

Theorie-Übungsblatt 4

Algorithmen für Routenplanung, Sommer 2010

Ausgabe 31. Mai 2010

Abgabe keine

Problem 1: Contraction Hierarchies

Gegeben sei ein Graph G = (V, E, len). Studieren Sie die Knotenreduktion bei der Vorberechnung von Contraction Hierarchies.

*

**

- (a) Wie lässt sich die 1-Hop-Zeugensuche bei der Knotenreduktion möglichst schnell berechnen?
- (b) Geben Sie ein effizientes Verfahren für die 2-Hop-Suche an, das ohne einer lokalen DIJKSTRA-Suche auskommt.

Hinweis: Benutzen Sie Ideen des Many-to-Many Routing-Ansatzes.

Problem 2: Transit-Node Routing

Gegeben sei ein Graph $G=(V,E,\operatorname{len})$ und $L+1\in\mathbb{N}$ Level von Mengen von Transit-Nodes $T_L\subseteq\cdots\subseteq T_1\subseteq T_0$, wobei $T_0=V$.

- (a) Beschreiben Sie eine effiziente Vorgehensweise zur Bestimmung der Access-Nodes $\overrightarrow{A}_l(v)$ für alle Level $l \leq L$.
- (b) Wie lassen sich die Distanztabellen D_l für alle $l \leq L$ effizient berechnen?

Hinweis: Benutzen Sie jeweils einen Top-Down-Ansatz und beziehen Sie bei der Level-l-Berechnung Zwischenergebnisse aus höheren Leveln > l mit ein.