

Maximale s-t-Flüsse in Planaren Graphen

Vorlesung "Algorithmen für planare Graphen" · June 18, 2012 Ignaz Rutter

INSTITUT FÜR THEORETISCHE INFORMATIK · PROF. DR. DOROTHEA WAGNER

Maximales Flussproblem

Gegeben:

- Gerichteter Graph G = (V, E), $rev(u \rightarrow v) := v \rightarrow u$
- $c: E \to \mathbb{R},$

$$(OE\ rev(e) \in E \ \forall e \in E)$$

 \bullet $s, t \in V$

 $\phi \colon E \to \mathbb{R} \ s - t$ -Fluß:

 ϕ zulässig: $\phi(e) \leq c(e)$ für alle $e \in E$

Gesucht:

Zulässiges ϕ mit maximalem $\sum_{s\to v\in E} \phi(s\to v)$.

Parametrische Kürzeste Wege

Parametrisches Kürzeste-Wege-Problem:

Gegeben: Gerichteter Graph $G = (V, E), E' \subseteq E, c : E \to \mathbb{R}$ $c(\lambda, e) = c(e) - \lambda$ für $e \in E', c(\lambda, e) = c(e)$ für $e \notin E'$ Gesucht: Größtes λ mit G enthält bzgl. $c(\lambda, \cdot)$ keine negativen Kreise.

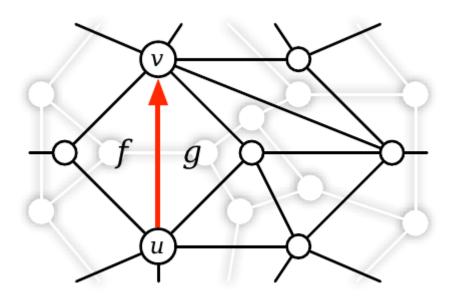
Geht in Zeit $O(nm \log n)$ [Karp, Orlin] bzw. $O(n^2 \log n)$ [Young et al.] ldee:

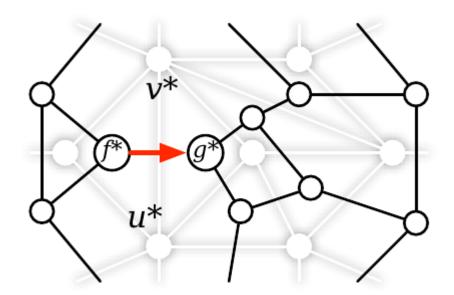
- Betrachte kürzeste-Wege-Baum bzgl. $c(\lambda, \cdot)$ bei bel. Startknoten s.
- lacksquare erhöhe λ
- $dist(\lambda, v) \le dist(\lambda, u) + c(\lambda, u \to v)$
- Kritische Stelle bei Gleichheit, $u \to v$ kommt in den Baum, ersetzt $u' \to v$.
- Jeder Pivot-Schritt erhöht Anzahl Kanten in E' auf einem s-v-Pfad $\rightsquigarrow O(n^2)$ Pivot-Schritte

Dual-Graphen, gerichtet(!)

G = (V, E) gerichtet

Dualgraph: Wie gehabt, $(u \to v)^*$ kreuzt $u \to v$ von links nach rechts!





[Erickson'10]

Gerichteter Dual-Graph und Gerichtete Schnitte

Gerichteter (s, t)-Schnitt:

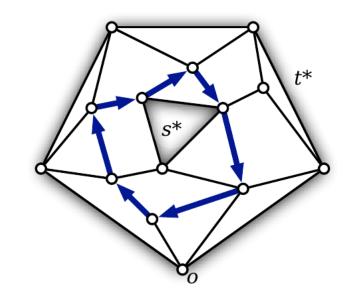
Kantenmenge $\,C\,$ mit jeder gerichtete $s-t ext{-Pfad}$ enthält Kante aus $\,C\,$

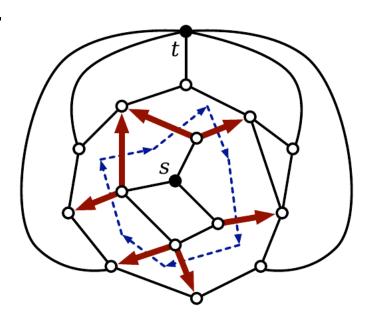
Dualität:

Gerichteter (s, t)-Schnitt in G

gerichteter Kreis in G^* , der s^* und t^* trennt.

 C^{\star} einfacher gerichter Kreis





Flüsse und Kürzeste Wege

P beliebiger gerichteter Pfad von s nach t.

Definiere $\pi \colon E \to \mathbb{R}$, Einheitsfluß auf P

$$\pi(e) \coloneqq \begin{cases} 1 & e \in P \\ -1 & rev(e) \in P \\ 0 & \text{sonst} \end{cases}$$

Für
$$E' \subseteq E$$
 definiere: $\pi(E') := \sum_{e \in E'} \pi(e)$

Lemma

Für jeden Kozykel C gilt: $\pi(C) \in \{-1, 0, 1\}$ $\pi(C) = 1 \Leftrightarrow C \text{ ist } (s, t)\text{-Schnitt.}$

Betrachte Fluß von λ auf P

Setze $\phi := \lambda \cdot \pi$

Betrachte *Residual-Netzwerk* $G_{\lambda} := G_{\lambda \cdot \phi}$

Das ist G mit residualer Kapazitätsfunktion $c(\lambda, e) := c(e) - \lambda \cdot \pi(e)$

 G_{λ}^{\star} : Dual-Graph mit e^{\star} hat Kosten $c(\lambda, e^{\star}) := c(\lambda, e)$.

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 G_{λ}^{\star} enthält keinen negativen Kreis

Liefert parametrisches Kürzeste-Wege-Problem!

Beweis

Lemma

G besitzt gültigen s-t-Fluß mit Wert λ

 \Leftrightarrow

 G_{λ}^{\star} enthält keinen negativen Kreis

" \Rightarrow "

 G_{λ}^{\star} enthält Kreis C^{\star} .

$$c(\lambda, C^*) = \sum_{e \in C} c(\lambda, e) = \sum_{e \in C} c(e) - \lambda \cdot \pi(C) < 0$$

 $\pi(C) > 0$, also C (s,t)-Schnitt mit Gewicht $\leq \lambda$.

" ⇐ "

Wähle $o \in V(G^*)$ beliebig, betrachte Distanzen von o.

Setze $\phi(\lambda, e) := dist(\lambda, head(e^*)) - dist(\lambda, tail(e^*)) + \lambda \cdot \pi(e)$.

Flußbedingung: $\sum_{w} \phi(\lambda, v \to W) = \sum_{w} \lambda \pi(v \to w) = 0$ für $v \neq s, t$.

Kapazitätsbedingung:

Für $e \in E$ gilt: $dist(\lambda, head(e^*)) \leq dist(\lambda, tail(e^*)) + c(\lambda, e)$

Also $\phi(\lambda, e) \leq \lambda \cdot \pi(e) + c(\lambda, e) = c(e)$

Parametrische Kürzeste Wege

Löse also spezielles parametrisches Kürzeste-Wege-Problem Koeffizienten -1, 0, 1

Verwalte Kürzeste-Wege-Baum T_{λ} in G_{λ}^{\star} mit Wurzel o. PlanarMaxFlow(G,c,s,t)

- Berechnet T₀
- Verwalte T_{λ} , während λ kontinuierlich von 0 bis λ_{max} läuft.
- Berechnet $\phi(\lambda_{\max}, \cdot)$ aus $T_{\lambda_{\max}}$.

Lemma

 λ_{\max} ist erster kritischer Wert von λ , dessen Pivot einen gerichteten Kreis in T_{λ} erzeugt.

Laufzeit

Zeige weiter,

- Iteration lässt sich in $O(\log n)$ Zeit implementieren mittels top-trees
- Spezielle Struktur $\Rightarrow O(n)$ Pivot-Schritte
- \rightsquigarrow Gesamtlaufzeit $O(n \log n)$

siehe

"Maximum Flows and Parametric Shortest Paths in Planar Graphs", Jeff Erickson, SODA'10