Rob van Stee: Approximations- und Online-Algorithmen

Vertex Coloring

Consider a grapls = (V,E)

Edge coloring: no twadgedhat
share an endpoimget the same color

\ertex coloring no twovertices
that areadjacenget the same color

Use the minimum amount of colors
®
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This is thechromatic number \ /
Number between 1 an¥ | (why?)
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Applications

Wave length assignment in
[1 cellular systems

[1 Optical networks
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Lower bound

It Is hard to approximate the chromatic number with
approximation ratio of at most

nl—a

for every fixede > 0, unless NP=ZPP (unlikely!)
ZPP = Zero-error Probabilistic Polynomial time

Problems for which there exists a probabilistic Turing maehihat
[1 always gives the correct answer,
[1 has unbounded running time,

[1 runs in polynomial-time on average



Rob van Stee: Approximations- und Online-Algorithmen

Additive approximations

[1 Instead of
A(0) < R-OPT(0)

we require
A(o) < OPT(o)+c

(asymptoticapproximation ratio is 1)
[1 Denote the maximum degree of a nodéy A(G)
[ We can always color a graph wits{iG) + 1 colors
[1 This is sometimes required

[1 Some graphs require far less colors
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A graph that requireA(G) + 1 colors
O O

Ny
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Greedy Algorithm 1

®
Colors are indicated by numbers?].. ..

[1 Consider the nodas some order ‘\ :J
[1 At the start, each node iIs uncolorgd/
(has color 0)

[] Give each node thesmallestcolor®
that is not used to color any neighbor
O
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Analysis
®
[J Running timeO(|V|+ |E|) (how?)
[J Needs at mosA(G) + 1 colors: ¢ T N :J
— Consider a noda o .
— It has at most\(G) neighbors /
— Among the colors 1..,A(G) + @
1, there must be an unused color

O
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Analysis

What is thedifferencewith OPT(G)?

We only consider graphs witht least one edge

Then OPTG) > 2.

But then Greed{G) — OPT(G) < A(G)+1-2=A(G) — 1.

This bound igight!
There are graphG such that Greedys) — OPT(G) = A(G) — 1.
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Lower bound
We use a nearly complete bipartite graph

Greedy considers the nodes in order from left to right, OPT = 2

ul U3 u 5 u
o O o [
o O @ @

Uo Uy U g u

This example can be generalized

Greedy needA(G) + 1 colors
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Analysis
[J The chromatic numbek(G) can beO(n)
[1 For such graphs, Greedy performs very poorly

[1 However, nothing much better is possible
(unless NP = ZPP)

[1 We show an algorithm that us€gn/logn) colors

[1 Onplanargraphs, we can do much better

10
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Greedy algorithm 2

[1 For any color, the vertices with this

color form anindependent set °\ /0
[J Recall that we can find maximalin-

® O

dependent set in polynomial time /

J We look for alargeindependent set ® o ¢
U in a greedy fashion

[1 U gets one color, is removed from tF\e ; ?
graph, and we repeat ./ / \O
o0

[1 Continue until the graph is empty

11
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Subroutine: finding a large independent set
(GreedylS)

[1 Takesomenodeu with minimum degree

[1 Removeu and all its neighborfrom the graph, puti in U
[1 Repeat until graph is empty

[ ReturnU

12
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Finding a large independent set (GreedylS)

0\ ° ® 0\ /o ffffffff » | ® - b
. ° L )4 ) 1 » .4
‘\/' LI o L .\ /' -
.\\\\xﬁ' x .\\\\ ./ ® Q\. ®

How well does this work?

We will prove a bound that depends krtheoptimalnumber of
colors required t@olor the vertices

Note thatk is not part of the input of GreedylS
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Lemma 1. If G can be vertex colored with k colors, there exists
a vertex u with degree at most | (1— )[V||

Recall:We do not knowk, we only use thak is the optimal
number of colors and th&t> 2

Proof. Consider &-coloring
This partitions the vertices of the graph irkendependent sets
Take thelargestset: it has at Ieasft% -|V]] vertices

Any vertexu in this set can only have edges to vertiagesther
sets

Thereforeu has degree at modt| — [¢[V|] < [(1-D)V|] O

14
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Lemma 1. If G can be vertex colored wit
a vertex u with degree at most | (1— )|V

Lemma 2. If G can be vertex colored wit

N k colors, there exists

J

h k colors, the size of

the independent set found by GreedylSis at least [log,(|V|/3)].

Proof. In each step, we remove the vertexy with minimum

degreeand all its neighbors

Denote thenumber of verticesemaining in step by n

By Lemma 1,u; has degreat most| (1 —

)Nt

Atleastry — [ (1—i)n | — 1> Tt — 1 vertices remain

Son41 > — 1.

15
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We find

Ny
> g
11 = K
n—q1/k—1 -1 1
> —1=——-_1
= K k2 k
>
n 1 1
L v i S
N
> E_Z

using thatk > 2.

16
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Lemma 1. If G can be vertex colored with k colors, there exists

a vertex u with degree at most | (1— )|V

Lemma 2. If G can be vertex colored with k colors, the size of

the independent set found by Greedyl Sis at |least

Proof. In each step, we remove the vertex wit
degree and all its neighbors

log,([V1/3)].

N MiniMum

Denote the number of vertices remaining in stéxy ny

We have seen that > 7 — 2

We haveg —2 > 1 as long as < log,(n/3)

So GreedylS certainly take#og,(n/3)| steps. In every step

1,...,|log(n/3)], onenode is added to the independent sét

17
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Greedy algorithm 2 (repeat)

[1 We look for a large independent d¢tusing GreedylS

[1 U gets one color, is removed from the graph along with
adjacent edges, and we repeat

[1 Continue until the graph is empty

We are now ready to analyze this algorithm.

Let n; be the number of remaining vertices after dtep
Greedy 2

By Lemma 2, in step at least log(n; /3) vertices are colored
and removed (we ignorg |)
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Greedy 2 stops whem = 0, Ii.e. whemy < 1. When is this?

Suppose we hava > Iogk(rr]1/16)' Then by Lemma 2, the amount
of vertices colored in each step is at least

n
og(m/3) = 1ogi (500)

lo n A LN
e 16 logyn ~ log,n —

VN

MW

So in this case it would take at mastx steps to coloall
vertices
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Theorem 3. The approximation ratio of Greedy 2isO(n/logn)

n
Proof. We have seen that aftat most Tiog(/16 steps (maybe

| . n : .
less!), at MOSt55m71e) uncolored vertices remain

In the worst casall these vertices receive different colors

In total, Greedy 2 thus uses at most

n 4 n _ 3n
log(n/16) = logc(n/16) — logy(n/16)

colors

G can be colored withk colors. The approximation ratio is

3n/loge(n/16)  3n logk _ O( n >

k “log(n/16)  k logn
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Planar graphs

[1 We can deciden polynomial timewhether a planar graph
can be vertex colored with ontyo colors, and also do the
coloring in polynomial time if such a coloring exists

[1 Itis NP-completdo determine whether a planar graph can
be vertex colored witlthreecolors

[1 TheFour Color Theoremeach planar graph can be vertex
colored with onlyfour colors

[ We can do this in tim®(|V|?)

[1 We show a simple algorithm that uses at most 6 colors
(what is its approximation ratio?)
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Two colors
[1 When are two colors sufficient?
[1 The graph is not allowed to have a cycle of odd length

[1 We show that this is aufficientcondition

— /N
Vi \/ /@

O
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Lemma 4. If G has no cycle of odd length, it is 2-colorable.

Proof. AssumeG is not 2-colorable. We may assur@ds
connected.

Take a vertex. Color vertices atven distancesom v white,
others black.
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Since this is not a valid coloring, we findcacuit of odd
length (using an edge that has vertices with the same color at
both ends)

If this is acycle, we have a contradiction. Else, it must contain a
smaller circuitof odd length. Use induction. []



Rob van Stee: Approximations- und Online-Algorithmen 25

Algorithm for planar graphs

[1 Check whethetwo colors are sufficient. If so, color the
graph with two colors (as in the previous proof!)

[1 Else, find an uncolored vertexwith degree at most 5

[1 Removeu and all its adjacent edges and color the
remaining graphecursively

[1 Finally, putu and its adjacent edges back and calovith a
color that none of its neighbors has

Question:does such a vertaxexist?

Note: removing a node from a planar graph keeps it planaf, so i
we can find a noda once, we can do it repeatedly
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Properties of planar graphs

[1 Eulerrn—m+ f = 2 (nis number of verticean is number
of edges,f iIs number of faces)

[0 mM<3n-6
Proof: 3f < 2msince each face has at least three edges and
each edge is counted double
Thus 3f =6—3n+3m< 2mand thereforen< 3n—6

[1 There is a node with degree at most 5
Proof: if not, then 2n > 6n (each node has at least 6
outgoing edges, all edges are counted doubleard3n
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Algorithm which uses three colors
Find separator of sizg¢/m

Try all colorings of the separator

Use recursion on both halves of the graph
T(m) = 2°/M . T(m/2)

SoT(m) =20V

27



