

Übung Algorithmische Geometrie Delaunay Triangulierungen

LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Andreas Gemsa 16.06.2011

Übersicht

Übungsblatt 9 - Delaunay Triangulierungen

Evaluation

Übungsblatt 9 - Delaunay Triangulierungen

Problem:

Sei $P \subset \mathbb{R}^2$ eine Menge von n Punkten.

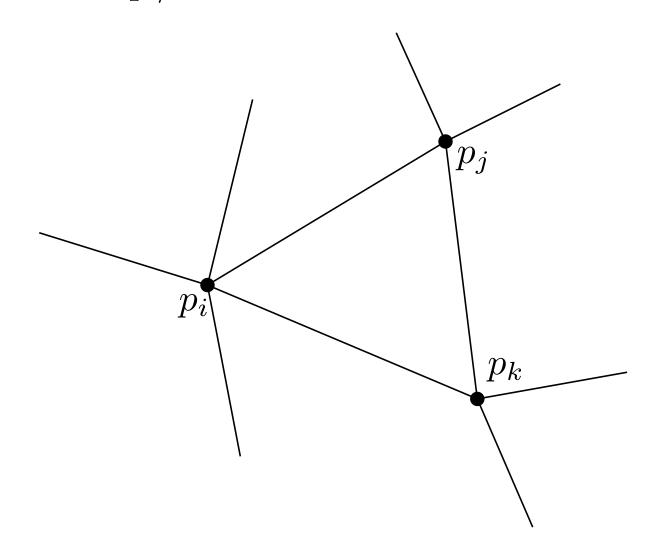
- a) Maximale Anzahl an verschiedenen Triangulierungen für P beschränkt durch $2^{\binom{n}{2}}$.
- b) Beispielmenge P bei der für jede Triangulierung ein Knoten ex. der Grad n-1 hat?

Problem:

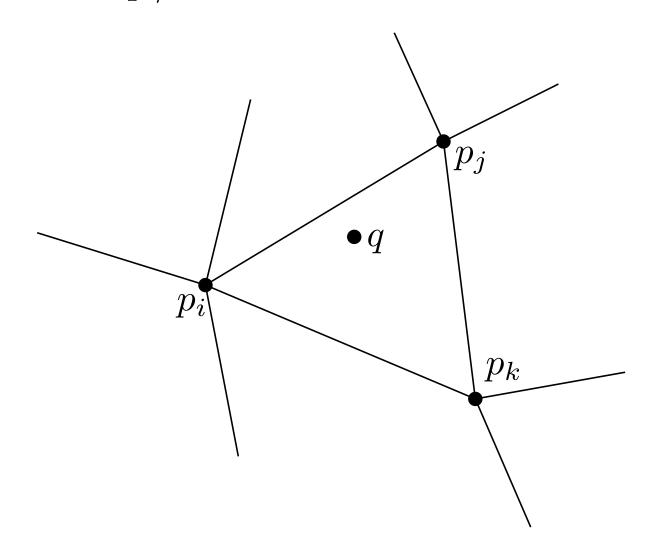
Sei $P \subset \mathbb{R}^2$ eine Menge von n Punkten.

- a) Maximale Anzahl an verschiedenen Triangulierungen für P beschränkt durch $2^{\binom{n}{2}}$.
- b) Beispielmenge P bei der für jede Triangulierung ein Knoten ex. der Grad n-1 hat?

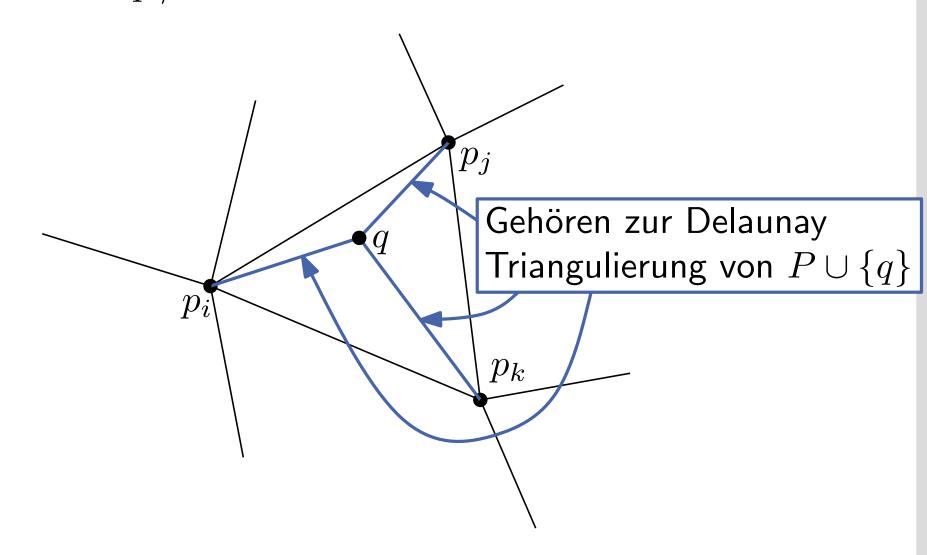
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



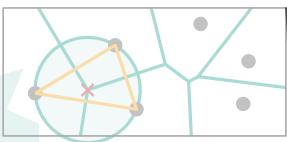
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.

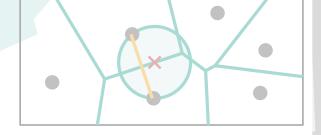


Charakterisierung

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$





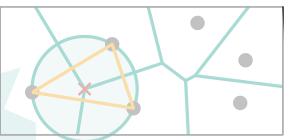
Satz 4: Sei *P* eine Menge von Punkten.

- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

Charakterisierung

Satz über Voronoi-Diagramme:

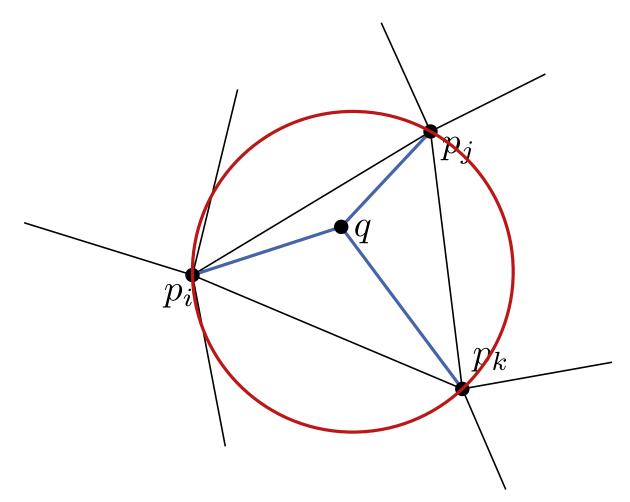
- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$



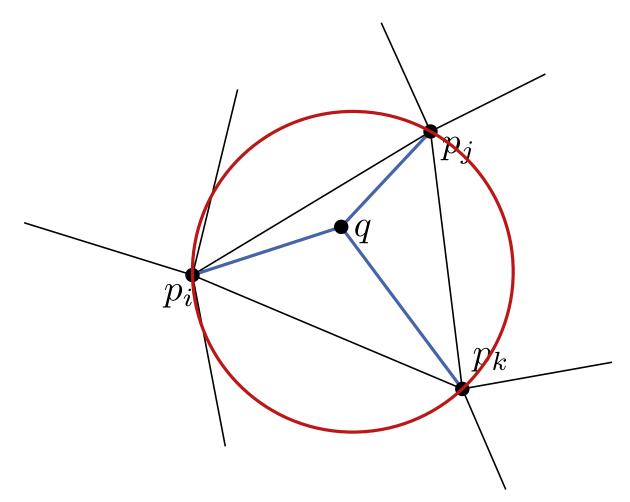
Satz 4: Sei P eine Menge von Punkten.

- Punkte p, q, r sind Knoten der gleichen Facette in $\mathcal{DG}(P) \Leftrightarrow \mathsf{Kreis} \; \mathsf{durch} \; p, q, r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

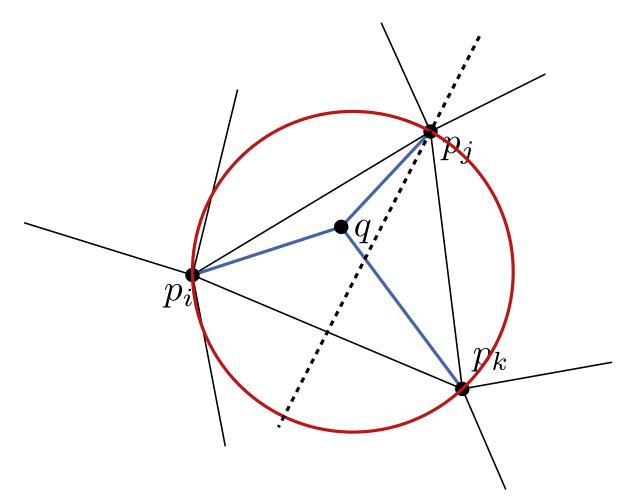
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



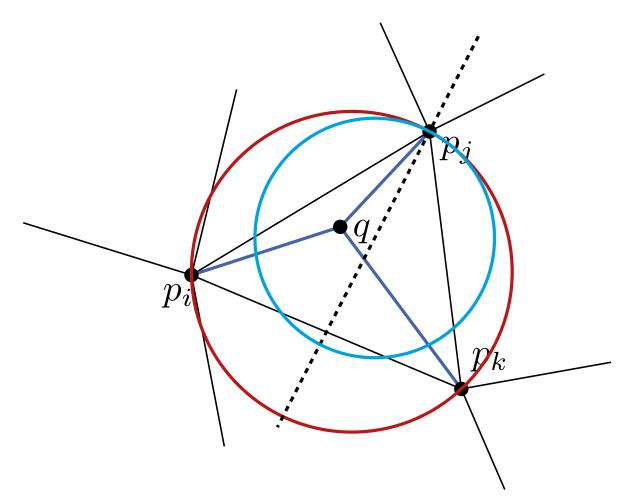
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



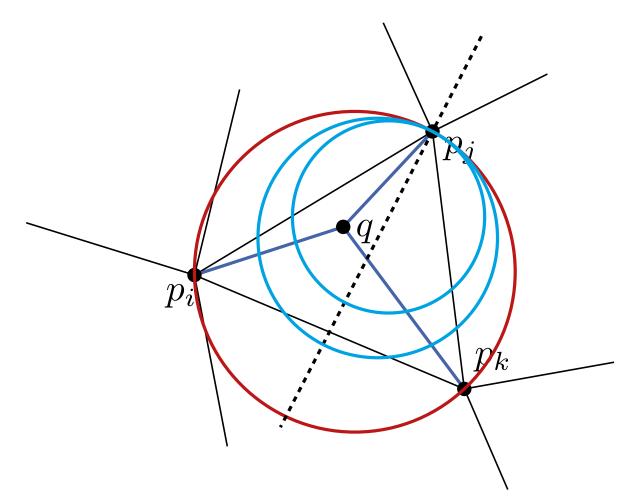
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



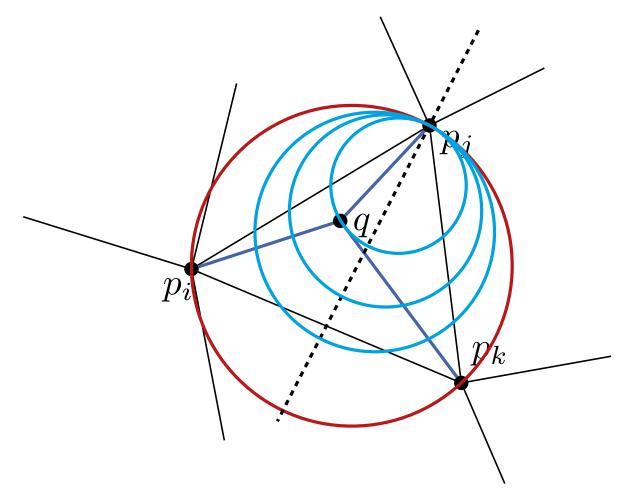
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



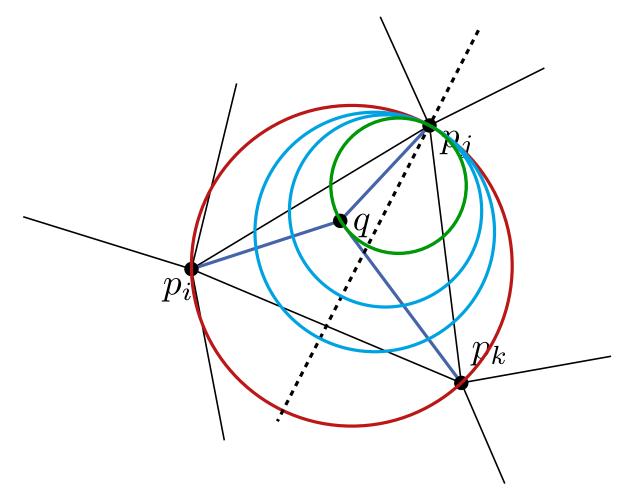
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



Übersicht

Übungsblatt 9 - Delaunay Triangulierungen

Evaluation

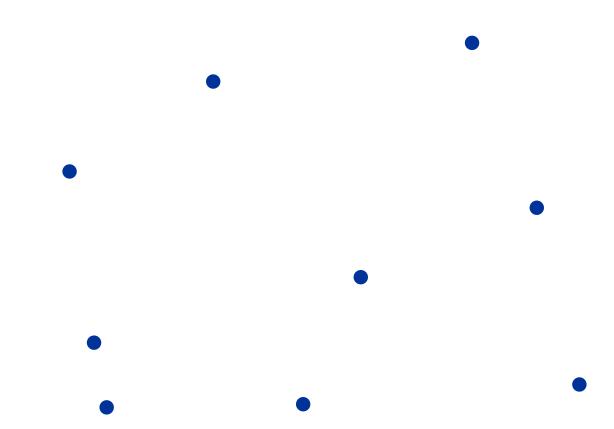
Übungsblatt 9 - Delaunay Triangulierungen

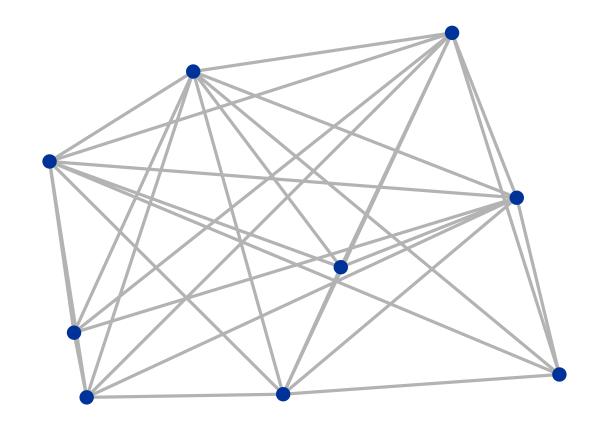
Übersicht

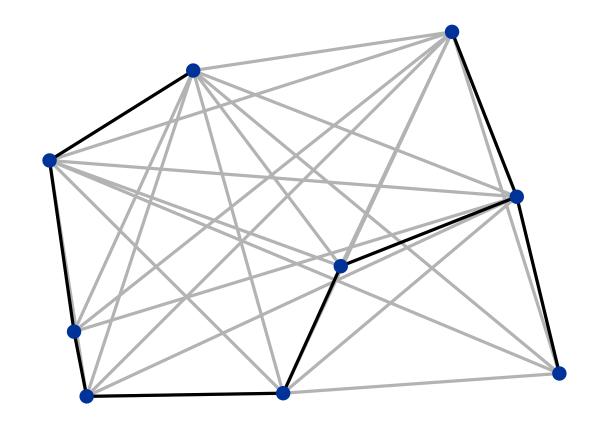
Übungsblatt 9 - Delaunay Triangulierungen

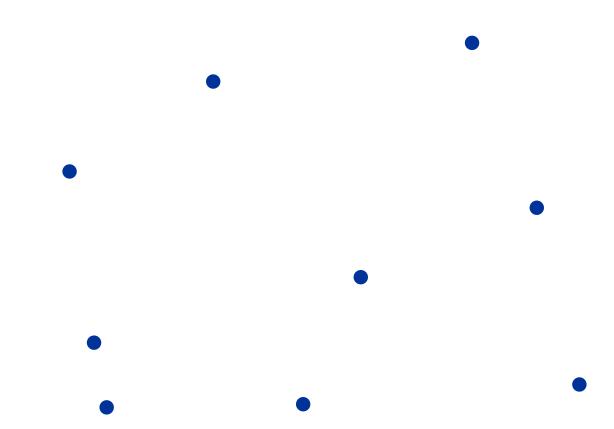
Evaluation

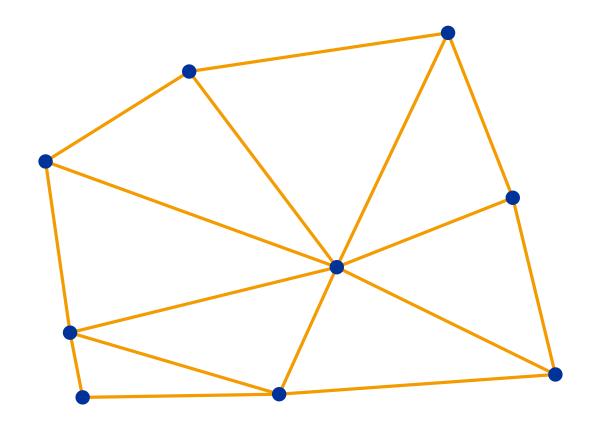
Übungsblatt 9 - Delaunay Triangulierungen

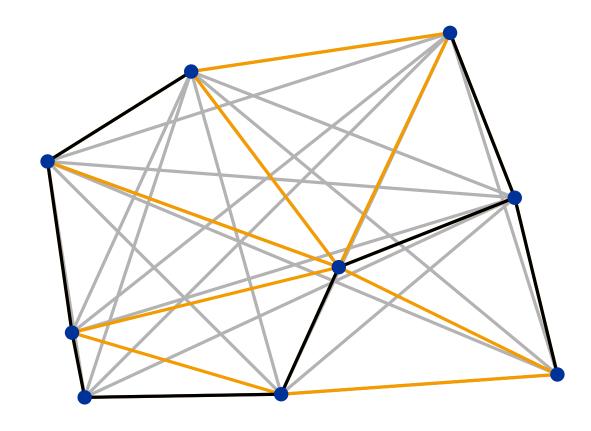




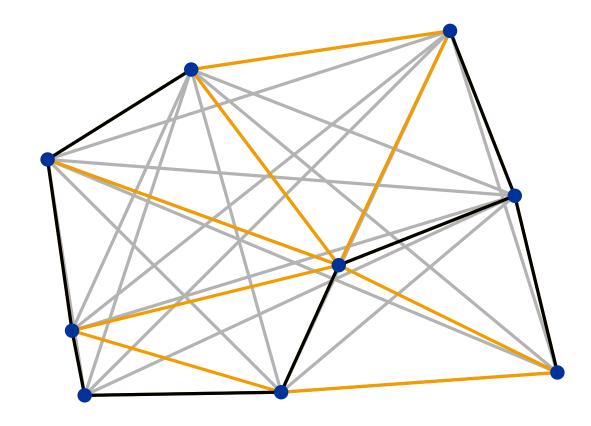








Euklidischer Minimaler Spannbaum

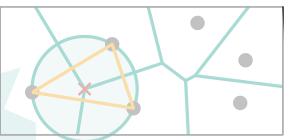


Zeige, dass Kanten aus EMST Teilmenge der Kanten aus Delaunay-Graph

Charakterisierung

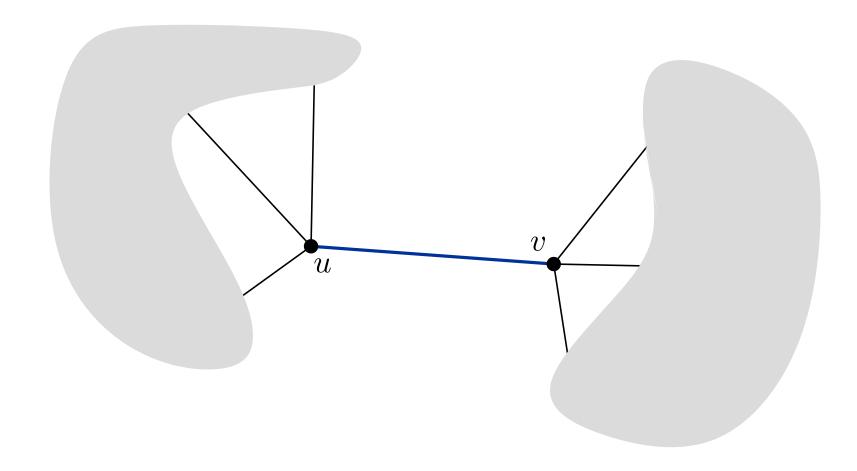
Satz über Voronoi-Diagramme:

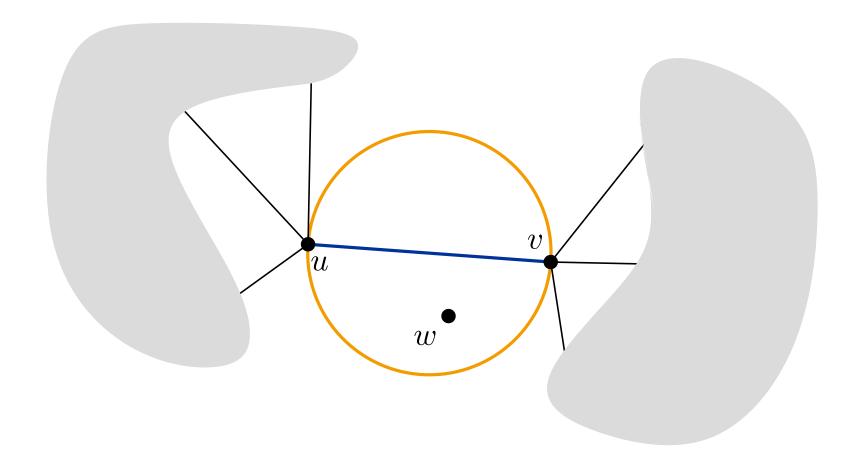
- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$

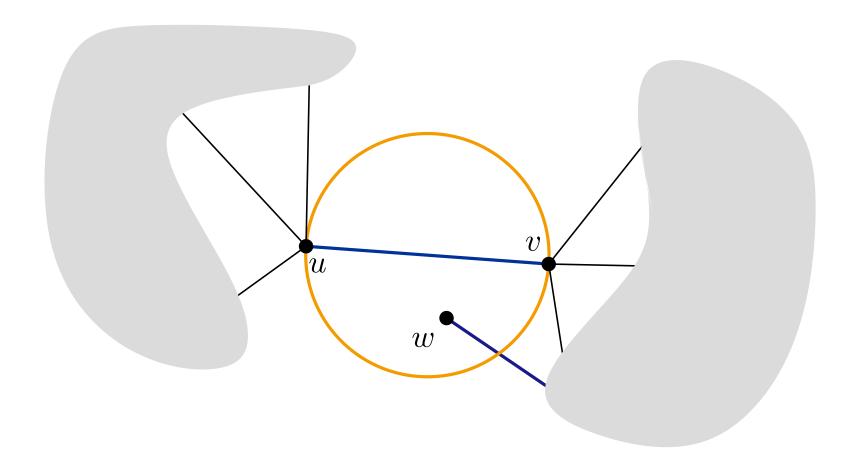


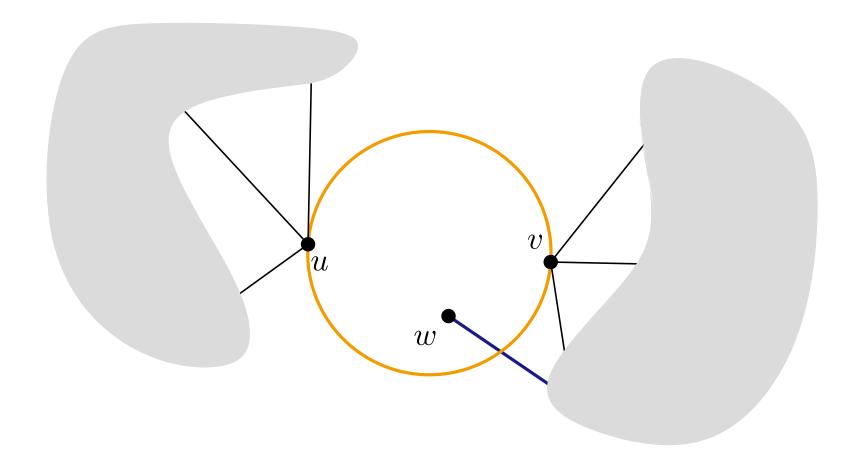
Satz 4: Sei P eine Menge von Punkten.

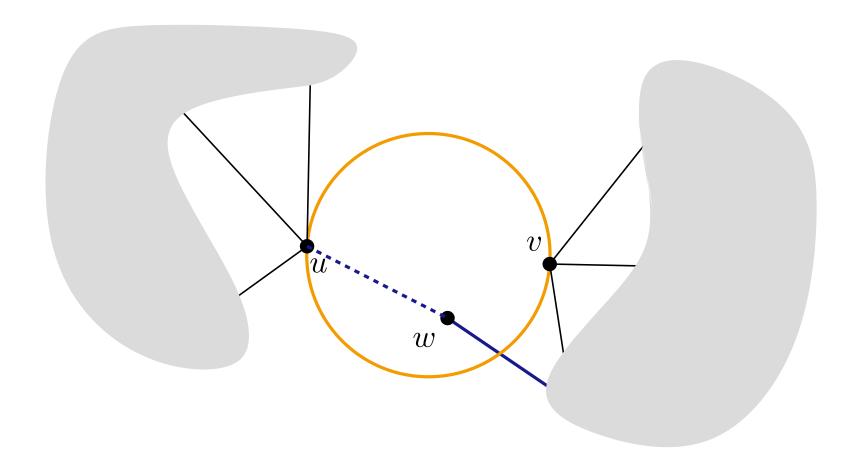
- Punkte p, q, r sind Knoten der gleichen Facette in $\mathcal{DG}(P) \Leftrightarrow \mathsf{Kreis} \; \mathsf{durch} \; p, q, r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

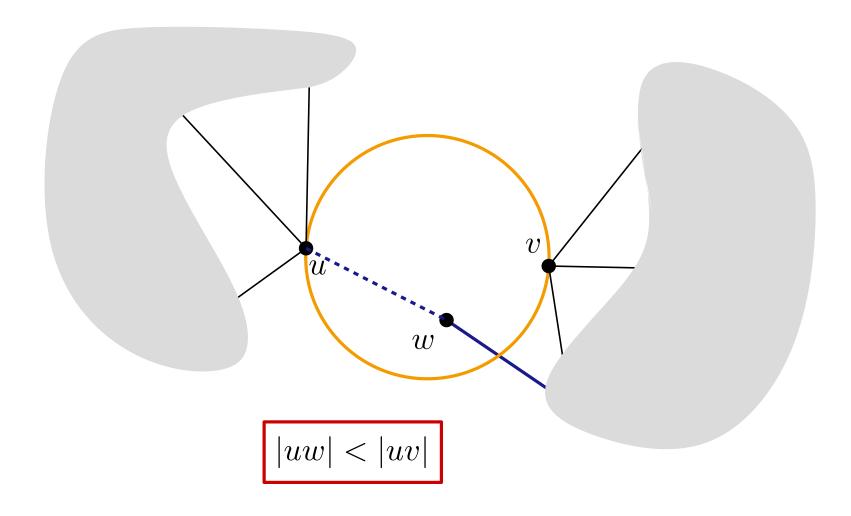


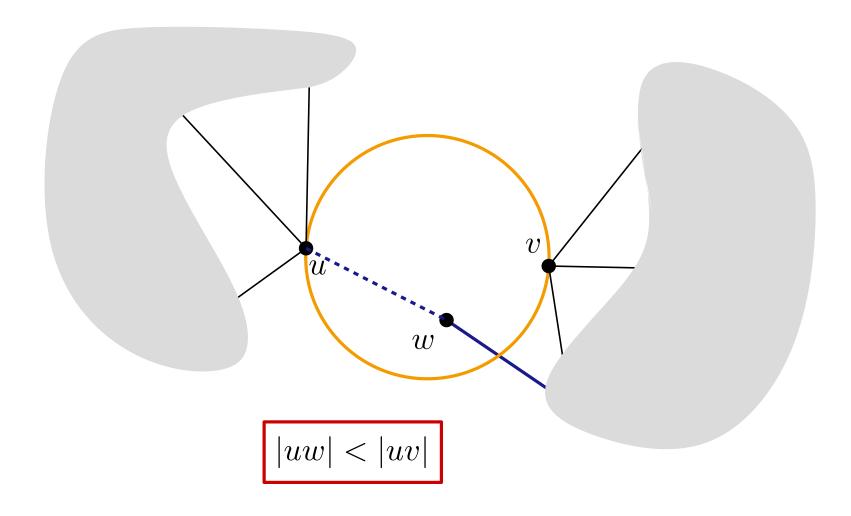




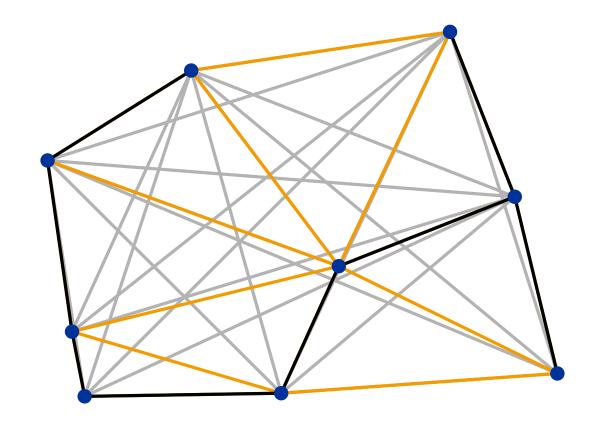








Euklidischer Minimaler Spannbaum

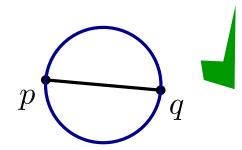


Berechnung von EMST in $O(n \log n)$?

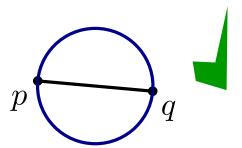
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

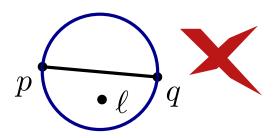
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

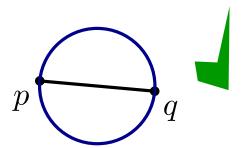


• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

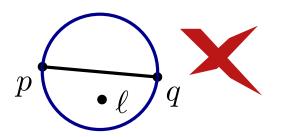


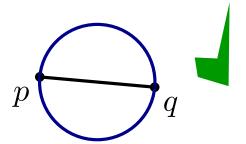
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.





• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.



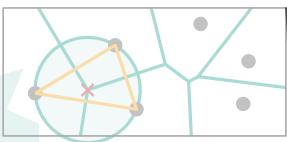


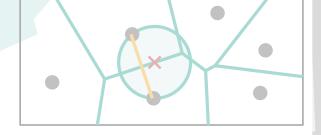
a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.

Charakterisierung

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$





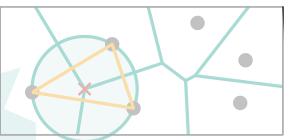
Satz 4: Sei *P* eine Menge von Punkten.

- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

Charakterisierung

Satz über Voronoi-Diagramme:

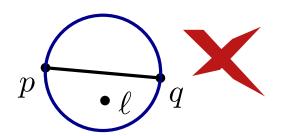
- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante
 - $\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$

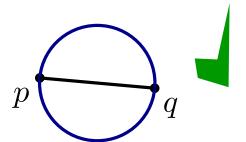


Satz 4: Sei P eine Menge von Punkten.

- Punkte p, q, r sind Knoten der gleichen Facette in $\mathcal{DG}(P) \Leftrightarrow \mathsf{Kreis} \; \mathsf{durch} \; p, q, r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

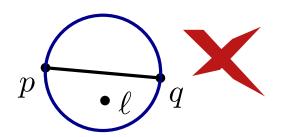


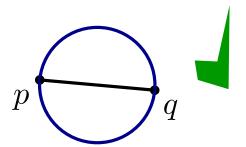


a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.

Kante pq ist in $\mathcal{DG}(P) \Leftrightarrow$ es gibt einen leeren Kreis $C_{p,q}$ durch p und q

ullet Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

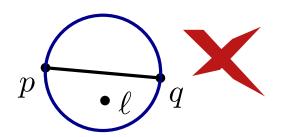


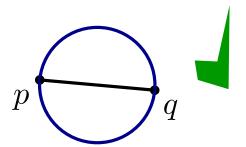


- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

Kante pq ist in $\mathcal{DG}(P) \Leftrightarrow$ es gibt einen leeren Kreis $C_{p,q}$ durch p und q

ullet Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

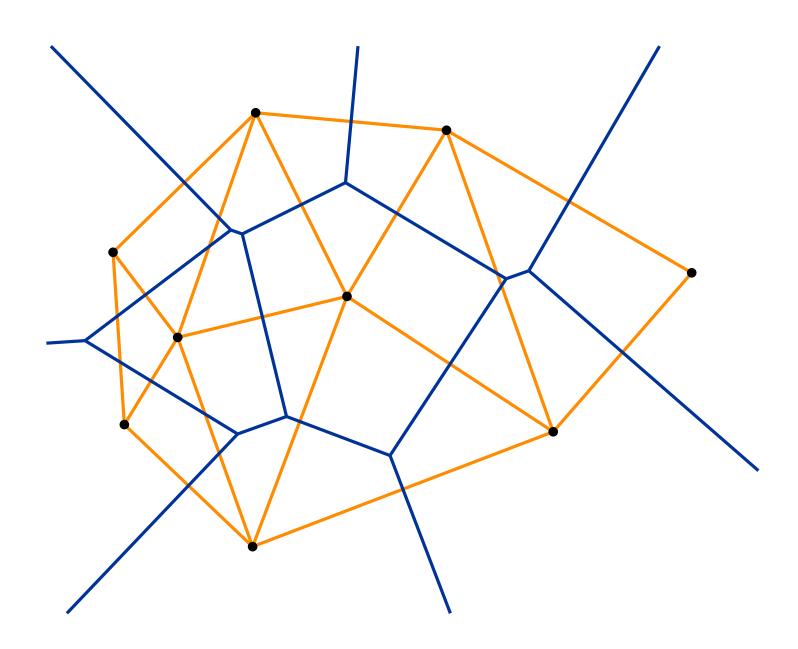




- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

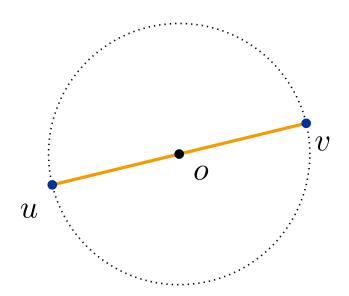
Kante pq ist in $\mathcal{DG}(P) \Leftrightarrow$ es gibt einen leeren Kreis $C_{p,q}$ durch p und q



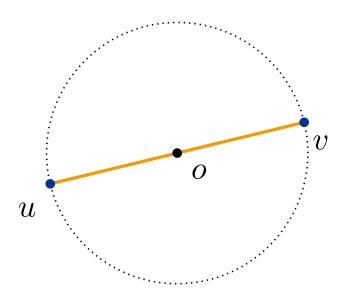


ullet uv im Gabriel Graph

ullet uv im Gabriel Graph

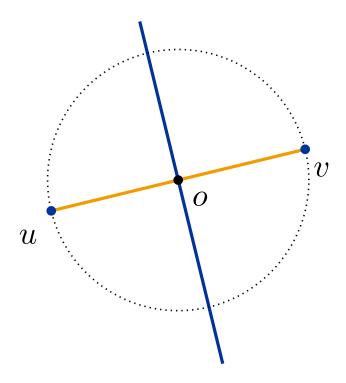


uv im Gabriel Graph

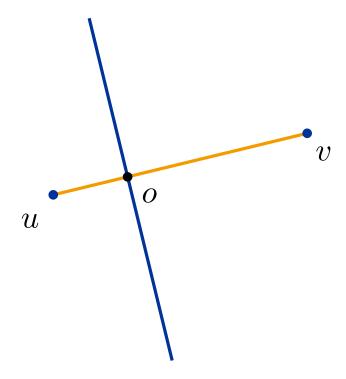


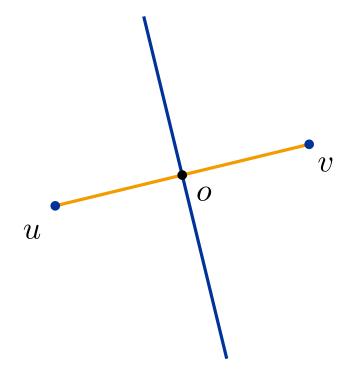
ullet o näher zu u, v als zu den anderen Punkten aus P

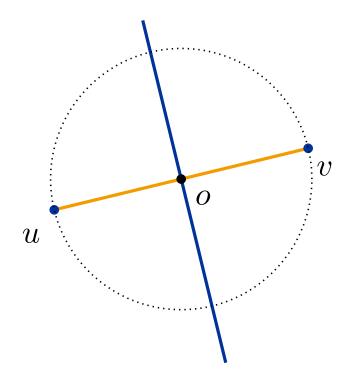
uv im Gabriel Graph



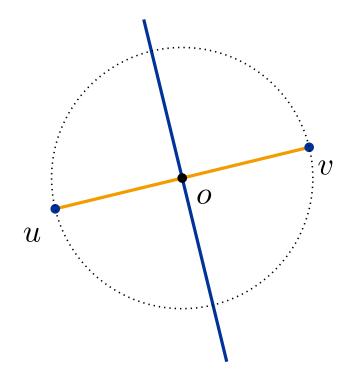
- ullet o näher zu u, v als zu den anderen Punkten aus P
 - $\Rightarrow o$ liegt auf Voronoi-Kante welche Voronoi-Zellen von q und p begrenzt





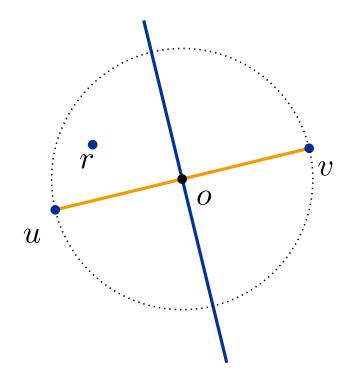


ullet uv schneidet duale Voronoi-Kante

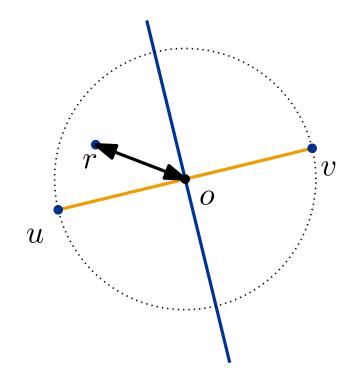


• Angenommen Punkt r in C.

ullet uv schneidet duale Voronoi-Kante

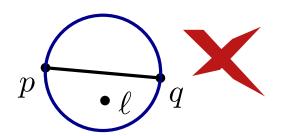


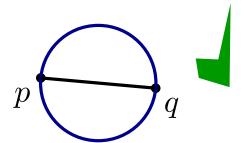
• Angenommen Punkt r in C.



- Angenommen Punkt r in C.
 - \Rightarrow Distanz zw. o und r kleiner als |ou| (|ov|)
 - \Rightarrow Widerspruch zur Annahme, dass o auf Voronoi-Kante

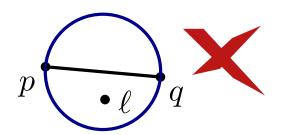
ullet Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

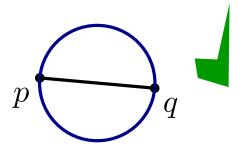




- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

ullet Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.





- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.
- c) $O(n \log n)$ Algorithmus der Gabriel-Graph berechnet?

Das war's!

Achtung!

Nächster Termin:

Donnertag, 30.06, 09:45 Uhr

Raum 131, Gebäude 50.34