) wenn v abgearbeitet wird, ist d[v] = d(s, v)

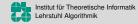
Beweis (ii):

- Für jeden Knoten $v \neq s$ gilt:
- Initial ist $d[v] = \infty$
- Alle folgenden Änderungen korrespondieren zu Längen von s-v-Wegen im Graphen
- Die Länge eines s-v-Weges ist immer mindestens so lang, wie die länge eines kürzesten s-v-Weges



Beweis (iii): wenn v abgearbeitet wird, ist d[v] = d(s, v).

- Beh: Es gibt v, so dass v wird abgearbeitet mit d[v] > d(s, v)
- Sei v der erste solche Knoten (in Abarbeitungsreihenfolge)
- Sei *S* die Menge aller Knoten, die vor *v* abgearbeitet werden.
- Sei $s = v_1, \dots, v_k = v$ ein kürzester s-v-Weg
- Falls alle $v_i \in S$, so ist d[v] = d(s, v) wenn v besucht wird. Widerspruch.
- Sei also v_i der Knoten mit dem kleinsten i, so dass $v_i \notin S$.
- Wegen $v_{i-1} \in S$ ist $d[v_i] = d(s, v_i) < d[v]$ zu dem Zeitpunkt an dem v bearbeitet wird.
- Also hätte v_i vor v abgearbeitet werden müssen.
- Widerspruch zu $v_i \notin S$




```
\mathsf{DIJKSTRA}(G = (V, E), s)
 1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
 d[s] = 0, Q.clear(), Q.insert(s, 0)
 4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
 5
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
               p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
10
               else Q.insert(v, d[v])
11
```



```
\mathsf{DIJKSTRA}(G = (V, E), s)
 1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                                         // n Mal
 d[s] = 0, Q.clear(), Q.insert(s, 0)
 4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
 5
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
               p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
10
               else Q.insert(v, d[v])
11
```



```
\mathsf{DIJKSTRA}(G = (V, E), s)
 1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                                        // n Mal
 d[s] = 0, Q.clear(), Q.insert(s, 0)
                                                                        // 1 Mal
 4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
 5
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
               p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
10
               else Q.insert(v, d[v])
11
```



```
\mathsf{DIJKSTRA}(G = (V, E), s)
1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                                       // n Mal
d[s] = 0, Q.clear(), Q.insert(s, 0)
                                                                        // 1 Mal
4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
5
                                                                       // n Mal
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
               p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
10
              else Q.insert(v, d[v])
11
```



```
\mathsf{DIJKSTRA}(G = (V, E), s)
1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                                       // n Mal
d[s] = 0, Q.clear(), Q.insert(s, 0)
                                                                       // 1 Mal
4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
5
                                                                       // n Mal
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
              p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
                                                                       // m Mal
10
              else Q.insert(v, d[v])
11
```

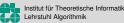


```
\mathsf{DIJKSTRA}(G = (V, E), s)
1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                                                      // n Mal
d[s] = 0, Q.clear(), Q.insert(s, 0)
                                                                      // 1 Mal
4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
5
                                                                      // n Mal
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
               d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
              p[v] \leftarrow u
 9
               if v \in Q then Q.decreaseKey(v, d[v])
                                                                      // m Mal
10
              else Q.insert(v, d[v])
                                                                      // n Mal
11
```



```
\mathsf{DIJKSTRA}(G = (V, E), s)
 1 forall the nodes v \in V do
2 | d[v] = \infty, p[v] = NULL
                                                                     // n Mal
d[s] = 0, Q.clear(), Q.insert(s, 0)
                                                                     // 1 Mal
 4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
5
                                                                     // n Mal
       for all the edges e = (u, v) \in E do
 6
           if d[u] + len(e) < d[v] then
 7
              d[v] \leftarrow d[u] + \operatorname{len}(e)
 8
              p[v] \leftarrow u
              if v \in Q then Q.decreaseKey(v, d[v])
                                                                     // m Mal
10
             else Q.insert(v, d[v])
                                                                     // n Mal
11
```

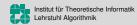
$$T_{\mathsf{DIJKSTRA}} = T_{\mathit{init}} + n \cdot T_{\mathit{deleteMin}} + m \cdot T_{\mathit{decreaseKey}} + n \cdot T_{\mathit{insert}}$$



 $T_{\mathsf{DIJKSTRA}} = T_{\mathit{init}} + n \cdot T_{\mathit{deleteMin}} + m \cdot T_{\mathit{decreaseKey}} + n \cdot T_{\mathit{insert}}$

Operation	Liste (worst-case)	Binary Heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Init	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(1)	$\Theta(\log k)$	$\mathcal{O}(\log k)$	Θ(1)
Minimum	$\Theta(n)$	⊖(1)	$\mathcal{O}(\log k)$	$\Theta(1)$
DeleteMin	⊖(<i>n</i>)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Union	Θ(1)	$\Theta(k)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DecreaseKey	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	Θ(1)
Delete	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$

Dijkstra



 $T_{\mathsf{DIJKSTRA}} = T_{\mathit{init}} + n \cdot T_{\mathit{deleteMin}} + m \cdot T_{\mathit{decreaseKey}} + n \cdot T_{\mathit{insert}}$

Operation	Liste (worst-case)	Binary Heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Init	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(1)	$\Theta(\log k)$	$\mathcal{O}(\log k)$	Θ(1)
Minimum	$\Theta(n)$	$\Theta(1)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DeleteMin	Θ(<i>n</i>)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Union	Θ(1)	$\Theta(k)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DecreaseKey	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	Θ(1)
Delete	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Dijkstra	$\int \mathcal{O}(n^2+m)$	$\mathcal{O}((n+m)\log n)$	$\mathcal{O}((n+m)\log n)$	$\mathcal{O}(m + n \log n)$

 $T_{ extsf{DIJKSTRA}} = T_{ extit{init}} + n \cdot T_{ extit{deleteMin}} + m \cdot T_{ extit{decreaseKey}} + n \cdot T_{ extit{insert}}$

Operation	Liste (worst-case)	Binary Heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Init	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(1)	$\Theta(\log k)$	$\mathcal{O}(\log k)$	Θ(1)
Minimum	$\Theta(n)$	$\Theta(1)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DeleteMin	$\Theta(n)$	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Union	Θ(1)	$\Theta(k)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DecreaseKey	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	Θ(1)
Delete	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Dijkstra Dij $(m \in \Theta(n^2))$		$\frac{\mathcal{O}((n+m)\log n)}{\mathcal{O}(n^2\log n)}$	$\frac{\mathcal{O}((n+m)\log n)}{\mathcal{O}(n^2\log n)}$	$\frac{\mathcal{O}(m+n\log n)}{\mathcal{O}(n^2)}$

 $T_{ extsf{DIJKSTRA}} = T_{ extit{init}} + n \cdot T_{ extit{deleteMin}} + m \cdot T_{ extit{decreaseKey}} + n \cdot T_{ extit{insert}}$

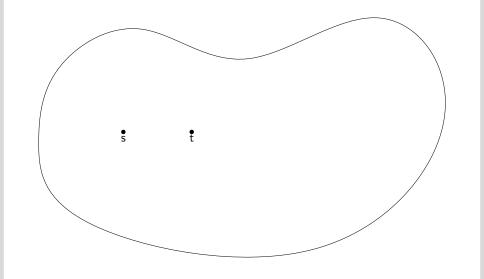
Operation	Liste (worst-case)	Binary Heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Init	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(1)	$\Theta(\log k)$	$\mathcal{O}(\log k)$	Θ(1)
Minimum	$\Theta(n)$	$\Theta(1)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DeleteMin	⊖(<i>n</i>)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Union	⊖(1)	$\Theta(k)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DecreaseKey	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	Θ(1)
Delete	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Dijkstra			$\mathcal{O}((n+m)\log n)$	$\mathcal{O}(m + n \log n)$
Dij $(m \in \Theta(n^2))$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n^2 \log n)$	$\mathcal{O}(n^2)$
Dij $(m \in \mathcal{O}(n))$	$\mathcal{O}(n^2)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$

 $T_{ extsf{DIJKSTRA}} = T_{ extit{init}} + n \cdot T_{ extit{deleteMin}} + m \cdot T_{ extit{decreaseKey}} + n \cdot T_{ extit{insert}}$

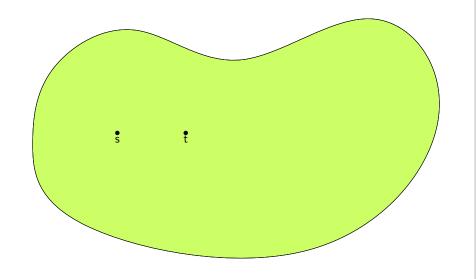
Operation	Liste (worst-case)	Binary Heap (worst-case)	Binomial heap (worst-case)	Fibonacci heap (amortized)
Init	Θ(1)	Θ(1)	Θ(1)	Θ(1)
Insert	Θ(1)	$\Theta(\log k)$	$\mathcal{O}(\log k)$	Θ(1)
Minimum	$\Theta(n)$	$\Theta(1)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DeleteMin	⊖(<i>n</i>)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Union	Θ(1)	$\Theta(k)$	$\mathcal{O}(\log k)$	$\Theta(1)$
DecreaseKey	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	Θ(1)
Delete	Θ(1)	$\Theta(\log k)$	$\Theta(\log k)$	$\mathcal{O}(\log k)$
Dijkstra Dij $(m \in \Theta(n^2))$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2 \log n)$	$\frac{\mathcal{O}((n+m)\log n)}{\mathcal{O}(n^2\log n)}$	$\mathcal{O}(n^2)$
Dij $(m \in \mathcal{O}(n))$	$\mathcal{O}(n^2)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n \log n)$

Transportnetzwerke sind dünn ⇒ Binary Heaps

Schematischer Suchraum, Dijkstra



Schematischer Suchraum, Dijkstra



Abbruch

Beobachtung

- Dijkstra's Algorithmus durchsucht den ganzen Graphen
- Viel unnütze Information, vor allem wenn s und t nahe beinander

Abbruch

Beobachtung

- Dijkstra's Algorithmus durchsucht den ganzen Graphen
- Viel unnütze Information, vor allem wenn s und t nahe beinander

Idee

- stoppe die Anfrage, sobald *t* aus der Queue entfernt wurde
- **Suchraum**: Menge der abgearbeiteten Knoten

Abbruch

Beobachtung

- Dijkstra's Algorithmus durchsucht den ganzen Graphen
- Viel unnütze Information, vor allem wenn s und t nahe beinander

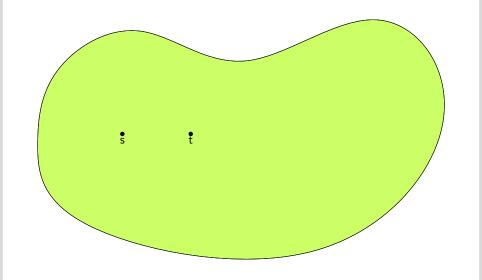
Idee

- stoppe die Anfrage, sobald t aus der Queue entfernt wurde
- **Suchraum**: Menge der abgearbeiteten Knoten

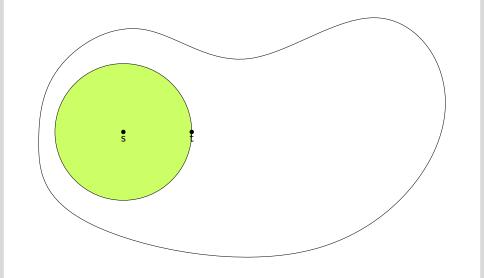
Korrektheit

- Wert d[v] ändert sich nicht mehr, sobald v abgearbeitet wurde
- Korrektheit des Vorgehens bleibt also erhalten
- Reduziert durchschnittlichen Suchraum von n auf $\approx n/2$

Schematischer Suchraum, Dijkstra



Schematischer Suchraum, Dijkstra



Dijkstra mit Abbruchkriterium


```
DIJKSTRA(G = (V, E), s, t)
 1 forall the nodes v \in V do
   d[v] = \infty, p[v] = \text{NULL}
                                               // distances, parents
d[s] = 0
 4 Q.clear(), Q.add(s, 0)
                                                             // container
 5 while !Q.empty() do
      u \leftarrow Q.deleteMin()
6
                                                    // settling node u
       if u = t then return
 7
      forall the edges e = (u, v) \in E do
8
          if d[u] + len(e) < d[v] then
 9
              d[v] \leftarrow d[u] + \operatorname{len}(e)
10
              p[v] \leftarrow u
11
              if v \in Q then Q.decreaseKey(v, d[v])
12
              else Q.insert(v, d[v])
13
```

Frage

- Häufig werden viele Anfragen auf gleichem Netzwerk gestellt.
- Wo könnte ein Problem bzgl. der Laufzeit liegen?

Dijkstra mit Abbruchkriterium


```
DIJKSTRA(G = (V, E), s, t)
 1 forall the nodes v \in V do
      d[v] = \infty, p[v] = \text{NULL}
                                               // distances, parents
d[s] = 0
4 Q.clear(), Q.add(s, 0)
                                                             // container
 5 while !Q.empty() do
      u \leftarrow Q.deleteMin()
                                                    // settling node u
      break if u = t
      for all the edges e = (u, v) \in E do
R
          // relaxing edges
          if d[u] + len(e) < d[v] then
 9
              d[v] \leftarrow d[u] + \operatorname{len}(e)
10
              p[v] \leftarrow u
11
              if v \in Q then Q.decreaseKey(v, d[v])
12
              else Q.insert(v, d[v])
13
```

Viele Anfragen

Problem

- Häufig viele Anfragen auf gleichem Graphen
- Die Initialisierung muss immer für alle Knoten neu ausgeführt werden

Viele Anfragen

Problem

- Häufig viele Anfragen auf gleichem Graphen
- Die Initialisierung muss immer für alle Knoten neu ausgeführt werden

Idee

- Speiche zusätzlichen "Timestamp" run[v] für jeden Knoten
- Benutze Zähler count
- Damit kann abgefragt werden, ob ein Knoten im aktuellen Lauf schon besucht wurde.

Dijkstra mit Timestamps


```
1 count \leftarrow count + 1
 d[s] = 0
 3 Q.clear(), Q.add(s, 0)
 4 while !Q.empty() do
       u \leftarrow Q.deleteMin()
       if u = t then return
 6
       for all the edges e = (u, v) \in E do
 7
            if run[v] \neq count then
 8
                d[v] \leftarrow d[u] + \operatorname{len}(e)
 9
                Q.insert(v, d[v])
10
                 run[v] \leftarrow count
11
            else if d[u] + len(e) < d[v] then
12
                d[v] \leftarrow d[u] + \operatorname{len}(e)
13
                Q.decreaseKey(v, d[v])
14
```

Kleiner Exkurs

Komplexität von Single-Source All-Targets Shortest Paths abhängig vom Eingabegraphen.

- In dieser Vorlesung Kantengewichte: immer nicht-negativ.
- Ein negativer Zyklus ist ein Kreis mit negativem Gesamtgewicht.
- Ein einfacher Pfad ist ein Pfad bei dem sich kein Knoten wiederholt.

Kleiner Exkurs

Komplexität von **Single-Source All-Targets Shortest Paths** abhängig vom Eingabegraphen.

- In dieser Vorlesung Kantengewichte: immer nicht-negativ.
- Ein negativer Zyklus ist ein Kreis mit negativem Gesamtgewicht.
- Ein einfacher Pfad ist ein Pfad bei dem sich kein Knoten wiederholt.

Problemvarianten

- Kantengewichte alle positiv: Dijkstra's Algorithmus anwendbar (Laufzeit $|V| \log |V| + |E|$)
- Nantengewichte auch negativ, aber kein negativer Zyklus: Algorithmus von Bellmann-Ford anwendbar (Laufzeit $|V| \cdot |E|$)
- Kantengewichte auch negativ, suche kürzesten einfachen Pfad: NP-schwer, Reduktion von "Problem Longest Path"



Der Bellman-Ford Algorithmus


```
Bellman-Ford(G, s)
```

- 1 for $v \in V$ do $d[v] \leftarrow \infty$ 2 $d[s] \leftarrow 0$
- $2 d[s] \leftarrow 0$
- 3 for i = 1 to |V| 1 do
- 4 | forall the edges $(u, v) \in E$ do
- if $d[u] + \operatorname{len}(u, v) < d[v]$ then
- 7 forall the $edges(u, v) \in E$ do
- 8 | **if** d[v] > d[u] + len(u, v) **then**
- 9 negative cycle found

Der Bellman-Ford Algorithmus

Bemerkungen

- Der BF-Algorithmus erkennt, falls ein Graph einen negativen Zyklus enthält
- Enthält ein Graph keinen negativen Zyklus, so enthält nach Terminierung d[v] die Distanz d(s, v).
- Die Laufzeit des BF-Algorithmus' liegt in $O(|V| \cdot |E|)$.

Beweise siehe Cormen, Leiserson, Rivest, Stein: *Introduction to Algorithms*.

Problem Longest Path

Problem Longest Path

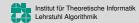
Gegeben:

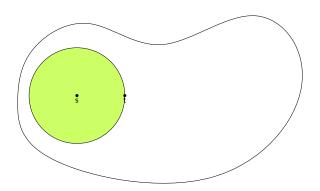
- Gerichteter, gewichteter Graph G = (V, E) mit Längenfunktion len $: F \to \mathbb{N}$
- Zahl $K \in \mathbb{N}$
- Knoten $s, t \in V$

Frage:

■ Gibt es einen einfachen *s-t-*Pfad der Länge mindestens *K*?

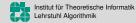
Problem Longest Path ist \mathcal{NP} -schwer (siehe [Garey & Johnson 79])

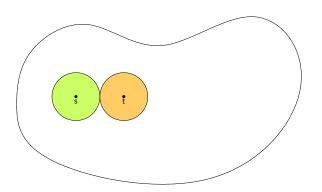




Beobachtung: Ein kürzester *s-t*-Weg lässt sich finden durch

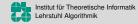
- Normaler Dijkstra (Vorwärtssuche) von s
- Dijkstra auf Graph mit umgedrehten Kantenrichtungen (Rückwärtssuche) von t



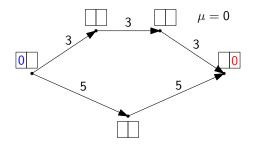


Idee: Kombiniere beide Suchen

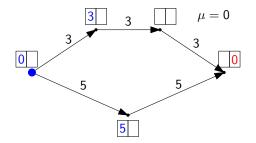
- "Gleichzeitig" Vor- und Rückwärtssuche
- Abbruch wenn beide Suchen "weit genug fortgeschritten"
- Weg dann zusammensetzen



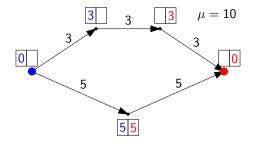
- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



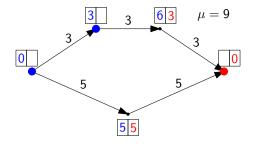
- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



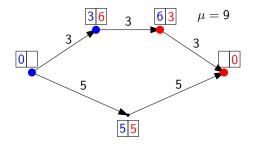
- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



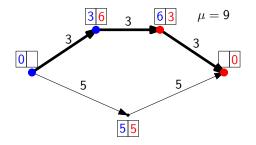
- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



- alterniere Vorwärts- und Rückwärtsuche
 - vorwärts: relaxiere ausgehende Kanten
 - rückwärts: relaxiere eingehende Kanten



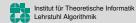
Bidirektionale Suche - Definitionen

- Input ist Graph G = (V, E, len) und Knoten $s, t \in V$.
- Für Inputgraphen G bezeichne $\overleftarrow{G} := (V, \overleftarrow{E}, \overleftarrow{\operatorname{len}})$ den umgekehrten Graphen, d.h.

$$\overleftarrow{E} := \{(v, u) \in V \times V \mid (u, v) \in E\}$$

$$\overleftarrow{\text{len}}(u, v) = \text{len}(v, u)$$

- Die Vorwärtssuche ist Dijkstra's Algo mit Start s auf G
- Die **Rückwärtssuche** ist Dijkstra's Algo mit Start t auf \overleftarrow{G}
- lacksquare Die Queue der Vorwärtssuche ist \overrightarrow{Q}
- Die Queue der Rückwärtssuche ist *Q*
- lacktriangle Der Distanzvektor der Vorwärtssuche ist \overrightarrow{d} []
- Der Distanzvektor der Rückwärtssuche ist \overleftarrow{d} []



Bidirektionale Suche - Vorgehen

- Vor- und Rückwärtssuche werden abwechselnd ausgeführt
- Es wird zusätzlich die vorläufige Distanz

$$\mu := \min_{\mathbf{v} \in V} (\overrightarrow{d}[\mathbf{v}] + \overleftarrow{d}[\mathbf{v}])$$

berechnet.

Dazu wird bei der Relaxierung von Kante (u, v) zusätzlich

$$\mu := \min\{\mu, \overrightarrow{d}[v] + \overleftarrow{d}[v]\}$$

ausgeführt. (Initial ist $\mu = \infty$).

■ Nach Terminierung beinhaltet μ die Distanz d(s, t).

Bidirektionale Suche - Vorgehen

- Vor- und Rückwärtssuche werden abwechselnd ausgeführt
- Es wird zusätzlich die vorläufige Distanz

$$\mu := \min_{v \in V} (\overrightarrow{d}[v] + \overleftarrow{d}[v])$$

berechnet.

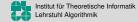
Dazu wird bei der Relaxierung von Kante (u, v) zusätzlich

$$\mu := \min\{\mu, \overrightarrow{d}[v] + \overleftarrow{d}[v]\}$$

ausgeführt. (Initial ist $\mu = \infty$).

■ Nach Terminierung beinhaltet μ die Distanz d(s, t).

Was sind gute Abbruchstrategien?



Abbruchstrategie (1)

Abbruch, sobald ein Knoten m existiert, der von beiden Suchen abgearbeitet wurde.

Abbruchstrategie (1)

Abbruch, sobald ein Knoten m existiert, der von beiden Suchen abgearbeitet wurde.

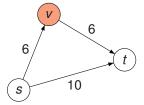
Frage: Ist *m* dann auf einem kürzesten *s-t*-Weg enthalten?

Abbruchstrategie (1)

Abbruch, sobald ein Knoten m existiert, der von beiden Suchen abgearbeitet wurde.

Frage: Ist m dann auf einem kürzesten s-t-Weg enthalten?

Nein, Gegenbeispiel:



Abbruchstrategie (1)

Abbruch, sobald ein Knoten m existiert, der von beiden Suchen abgearbeitet wurde.

Abbruchstrategie (1) berechnet d(s, t) korrekt. Beweisskizze:

- O.B.d.A sei $d(s,t) < \infty$ (andernfalls klar).
- Klar: $\overrightarrow{d}[v] + \overleftarrow{d}[v] \ge \operatorname{dist}(s, t)$.
- Seien S, S die abgearbeiteten Knoten von Vor- und Rückwärtssuche nach Terminierung.
- Sei $P = (v_1, \dots, v_k)$ ein kürzester s-t-Weg. Wir zeigen: $\{v_1, \dots, v_k\} \subseteq \overrightarrow{S} \cup \overleftarrow{S}$ oder len(P) = dist(s, m) + dist(m, t).

Abbruchstrategie (1)

Abbruch, sobald ein Knoten m existiert, der von beiden Suchen abgearbeitet wurde.

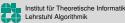
- Sei $P = (v_1, \dots, v_k)$ ein kürzester s-t-Weg. Wir zeigen: $\{v_1, \dots, v_k\} \subseteq \overrightarrow{S} \cup \overleftarrow{S}$ oder len(P) = dist(s, m) + dist(m, t).
- Angenommen es gibt $v_i \notin \overrightarrow{S} \cup \overleftarrow{S}$.
- Dann gilt

$$dist(s, v_i) \ge dist(s, m)$$

 $dist(v_i, t) \ge dist(m, t)$

Also

$$len(P) = dist(s, v_i) + dist(v_i, t) \ge dist(s, m) + dist(m, t).$$



Abbruchstrategie (2)

Abbruch, sobald $\mu \leq \min \text{Key}(\overrightarrow{Q}) + \min \text{Key}(\overleftarrow{Q})$

Abbruchstrategie (2)

Abbruch, sobald $\mu \leq \min \mathsf{Key}(\overrightarrow{Q}) + \min \mathsf{Key}(\overleftarrow{Q})$

Abbruchstrategie (2) berechnet d(s, t) korrekt. Beweisskizze:

- O.B.d.A sei $d(s,t) < \infty$ (andernfalls klar).
- Klar: $\overrightarrow{d}[v] + \overleftarrow{d}[v] \ge \operatorname{dist}(s, t)$.

Abbruchstrategie (2)

Abbruch, sobald $\mu \leq \min \text{Key}(\overrightarrow{Q}) + \min \text{Key}(\overleftarrow{Q})$

Annahme: $\mu > d(s,t)$ nach Terminierung.

- Dann gibt es einen s-t Pfad P der kürzer als μ ist.
- Auf P gibt es eine Kante (u, v) mit $d(s, u) \leq minKey(\overrightarrow{Q})$ und $d(v, t) \leq minKey(\overleftarrow{Q})$.
- Also müssen u und v schon abgearbeitet worden sein (o.B.d.A. u vor v)
- Beim relaxieren von (u, v) wäre P entdeckt worden und μ aktualisiert

Damit ist $\mu < d(s, t)$. Widerspruch!

Wechselstrategien

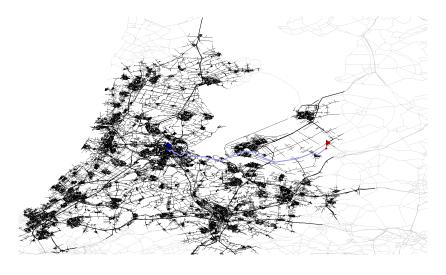
Frage: Was sind mögliche Wechselstrategien?

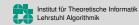
Wechselstrategien

Mögliche Wechselstrategien

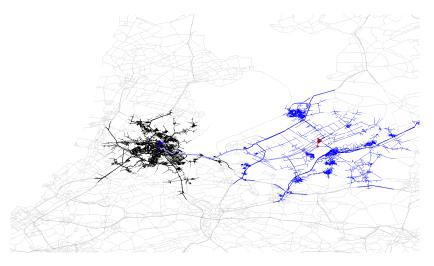
- Prinzipiell jede Wechselstrategie möglich
- Parallele Ausführung auf zwei Kernen
- Wechsle nach jedem Schritt zur entgegengesetzten Suche
- Führe immer die Suche mit dem kleineren minimalen Queueelement aus

Beispiel





Beispiel



Bemerkungen

Beschleunigung

- Annahme: Suchraum ist Kreisscheibe mit Radius r.
- ⇒ Speedup bzgl. Suchraum (ca.):

$$\frac{\text{Dijkstra}}{\text{Bidir. Suche}} \approx \frac{\pi r^2}{2 \cdot \pi \left(\frac{r}{2}\right)^2} = 2$$

- Führe Suchen parallel aus.
- ⇒ Gesamtspeedup ca. 4.

Bemerkungen

Beschleunigung

- Annahme: Suchraum ist Kreisscheibe mit Radius r.
- ⇒ Speedup bzgl. Suchraum (ca.):

$$\frac{\text{Dijkstra}}{\text{Bidir. Suche}} \approx \frac{\pi r^2}{2 \cdot \pi \left(\frac{r}{2}\right)^2} = 2$$

- Führe Suchen parallel aus.
- ⇒ Gesamtspeedup ca. 4.

Wichtiger Bestandteil vieler effizienter Techniken!

