

Algorithmen für Routenplanung

13. Sitzung, Sommersemester 2011 Reinhard Bauer, Thomas Pajor | 9. Juni 2011

Zeitabhängige Routenplanung

Zeitabhängiges Szenario

Szenario:

- Historische Daten für Verkehrssituation verfügbar
- Verkehrssituation vorhersagbar
- Berechne schnellsten Weg bezüglich der erwarteten Verkehrssituation (zu einem gegebenen Startzeitpunkt)

Beobachtung:

- Kein konzeptioneller Unterschied zu Public Transport
- Somit (eventuell) Techniken übertragbar

Herausforderung

Hauptproblem:

- Kürzester Weg hängt von Abfahrtszeitpunkt ab
- Eingabegröße steigt massiv an

Vorgehen:

- Modellierung
- Anpassung Dijkstra
- Anpassung der Basismodule für Beschleunigungstechniken

Heute:

Modellierung und Dijkstra

Herausforderung

Hauptproblem:

- Kürzester Weg hängt von Abfahrtszeitpunkt ab
- Eingabegröße steigt massiv an

Vorgehen:

- Modellierung
- Anpassung Dijkstra
- Anpassung der Basismodule für Beschleunigungstechniken

Heute:

Modellierung und Dijkstra

Herausforderung

Hauptproblem:

- Kürzester Weg hängt von Abfahrtszeitpunkt ab
- Eingabegröße steigt massiv an

Vorgehen:

- Modellierung
- Anpassung Dijkstra
- Anpassung der Basismodule für Beschleunigungstechniken

Heute:

Modellierung und Dijkstra

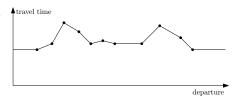
Zeitabhängige Straßennetzwerke

Eingabe:

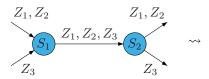
- Durchschnittliche Reisezeit zu bestimmten Zeitpunkten
- Jeden Wochentag verschieden
- Sonderfälle: Urlaubszeit

Somit an jeder Kante:

- Periodische stückweise lineare Funktion
- Definiert durch Stützpunkte
- Interpoliere linear zwischen Stützpunkten

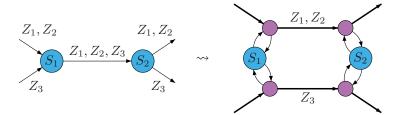


Eisenbahn-Netzwerke



- Teile Züge Z_i in Routen ein
- Für alle Routen, die eine Station bedienen: Ein extra Knoten
 - Modelliert Umstiege zwischen Zügen
 - Mindesttransferzeit für jede Station: an Stations-Kanten

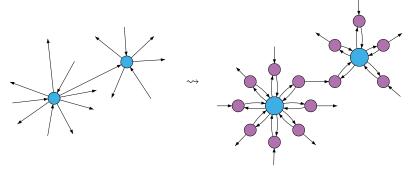
Eisenbahn-Netzwerke



- Teile Züge Z_i in Routen ein
- Für alle Routen, die eine Station bedienen: Ein extra Knoten
 - Modelliert Umstiege zwischen Zügen
 - Mindesttransferzeit für jede Station: an Stations-Kanten

Flugnetzwerke

Nutzung des Eisenbahnansatzes nicht sinnvoll

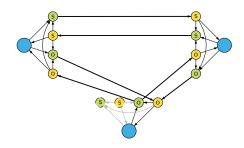


Graphen werden zu groß.

Flugnetzwerke

Modellierung:

- Check-in,
- Check-out,
- Transfer,
- zwischen Allianzen.

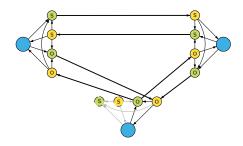


⇒ Zwei Knoten pro Allianz (Abflug und Ankunftsknoten

Flugnetzwerke

Modellierung:

- Check-in,
- Check-out,
- Transfer,
- zwischen Allianzen.



⇒ Zwei Knoten pro Allianz (Abflug und Ankunftsknoten)

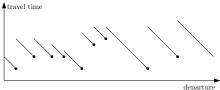
Public Transport Funktionen

Eingabe:

- Reisezeit zu bestimmten Zeitpunkten (Fahrzeiten der Züge)
- Jeden Tag verschieden

Somit:

- Periodische stückweise lineare **Funktionen**
- Definiert durch Stützpunkte
- Wartezeit zur nächsten Verbindung + Reisezeit



FIFO-Eigenschaft

Definition

Sei $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ eine Funktion. f erfüllt die *FIFO-Eigenschaft*, wenn für jedes $\varepsilon > 0$ und alle $\tau \in \mathbb{R}_0^+$ gilt, dass

$$f(\tau) \le \varepsilon + f(\tau + \varepsilon).$$

Diskussion

- Interpretation: "Warten lohnt sich nie"
- Kürzeste Wege auf Graphen mit non-FIFO Funktionen zu finden ist NP-schwer.

(wenn warten an Knoten nicht erlaubt ist)

⇒ Sicherstellen, dass Funktionen FIFO-Eigenschaft erfüllen.

Diskussion

Eigenschaften:

- Topologie ändert sich nicht
- Kanten gemischt zeitabhängig und konstant
- variable (!) Anzahl Interpolationspunkte pro Kante

Beobachtungen:

- FIFO gilt auf allen Kanten
- später wichtig

Diskussion

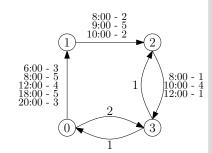
Eigenschaften:

- Topologie ändert sich nicht
- Kanten gemischt zeitabhängig und konstant
- variable (!) Anzahl Interpolationspunkte pro Kante

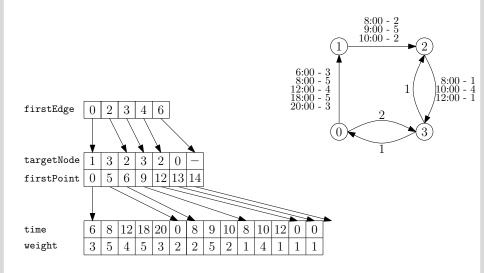
Beobachtungen:

- FIFO gilt auf allen Kanten
- später wichtig

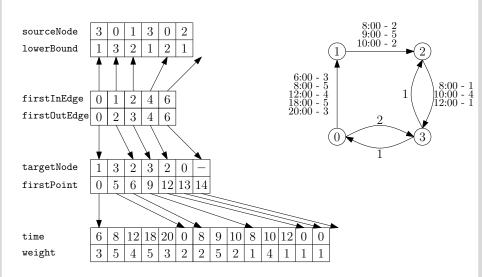
Datenstruktur



Datenstruktur



Datenstruktur



Anfrageszenarien

Zeit-Anfrage:

- lacktriangle finde kürzesten Weg für Abfahrtszeit au
- analog zu Dijkstra?

Profil-Anfrage:

- finde kürzesten Weg für alle Abfahrtszeitpunkte
- analog zu Dijkstra?

Anfrageszenarien

Zeit-Anfrage:

- lacktriangle finde kürzesten Weg für Abfahrtszeit au
- analog zu Dijkstra?

Profil-Anfrage:

- finde kürzesten Weg für alle Abfahrtszeitpunkte
- analog zu Dijkstra?

Zeit-Anfragen

5

6

8

10


```
Time-Dijkstra(G = (V, E), s, \tau)
1 d_{\tau}[s] = 0
2 Q.clear(), Q.add(s, 0)
3 while !Q.empty() do
       u \leftarrow Q.deleteMin()
       for all edges e = (u, v) \in E do
            if d_{\tau}[u] + \operatorname{len}(e, \tau + d_{\tau}[u]) < d_{\tau}[v] then
                 d_{\tau}[v] \leftarrow d_{\tau}[u] + \operatorname{len}(e, \tau + d_{\tau}[u])
                 p_{\tau}[v] \leftarrow u
                 if v \in Q then Q.decreaseKey(v, d_{\tau}[v])
                 else Q.insert(v, d_{\tau}[v])
```

Diskussion Zeit-Anfragen

Beobachtung:

- Nur ein Unterschied zu Dijkstra
- Auswertung der Kanten

non-FIFO Netzwerke

- Im Kreis fahren kann sich lohnen
- NP-schwer (wenn warten an Knoten nicht erlaubt ist)
- Transportnetzwerke sind FIFO modellierbar (notfalls Multikanten)

Diskussion Zeit-Anfragen

Beobachtung:

- Nur ein Unterschied zu Dijkstra
- Auswertung der Kanten

non-FIFO Netzwerke:

- Im Kreis fahren kann sich lohnen
- NP-schwer (wenn warten an Knoten nicht erlaubt ist)
- Transportnetzwerke sind FIFO modellierbar (notfalls Multikanten)

Profil-Anfragen


```
Profile-Search(G = (V, E), s)
1 d_*[s] = 0
2 Q.clear(), Q.add(s, 0)
 while !Q.empty() do
      u \leftarrow Q.deleteMin()
      for all edges e = (u, v) \in E do
5
           if d_*[u] \oplus len(e) \not\geq d_*[v] then
6
               d_*[v] \leftarrow \min(d_*[u] \oplus \operatorname{len}(e), d_*[v])
               if v \in Q then Q.decreaseKey(v, \underline{d}[v])
8
               else Q.insert(v, d[v])
```

9

Diskussion Profile-Anfragen

Beobachtungen:

- Operationen auf Funktionen
- Priorität im Prinzip frei wählbar
 (<u>d[u]</u> ist das Minimum der Funktion d_{*}[u])
- Knoten können mehrfach besucht werden ⇒ label-correcting

Herausforderungen:

- Wie effizient ⊕ berechnen (Linken)?
- Wie effizient Minimum bilden?

Operationen

Funktion gegeben durch:

- Menge von Interpolationspunkten
- $I^f := \{ (t_1^f, w_1^f), \dots, (t_k^f, w_k^f) \}$

3 Operationen notwendig:

- Auswertung
- Linken ⊕
- Minimumsbildung

Beobachtung:

Unterschiedlich für Straße und Schiene

Straße: Auswertung

Evaluation von $f(\tau)$:

- Suche Punkte mit $t_i \le \tau$ und $t_{i+1} \ge \tau$
- dann Evaluation durch

$$f(\tau) = \mathbf{w}_i + (\tau - t_i) \cdot \frac{\mathbf{w}_{i+1} - \mathbf{w}_i}{t_{i+1} - t_i}$$

Problem

- Finden von t_i und t_{i+}
- Theoretisch:
 - Lineare Suche: $\mathcal{O}(|I|$
 - Binäre Suche: $\mathcal{O}(\log_2 |I|)$
- Praktisch
 - $|I| < 30 \Rightarrow$ lineare Suche
 - Sonst: Lineare Suche mit Startpunkt $\frac{\tau}{\Pi} \cdot |I|$ wobei Π die Periodendauer ist

Straße: Auswertung

Evaluation von $f(\tau)$:

- Suche Punkte mit $t_i \le \tau$ und $t_{i+1} \ge \tau$
- dann Evaluation durch

$$f(\tau) = \mathbf{w}_i + (\tau - t_i) \cdot \frac{\mathbf{w}_{i+1} - \mathbf{w}_i}{t_{i+1} - t_i}$$

Problem:

- Finden von t_i und t_{i+1}
- Theoretisch:
 - Lineare Suche: $\mathcal{O}(|I|)$
 - Binäre Suche: $\mathcal{O}(\log_2 |I|)$
- Praktisch:
 - $|I| < 30 \Rightarrow$ lineare Suche
 - Sonst: Lineare Suche mit Startpunkt τ/Π · |/|
 wobei Π die Periodendauer ist

Linken

Definition

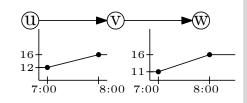
Seien $f:\mathbb{R}^+_0 \to \mathbb{R}^+_0$ und $g:\mathbb{R}^+_0$ zwei Funktionen die die FIFO-Eigenschaft erfüllen. Die Linkoperation $f \oplus g$ ist dann definiert durch

$$f\oplus g:=f+g\circ (\mathsf{id}+f)$$

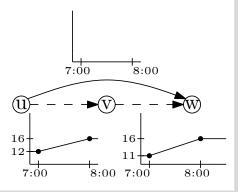
Oder

$$(f \oplus g)(au) := f(au) + g(au + f(au))$$

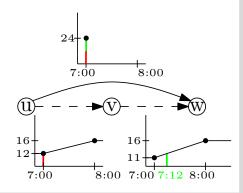
- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- Zusätzliche Interpolationspunkte an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



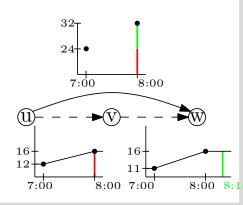
- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- Zusätzliche Interpolationspunkte an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



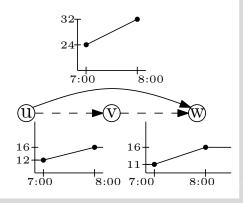
- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- **Tusätzliche Interpolationspunkte** an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



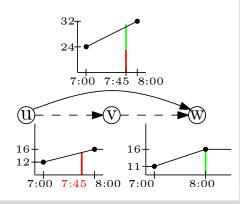
- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- **Tusätzliche Interpolationspunkte** an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- **Tusätzliche Interpolationspunkte** an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar

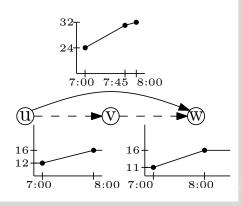


- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- Zusätzliche Interpolationspunkte an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



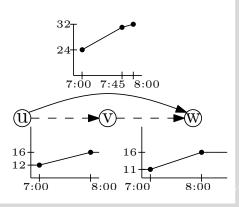
Straße: Link

- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- Zusätzliche Interpolationspunkte an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



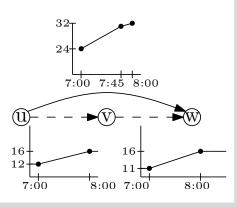
Straße: Link

- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- **Tusätzliche Interpolationspunkte** an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



Straße: Link

- $f \oplus g$ enthält auf jeden Fall $\{(t_1^f, w_1^f + g(t_1^f + w_1^f)), \dots, (t_l^f, w_l^f + g(t_l^f + w_l^f))\}$
- Zusätzliche Interpolationspunkte an t_j^{-1} mit $f(t_j^{-1}) + t_j^{-1} = t_j^g$
- Füge $(t_j^{-1}, f(t_j^{-1}) + w_j^g)$ für alle Punkte von g zu $f \oplus g$
- Durch linearen Sweeping-Algorithmus implementierbar



Straße: Diskussion Link

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- lacktriangle Zum vergleich: Zeitunabhängig $\mathcal{O}(1)$

Speicherverbrauch

lacktriangle Gelinkte Funktion hat $pprox |I^f| + |I^g|$ Interpolationspunkte

- Während Profilsuche kann ein Pfad mehreren Tausend Kanten entsprechen...
- Shortcuts...
- es kommt noch schlimmer...

Straße: Diskussion Link

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- lacktriangle Zum vergleich: Zeitunabhängig $\mathcal{O}(1)$

Speicherverbrauch

lacktriangle Gelinkte Funktion hat $pprox |I^f| + |I^g|$ Interpolationspunkte

- Während Profilsuche kann ein Pfad mehreren Tausend Kanten entsprechen...
- Shortcuts...
- es kommt noch schlimmer...

Straße: Diskussion Link

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- lacktriangle Zum vergleich: Zeitunabhängig $\mathcal{O}(1)$

Speicherverbrauch

lacktriangle Gelinkte Funktion hat $pprox |I^f| + |I^g|$ Interpolationspunkte

- Während Profilsuche kann ein Pfad mehreren Tausend Kanten entsprechen...
- Shortcuts...
- es kommt noch schlimmer...

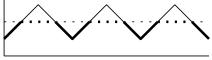
Straße: Merge

Minimum zweier Funktionen f und g

- Für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- Für alle (t_j^g, w_j^g) : behalte Punkt, wenn $w_j^g < f(t_j^g)$
- Schnittpunkte müssen ebenfalls eingefügt werden

Vorgehen:

- Linearer sweep
- Evaluiere, welcher Abschnitt obertravel time
- Checke ob Schnittpunkt existiert



Straße: Merge

Minimum zweier Funktionen f und g

- Für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- Für alle (t_j^g, w_j^g) : behalte Punkt, wenn $w_j^g < f(t_j^g)$
- Schnittpunkte müssen ebenfalls eingefügt werden

Vorgehen:

- Linearer sweep
- Evaluiere, welcher Abschnitt obehtravel time
- Checke ob Schnittpunkt existiert

departure time

Straße: Diskussion Merge

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

lacktriangle Minimum-Funktion kann mehr als $|I^f|+|I^g|$ Interpolationspunkte enthalten

- Während Profilsuche werden Funktionen gemergt
- Laufzeit der Profilsuchen wird durch diese Operationen dominiert

Straße: Diskussion Merge

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

• Minimum-Funktion kann mehr als $|I^f| + |I^g|$ Interpolationspunkte enthalten

- Während Profilsuche werden Funktionen gemergt
- Laufzeit der Profilsuchen wird durch diese Operationen dominiert

Straße: Diskussion Merge

Laufzeit

- Sweep Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

• Minimum-Funktion kann mehr als $|I^f| + |I^g|$ Interpolationspunkte enthalten

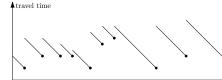
- Während Profilsuche werden Funktionen gemergt
- Laufzeit der Profilsuchen wird durch diese Operationen dominiert

Public Transport: Auswertung

Evaluation von $f(\tau)$:

- Suche Punkte mit $t_i > \tau$ und $t_i \tau$ minimal
- dann Evaluation durch

$$f(\tau) = w_i + (t_i - \tau)$$



departure

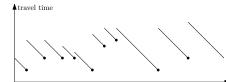
- \blacksquare Finden von t_i und t_{i+}
- Theoretisch
 - Lineare Suche: $\mathcal{O}(|I|)$
 - Binäre Suche: $\mathcal{O}(\log_2 |I|)$
- praktisch:
 - |I| < 30: Lineare Suche
 - Sonst: Lineare Suche mit Startpunkt $\frac{\tau}{\Pi} \cdot | I$

Public Transport: Auswertung

Evaluation von $f(\tau)$:

- Suche Punkte mit $t_i > \tau$ und $t_i \tau$ minimal
- dann Evaluation durch

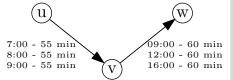
$$f(\tau) = \mathbf{w}_i + (t_i - \tau)$$



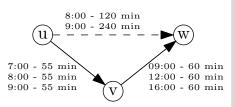
departure

- Finden von t_i und t_{i+1}
- Theoretisch:
 - Lineare Suche: $\mathcal{O}(|I|)$
 - Binäre Suche: $\mathcal{O}(\log_2 |I|)$
- praktisch:
 - |I| < 30: Lineare Suche
 - Sonst: Lineare Suche mit Startpunkt $\frac{\tau}{\Pi} \cdot |I|$

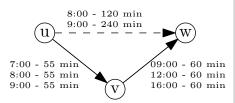
- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_i^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf *g* erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem tf
- Wieder Sweep-Algorithmus



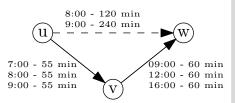
- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf *g* erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t_i^f
- Wieder Sweep-Algorithmus



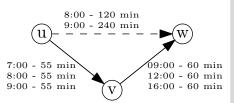
- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf g erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t_i^f
- Wieder Sweep-Algorithmus



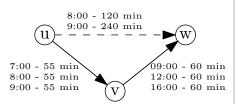
- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf g erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t^f_i
- Wieder Sweep-Algorithmus



- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf g erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t^f_i
- Wieder Sweep-Algorithmus



- Für jeden Punkt (t_i^f, w_i^f) bestimme den Verbindungspunkt (t_j^g, w_j^g) mit $t_i^g t_i^f w_i^f \ge 0$ minimal
- Erste Verbindung, die man auf g erreichen kann
- Füge $(t_i^f, t_i^g + w_i^g t_i^f)$ hinzu
- Wenn zwei Punkte den gleichen Verbindungspunkt haben, behalte nur den mit größerem t^f_i
- Wieder Sweep-Algorithmus



Public Transport: Diskussion Link

Laufzeit

- Sweep-Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

• Gelinkte Funktion hat $\min\{|I^f|, |I^g|\}$ Interpolationspunkte

Somit:

Deutlich gutmütiger als Straßengraph-Funktioner

Public Transport: Diskussion Link

Laufzeit

- Sweep-Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

• Gelinkte Funktion hat $\min\{|I^f|, |I^g|\}$ Interpolationspunkte

Somit

Deutlich gutmütiger als Straßengraph-Funktionen

Public Transport: Diskussion Link

Laufzeit

- Sweep-Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

• Gelinkte Funktion hat $\min\{|I^f|, |I^g|\}$ Interpolationspunkte

Somit:

Deutlich gutmütiger als Straßengraph-Funktionen

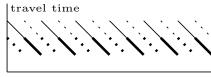
Public Transport: Merge

Minimum zweier Funktionen f und g

- Für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- lacksquare Für alle (t_j^g, w_j^g) : behalte Punkt, wenn $w_j^g < f(t_j^g)$
- Keine Schnittepunkte möglich(!)

Vorgehen:

Linearer Sweep



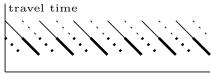
Public Transport: Merge

Minimum zweier Funktionen f und g

- Für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- Für alle (t_i^g, w_i^g) : behalte Punkt, wenn $w_i^g < f(t_i^g)$
- Keine Schnittepunkte möglich(!)

Vorgehen:

Linearer Sweep



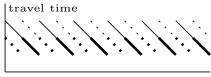
Public Transport: Merge

Minimum zweier Funktionen f und g

- Für alle (t_i^f, w_i^f) : behalte Punkt, wenn $w_i^f < g(t_i^f)$
- Für alle (t_i^g, w_i^g) : behalte Punkt, wenn $w_i^g < f(t_i^g)$
- Keine Schnittepunkte möglich(!)

Vorgehen:

Linearer Sweep



Public Transport: Diskussion Merge

Laufzeit

- Sweep-Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

- Keine Schnittpunkte
- \Rightarrow Minimum-Funktion kann maximal $|I'| + |I^g|$ Interpolationspunkte enthalten

Public Transport: Diskussion Merge

Laufzeit

- Sweep-Algorithmus
- $\mathcal{O}(|I^f| + |I^g|)$
- Zum Vergleich: Zeitunabhängig: O(1)

Speicherverbrauch

- Keine Schnittpunkte
- \Rightarrow Minimum-Funktion kann maximal $|I^f| + |I^g|$ Interpolationspunkte enthalten

Schiene vs. Straße

Laufzeit Operationen

- gleich für beide
- $\mathcal{O}(\log |I|)$ für Auswertung
- lacksquare $\mathcal{O}(|\mathit{I}^f|+|\mathit{I}^g|)$ für Linken und Minimum

Speicherverbrauch

- Public Transport deutlich geringer
- Link:

$$|I^{f \oplus g}| \le \min\{|I^f|, |I^g|\}$$
 vs. $|I^{f \oplus g}| \approx |I^f| + |I^g|$

Merge:

$$|I^{\min\{f,g\}}| \le |I^f| + |I^g|$$
 vs. eventuell $|I^{\min\{f,g\}}| > (|I^f| + |I^g|)$

Profilsuchen

Somit in Public Transport Netzen wahrscheinlich schneller

Schiene vs. Straße

Laufzeit Operationen

- gleich für beide
- O(log |I|) für Auswertung
- $\mathcal{O}(|I^f| + |I^g|)$ für Linken und Minimum

Speicherverbrauch

- Public Transport deutlich geringer
- Link:

$$|\textit{I}^{\textit{f} \oplus \textit{g}}| \leq \min\{|\textit{I}^{\textit{f}}|,|\textit{I}^{\textit{g}}|\} \quad \text{vs.} \quad |\textit{I}^{\textit{f} \oplus \textit{g}}| \approx |\textit{I}^{\textit{f}}| + |\textit{I}^{\textit{g}}|$$

Merge:

$$|\mathit{I}^{\min\{f,g\}}| \leq |\mathit{I}^f| + |\mathit{I}^g| \quad \text{vs. eventuell} \quad |\mathit{I}^{\min\{f,g\}}| > (|\mathit{I}^f| + |\mathit{I}^g|)$$

Profilsucher

Somit in Public Transport Netzen wahrscheinlich schneller

Schiene vs. Straße

Laufzeit Operationen

- gleich für beide
- $\mathcal{O}(\log |I|)$ für Auswertung
- $\mathcal{O}(|I^f| + |I^g|)$ für Linken und Minimum

Speicherverbrauch

- Public Transport deutlich geringer
- Link:

$$|\mathit{I}^{f \oplus g}| \leq \min\{|\mathit{I}^f|, |\mathit{I}^g|\}$$
 vs. $|\mathit{I}^{f \oplus g}| \approx |\mathit{I}^f| + |\mathit{I}^g|$

Merge:

$$|\mathit{I}^{\min\{f,g\}}| \leq |\mathit{I}^f| + |\mathit{I}^g| \quad \text{vs. eventuell} \quad |\mathit{I}^{\min\{f,g\}}| > (|\mathit{I}^f| + |\mathit{I}^g|)$$

Profilsuchen

Somit in Public Transport Netzen wahrscheinlich schneller

Eingabe

Straße:

- Netzwerk Deutschland $|V| \approx 4.7$ Mio., $|E| \approx 10.8$ Mio.
- 5 Verkehrszenarien:
 - Montag: ≈ 8% Kanten zeitabhängig
 - Dienstag Donnerstag: \approx 8%
 - Freitag: ≈ 7%
 - Samstag: ≈ 5%
 - Sonntag: $\approx 3\%$

Schiene:

- Europa Fernverbindungen
- 30 156 Stationen, 1.8 Millionen Verbindungen
- |V| = 0.4 Mio., |E| = 1.4 Mio.

"Grad" der Zeitabhängigkeit

	#delete mins	slow-down	time [ms]	slow-down
kein	2,239,500	0.00%	1219.4	0.00%
Montag	2,377,830	6.18%	1553.5	27.40%
DiDo	2,305,440	2.94%	1502.9	23.25%
Freitag	2,340,360	4.50%	1517.2	24.42%
Samstag	2,329,250	4.01%	1470.4	20.59%
Sonntag	2,348,470	4.87%	1464.4	20.09%

Beobachtung:

- kaum Veränderung in Suchraum
- Anfragen etwas langsamer durch Auswertung

Profilsuchen Straße

Beobachtung:

- Nicht durchführbar durch zu großen Speicherbedarf (> 32 GiB RAM)
- Interpoliert:
 - Suchraum steigt um ca. 10%
 - Suchzeiten um einen Faktor von bis zu 2 500
- \Rightarrow inpraktikabel

Profilsuchen Schiene

	#delete mins	time [ms]
Zeit-Anfragen	260 095	125
Profil-Anfragen	1919662	5 3 2 7

Beobachtung:

- Deletemins steigen an (ungefähr Faktor 8)
- Queryzeit steigt an um Faktor 42
- Verlust f
 ür Operationen ist ca. 5

Zusammenfassung

Zeitabhängige Netzwerke (Basics)

- Funktionen statt Konstanten an Kanten
- Operationen werden teurer
 - $\mathcal{O}(\log |I|)$ für Auswertung
 - $\mathcal{O}(|I^f| + |I^g|)$ für Linken und Minimum
 - Straßennetzwerke: Speicherverbrauch explodiert
 - Eisenbahn: gutartiger
- Zeitanfragen:
 - Normaler Dijkstra
 - Kaum langsamer (lediglich Auswertung)
- Profilanfragen
 - In Public Transportation gut nutzbar
 - Straßennetzwerke nicht zu handhaben

Ende

Literatur (Zeitabhängige Routenplanung):

Daniel Delling:
 Enginering and Augmenting Route Planning Algorithms
 Ph.D. Thesis, Universität Karlsruhe (TH), 2009.