
PHAST - Hardware Accelerated Shortest path Trees

Daniel Delling Andrew V. Goldberg
Andreas Nowatzyk Renato F. Werneck

Microsoft Research Silicon Valley

March 25, 2011

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 1 / 22



Single-Source Shortest Paths

request:

given a (positively) weighted directed graph
G = (V ,E ,w) and a source node s

compute distances from s to all other
nodes in the graph

applications: compute many trees for map services
(sometimes even all-pairs shortest paths)

solution:

Dijkstra [Dij59]

some facts:

O(m + n log n) with Fibonacci Heaps [FT87]

linear (with a small constant) in practice [Gol01]

exploiting modern hardware architecture is complicated

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 2 / 22



Single-Source Shortest Paths

request:

given a (positively) weighted directed graph
G = (V ,E ,w) and a source node s

compute distances from s to all other
nodes in the graph

applications: compute many trees for map services
(sometimes even all-pairs shortest paths)

solution:

Dijkstra [Dij59]

some facts:

O(m + n log n) with Fibonacci Heaps [FT87]

linear (with a small constant) in practice [Gol01]

exploiting modern hardware architecture is complicated

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 2 / 22



Single-Source Shortest Paths

request:

given a (positively) weighted directed graph
G = (V ,E ,w) and a source node s

compute distances from s to all other
nodes in the graph

applications: compute many trees for map services
(sometimes even all-pairs shortest paths)

solution:

Dijkstra [Dij59]

some facts:

O(m + n log n) with Fibonacci Heaps [FT87]

linear (with a small constant) in practice [Gol01]

exploiting modern hardware architecture is complicated

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 2 / 22



Modern CPU architecture

some facts:

multiple cores

more cores than memory channels

hyperthreading

multi-socket systems

steep memory hierarchy

cache coherency

no register coherency

⇒ algorithms need to be tailored

⇒ speedups of 100x possible

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 3 / 22



Modern CPU architecture

some facts:

multiple cores

more cores than memory channels

hyperthreading

multi-socket systems

steep memory hierarchy

cache coherency

no register coherency

⇒ algorithms need to be tailored

⇒ speedups of 100x possible

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 3 / 22



GPU Architecture

some facts:

many cores (up to 512)

high memory bandwidth (5x faster than CPU)

but main → GPU memory transfer slow (≈ 20x)

no cache coherency

Single Instruction Multiple Threads model
(thread groups follow same instruction flow)

barrel processing used to hide DRAM latency
⇒ need to keep thousands of independent (!) threads busy

access of a thread group to memory only efficient for certain patterns

⇒ algorithms need to be tailored

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 4 / 22



GPU Architecture

some facts:

many cores (up to 512)

high memory bandwidth (5x faster than CPU)

but main → GPU memory transfer slow (≈ 20x)

no cache coherency

Single Instruction Multiple Threads model
(thread groups follow same instruction flow)

barrel processing used to hide DRAM latency
⇒ need to keep thousands of independent (!) threads busy

access of a thread group to memory only efficient for certain patterns

⇒ algorithms need to be tailored

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 4 / 22



Parallelizing Dijkstra’s Algorithm

multiple trees:

multi-core by source

instruction-level parallelism exploitable [Yan10]

approach not applicable for a GPU implementation
I not enough memory on GPU
I transfer main → GPU memory too slow

single tree computation:

speculation

∆-stepping [MS03],[MBBC09]

more operations than Dijkstra

no big speedups on sparse networks

other problem:

data locality

⇒ memory bandwidth bound

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 5 / 22



Parallelizing Dijkstra’s Algorithm

multiple trees:

multi-core by source

instruction-level parallelism exploitable [Yan10]

approach not applicable for a GPU implementation
I not enough memory on GPU
I transfer main → GPU memory too slow

single tree computation:

speculation

∆-stepping [MS03],[MBBC09]

more operations than Dijkstra

no big speedups on sparse networks

other problem:

data locality

⇒ memory bandwidth bound

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 5 / 22



Parallelizing Dijkstra’s Algorithm

multiple trees:

multi-core by source

instruction-level parallelism exploitable [Yan10]

approach not applicable for a GPU implementation
I not enough memory on GPU
I transfer main → GPU memory too slow

single tree computation:

speculation

∆-stepping [MS03],[MBBC09]

more operations than Dijkstra

no big speedups on sparse networks

other problem:

data locality

⇒ memory bandwidth bound

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 5 / 22



PHAST
experiments:

input: Western European road network

18M nodes, 23M road segments

Dijkstra: ≈ 3.0 s ⇒ not real-time
BFS: ≈ 2.0 s

n + m clock cycles: ≈ 15 ms ⇒ big gap

gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)

a new 2-phase algorithm for computing shortest path trees: [DGNW11]

preprocessing:
I a few minutes
I works well in graphs with low highway dimension, e.g., road networks

faster shortest path tree computation:
I without optimization as fast as BFS
I allows to exploit hardware architecture on all levels
⇒ up to 3 orders of magnitude faster than Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 6 / 22



PHAST
experiments:

input: Western European road network

18M nodes, 23M road segments

Dijkstra: ≈ 3.0 s ⇒ not real-time
BFS: ≈ 2.0 s
n + m clock cycles: ≈ 15 ms ⇒ big gap

gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)

a new 2-phase algorithm for computing shortest path trees: [DGNW11]

preprocessing:
I a few minutes
I works well in graphs with low highway dimension, e.g., road networks

faster shortest path tree computation:
I without optimization as fast as BFS
I allows to exploit hardware architecture on all levels
⇒ up to 3 orders of magnitude faster than Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 6 / 22



PHAST
experiments:

input: Western European road network

18M nodes, 23M road segments

Dijkstra: ≈ 3.0 s ⇒ not real-time
BFS: ≈ 2.0 s
n + m clock cycles: ≈ 15 ms ⇒ big gap

gap does not stem from data structures

numbers refer to a Core-i7 workstation (2.66 GHz)

a new 2-phase algorithm for computing shortest path trees: [DGNW11]

preprocessing:
I a few minutes
I works well in graphs with low highway dimension, e.g., road networks

faster shortest path tree computation:
I without optimization as fast as BFS
I allows to exploit hardware architecture on all levels
⇒ up to 3 orders of magnitude faster than Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 6 / 22



Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

4 Parallelization

5 GPU Implementation

6 Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 7 / 22



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

2 1 3 4 4 1
2

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

41 63 7 25 2 1 3 4 4 1
2

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

63 7 25

2 1

3 4 4 1
2

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

63 7 25

2 1

3 4 4 1
2

3

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

63 7

2

5

2 1

3 4

4 1

2
3 5

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

6

3

7

2

5

2 1 3 4 4 1

2
3 5

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

6

3

7

2

5

2

1 3

4 4 1

23

55

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1 3

7

2
1 3

4 4

25

2

3

5
6

1

5

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 8 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

preprocessing:

order nodes by importance (heuristic)

process in order

add shortcuts to preserve distances between more important nodes

assign levels (ca. 150 in road networks)

≈ 5 minutes, 75% increase in number of edges

heavily relies on the metric (assumes a strong hierarchy)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Contraction Hierarchies: A 2-phase algorithm for exact route planning

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 9 / 22

[GSSD08]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

point-to-point query

modified bidirectional Dijkstra

only follow edges to more important nodes

good performance on road networks:

each upward search scans about 500 nodes

10000x faster than bidirectional Dijkstra (point-to-point)



Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

4 Parallelization

5 GPU Implementation

6 Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 10 / 22



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3 6

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3 61

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Replacing Dijkstra

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 11 / 22

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

s

0

2

7

3 61

3

one-to-all search from source s:

run CH forward search from s (≈ 0.05 ms)

set distance labels d of reached nodes

process all nodes u in reverse level order:
I check incoming arcs (v , u) with lev(v) > lev(u)
I set d(u) = min{d(u), d(v) + w(v , u)}

top-down processing without priority queue (ca. 2.0 s)



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

w r



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

w r



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

w r



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

w r



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Analysis

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 12 / 22

le
ve
l

observation:

top-down process is the bottleneck

access to the data is inefficient

processing order is independent of the source node

idea:

reorder nodes, arcs,
distance labels by level

⇒ reading arcs and writing distances
become a sequential sweep

⇒ 172 ms per tree

but reading distances still inefficient

dist(u):

wr



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l s0

7



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1
4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

7



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1
4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

0 0

7



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1
4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
7



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

10



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

10

7



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9 6 1

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9 6 11 8

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9 6 11 8

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9 6 11 8

10

77



Scenario: Multiple Sources

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 13 / 22

idea:

run k forward searches

one sweep (update all k values)

align distance labels per node

96.8 ms per tree (k = 16)

SSE:

128-bit registers

basic operations (min, add) on
four 32-bit integers in parallel

scan 4 sources at once

37.1 ms per tree (k = 16)

s0 s1

47

4

1

6

3 2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

3

0 0

2
77
5

3 9 6 11 8

10

77



Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

4 Parallelization

5 GPU Implementation

6 Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 14 / 22



Parallelization

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 15 / 22

dist(s1,u):

wr

wr

wr

wr

dist(s2,u):

dist(s3,u):

dist(s4,u):

obvious way of parallelization

by sources

results:

16 sources per sweep (updating via SSE)

multi-core by source nodes

⇒ 64 sources in parallel (4 cores)

18.8 ms per tree on average

why no perfect speedup?

lower bound tests indicate that we are close to memory bandwidth barrier

can a GPU help?



Parallelization

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 15 / 22

dist(s1,u):

wr

wr

wr

wr

dist(s2,u):

dist(s3,u):

dist(s4,u):

obvious way of parallelization

by sources

results:

16 sources per sweep (updating via SSE)

multi-core by source nodes

⇒ 64 sources in parallel (4 cores)

18.8 ms per tree on average

why no perfect speedup?

lower bound tests indicate that we are close to memory bandwidth barrier

can a GPU help?



Parallelization

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 15 / 22

dist(s1,u):

wr

wr

wr

wr

dist(s2,u):

dist(s3,u):

dist(s4,u):

obvious way of parallelization

by sources

results:

16 sources per sweep (updating via SSE)

multi-core by source nodes

⇒ 64 sources in parallel (4 cores)

18.8 ms per tree on average

why no perfect speedup?

lower bound tests indicate that we are close to memory bandwidth barrier

can a GPU help?



Parallelization

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 15 / 22

dist(s1,u):

wr

wr

wr

wr

dist(s2,u):

dist(s3,u):

dist(s4,u):

obvious way of parallelization

by sources

results:

16 sources per sweep (updating via SSE)

multi-core by source nodes

⇒ 64 sources in parallel (4 cores)

18.8 ms per tree on average

why no perfect speedup?

lower bound tests indicate that we are close to memory bandwidth barrier

can a GPU help?



Parallelization

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 15 / 22

dist(s1,u):

wr

wr

wr

wr

dist(s2,u):

dist(s3,u):

dist(s4,u):

obvious way of parallelization

by sources

results:

16 sources per sweep (updating via SSE)

multi-core by source nodes

⇒ 64 sources in parallel (4 cores)

18.8 ms per tree on average

why no perfect speedup?

lower bound tests indicate that we are close to memory bandwidth barrier

can a GPU help?



Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

4 Parallelization

5 GPU Implementation

6 Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 16 / 22



GPU Architecture

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 17 / 22

NVIDIA GTX 580:

772 MHz, 1.5 GB RAM

192 GB/s memory bandwidth

16 cores, 32 parallel threads (a warp) per
core ⇒ 512 threads in parallel

Intel Xeon X5680:

3.33 GHz

32 GB/s memory bandwidth

6 cores



GPHAST - Basic Ideas

observation:

upward search is fast

bottleneck is the linear sweep

limited by memory bandwidth

idea:

run upward seach on the CPU

copy search space to GPU (less than 2 kB)

do linear sweep on the GPU

problem:

not enough memory on GPU to compute thousands of trees in parallel

we need to parallelize a single tree computation

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 18 / 22



GPHAST - Basic Ideas

observation:

upward search is fast

bottleneck is the linear sweep

limited by memory bandwidth

idea:

run upward seach on the CPU

copy search space to GPU (less than 2 kB)

do linear sweep on the GPU

problem:

not enough memory on GPU to compute thousands of trees in parallel

we need to parallelize a single tree computation

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 18 / 22



GPHAST - Basic Ideas

observation:

upward search is fast

bottleneck is the linear sweep

limited by memory bandwidth

idea:

run upward seach on the CPU

copy search space to GPU (less than 2 kB)

do linear sweep on the GPU

problem:

not enough memory on GPU to compute thousands of trees in parallel

we need to parallelize a single tree computation

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 18 / 22



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

w



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

wr



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

wr



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

wr



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

r2r1 w3r3r4 w1 w2 w4



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

r2r1r3 r4 w3w1 w2 w4



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

r2r1 r3r4 w3w1 w2 w4



Parallel Linear Sweep

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 19 / 22

observation:

when scanning level i :

I only incoming arcs from level > i are relevant
I writing distance labels in level i , read from level > i
I distance labels for level > i are correct

scanning a level-i node is independent from other level-i nodes

idea:

scan all nodes on level i in parallel

synchronization after each level

one thread per node

results:

5.5 ms on an NVIDIA GTX 480

511 speedup over Dijkstra

(multiple trees: 2.2 ms)

dist(u):

r2r1 r3r4 w3w1 w2 w4



All-Pairs Shortest Paths

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 20 / 22

algorithm device time energy [MJ]
Dijkstra 4-core workstation 197d

2780.6

12-core server 60d

1725.9

48-core server 35d

2265.5

PHAST 4-core workstation 94h

55.2

12-core server 36h

43.0

48-core server 20h

54.2

GPHAST GTX 580

11h 14.9

4-core workstation without GPU: 163 watts
4-core workstation with GPU: 375 watts

12-core server: 332 watts
48-core server: 747 watts



All-Pairs Shortest Paths

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 20 / 22

algorithm device time energy [MJ]
Dijkstra 4-core workstation 197d

2780.6

12-core server 60d

1725.9

48-core server 35d

2265.5

PHAST 4-core workstation 94h

55.2

12-core server 36h

43.0

48-core server 20h

54.2

GPHAST GTX 580 11h

14.9

4-core workstation without GPU: 163 watts
4-core workstation with GPU: 375 watts

12-core server: 332 watts
48-core server: 747 watts



All-Pairs Shortest Paths

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 20 / 22

algorithm device time energy [MJ]
Dijkstra 4-core workstation 197d

2780.6

12-core server 60d

1725.9

48-core server 35d

2265.5

PHAST 4-core workstation 94h

55.2

12-core server 36h

43.0

48-core server 20h

54.2

GPHAST GTX 580 11h

14.9

4-core workstation without GPU: 163 watts
4-core workstation with GPU: 375 watts

12-core server: 332 watts
48-core server: 747 watts



All-Pairs Shortest Paths

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 20 / 22

algorithm device time energy [MJ]
Dijkstra 4-core workstation 197d 2780.6

12-core server 60d 1725.9
48-core server 35d 2265.5

PHAST 4-core workstation 94h 55.2
12-core server 36h 43.0
48-core server 20h 54.2

GPHAST GTX 580 11h 14.9

4-core workstation without GPU: 163 watts
4-core workstation with GPU: 375 watts

12-core server: 332 watts
48-core server: 747 watts



Outline

1 Introduction

2 Contraction Hierarchies

3 PHAST

4 Parallelization

5 GPU Implementation

6 Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 21 / 22



Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 22 / 22

summary:

one tree on a GPU: 5.5 ms
(about 0.31 ns per entry)

real-time computation of shortest path trees

16 trees on a GPU at once: 2.2 ms per tree
(about 0.13 ns per entry)

APSP in 11 hours (on a workstation with one GPU),
instead of half a year (on 4 cores)

APSP-based computation becomes practical

150 times more energy-efficient than Dijkstra’s algorithm

other recent results:

point-to-point shortest paths with a few memory accesses

refinement of highway dimension

graph partitioning

fully realistic driving directions
Thank you for your attention!



Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 22 / 22

summary:

one tree on a GPU: 5.5 ms
(about 0.31 ns per entry)

real-time computation of shortest path trees

16 trees on a GPU at once: 2.2 ms per tree
(about 0.13 ns per entry)

APSP in 11 hours (on a workstation with one GPU),
instead of half a year (on 4 cores)

APSP-based computation becomes practical

150 times more energy-efficient than Dijkstra’s algorithm

other recent results:

point-to-point shortest paths with a few memory accesses

refinement of highway dimension

graph partitioning

fully realistic driving directions

Thank you for your attention!



Conclusion

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 22 / 22

summary:

one tree on a GPU: 5.5 ms
(about 0.31 ns per entry)

real-time computation of shortest path trees

16 trees on a GPU at once: 2.2 ms per tree
(about 0.13 ns per entry)

APSP in 11 hours (on a workstation with one GPU),
instead of half a year (on 4 cores)

APSP-based computation becomes practical

150 times more energy-efficient than Dijkstra’s algorithm

other recent results:

point-to-point shortest paths with a few memory accesses

refinement of highway dimension

graph partitioning

fully realistic driving directions
Thank you for your attention!



Appendix

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 23 / 22



Graph Partitioning I: Filtering

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 24 / 22

[DGRW11]

v

1. natural cut detection

pick a random center

use BFS to define a core and a ring

find minimum cut between them

repeat multiple times

2. contraction

keep only edges that appeared in some cut

contract the rest into fragments

reduces graph by several orders of magnitude

preserves natural cuts between dense regions
(e.g., bridges, national borders, mountain passes...)



Graph Partitioning I: Filtering

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 24 / 22

[DGRW11]

v

1. natural cut detection

pick a random center

use BFS to define a core and a ring

find minimum cut between them

repeat multiple times

2. contraction

keep only edges that appeared in some cut

contract the rest into fragments

reduces graph by several orders of magnitude

preserves natural cuts between dense regions
(e.g., bridges, national borders, mountain passes...)



Graph Partitioning II: Assembly

1. run greedy algorithm

join well-connected fragments

find maximal solution

2. run local search

reoptimize pairs of adjacent cells

fragments can move to neighboring cells

3. enhanced optimizations (optional)

multistart, recombination, branch-and-bound

⇒ yields best known solutions for road networks

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 25 / 22

[DGRW11]



Case Study: Point-to-Point Shortest Paths
two phase approach:

preprocess network to compute auxillary data

use data to speed up queries

three-criteria optimization (preprocessing time, space, query times)

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

Table Lookup > 11:03 1 208 358.7 0.056

observation:

excellent performance in practice

used in production

prime example for algorithm engineering

but for a long time: no theoretical justification

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 26 / 22



Case Study: Point-to-Point Shortest Paths
two phase approach:

preprocess network to compute auxillary data

use data to speed up queries

three-criteria optimization (preprocessing time, space, query times)

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

Table Lookup > 11:03 1 208 358.7 0.056

observation:

excellent performance in practice

used in production

prime example for algorithm engineering

but for a long time: no theoretical justification

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 26 / 22



Case Study: Point-to-Point Shortest Paths
two phase approach:

preprocess network to compute auxillary data

use data to speed up queries

three-criteria optimization (preprocessing time, space, query times)

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

Table Lookup > 11:03 1 208 358.7 0.056

observation:

excellent performance in practice

used in production

prime example for algorithm engineering

but for a long time: no theoretical justification

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 26 / 22



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Theoretical Justification: Highway Dimension

(r , k) shortest path cover

all shortest paths with length
between r and 2r are hit

locally sparse
(≤ k vertices in any ball of radius O(r))

Highway Dimension

A graph with highway dimension h has an (r , h)-SPC for all r .

results:

sublinear query bounds for many algorithms

best query bound: a labeling algorithm

has not been considered in practical implementations

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 27 / 22

[AFGW10]



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



A Labeling Algorithm

preprocessing:

compute a label L(v) for each vertex v

compute dist(v ,w) for each vertex w ∈ L(v)

obey the label property:
for all s, t a shortest s–t path intersects L(s) ∩ L(t)

s–t queries:

find vertex w ∈ L(s) ∩ L(t) . . .

. . . that minimizes dist(s, v)+ dist(v , t)

observation:

practical if labels are small

how to compute labels efficiently?

SPC algorithms currently are too slow
(maybe PHAST can help)

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 28 / 22

[CPPR04]

s

t



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3L(s)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

∞
L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

∞
L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

∞
L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

∞
L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

∞
L(s)

L(t)

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

L(s)

L(t)

7

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Practical Implementation: HubLabels

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 29 / 22

[ADGW11]

4

1

6

3

7

2

5

2
1 3

4 4

1

2
3

5

5

le
ve
l

ts

idea:

search spaces of contraction
hierarchies form valid labels

run upward (forward and backward)
search from each vertex, store label

sort label entries by node id

1,0 4,1 5,2 7,3

2,0 6,1 7,4

7

L(s)

L(t)

7

query:

process like merge sort

update whenever the ids match

very cache-efficient

problem:

average label sizes of around 500 ⇒ 150 GB of data



Optimizations

label sizes:

80% of the nodes in search spaces unnecessary

prune by bootstrapping

SPC algorithms on small important subgraph

⇒ average label size shrinks to 85 (→ 24 GB)

reduce number of cache lines read:

use compression (→ 6 GB)

define partition oracle to accelerate long-range queries

many algorithmic low-level optimizations

⇒ we fetch only a few cache lines from memory

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 30 / 22

[ADGW11]



Optimizations

label sizes:

80% of the nodes in search spaces unnecessary

prune by bootstrapping

SPC algorithms on small important subgraph

⇒ average label size shrinks to 85 (→ 24 GB)

reduce number of cache lines read:

use compression (→ 6 GB)

define partition oracle to accelerate long-range queries

many algorithmic low-level optimizations

⇒ we fetch only a few cache lines from memory

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 30 / 22

[ADGW11]



Results

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 31 / 22

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

HL 2:14 21.3 0.276
HL compressed 2:45 5.7 0.527

Table Lookup > 14:01 1 208 358.7 0.056

scientific method at work:

practical algorithms are empirically fast

highway dimension and sublinear query bounds

the labeling algorithm is the fastest

engineered implementation guided by theory

scientific method at work:

observation:

theory:

prediction:

verification:

⇒ new running time record



Results

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 31 / 22

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

HL 2:14 21.3 0.276

HL compressed 2:45 5.7 0.527

Table Lookup > 14:01 1 208 358.7 0.056

scientific method at work:

practical algorithms are empirically fast

highway dimension and sublinear query bounds

the labeling algorithm is the fastest

engineered implementation guided by theory

scientific method at work:

observation:

theory:

prediction:

verification:

⇒ new running time record



Results

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 31 / 22

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

HL 2:14 21.3 0.276
HL compressed 2:45 5.7 0.527

Table Lookup > 14:01 1 208 358.7 0.056

scientific method at work:

practical algorithms are empirically fast

highway dimension and sublinear query bounds

the labeling algorithm is the fastest

engineered implementation guided by theory

scientific method at work:

observation:

theory:

prediction:

verification:

⇒ new running time record



Results

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 31 / 22

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

HL 2:14 21.3 0.276
HL compressed 2:45 5.7 0.527

Table Lookup > 14:01 1 208 358.7 0.056

scientific method at work:

practical algorithms are empirically fast

highway dimension and sublinear query bounds

the labeling algorithm is the fastest

engineered implementation guided by theory

scientific method at work:

observation:

theory:

prediction:

verification:

⇒ new running time record



Results

D. Delling (Microsoft Research) Hardware Accelerated Shortest path Trees March 25, 2011 31 / 22

preprocessing query
method time [h:m] space [GB] time [µs]
Reach 0:15 1.5 1253.500
CH 0:05 0.4 93.500
TNR 1:52 3.7 1.800

HL 2:14 21.3 0.276
HL compressed 2:45 5.7 0.527

Table Lookup > 14:01 1 208 358.7 0.056

scientific method at work:

practical algorithms are empirically fast

highway dimension and sublinear query bounds

the labeling algorithm is the fastest

engineered implementation guided by theory

scientific method at work:

observation:

theory:

prediction:

verification:

⇒ new running time record


	Introduction
	Contraction Hierarchies
	PHAST
	Parallelization
	GPU Implementation
	Conclusion
	Anhang

