I Traveling Salesman A\‘("

Given G = (V,V x V), find simple cycle C = (v1,V2,...,Vn, V1)
suchthatn = [V|and }_, ,)cc d(u,V) is minimized.
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I Repeat

Approximation algorithms \ Online algorithms

NP-hard problems
look for good solution
Approximation ratio
Polynomial time

TSP, Knapsack,
Load balancing,. ..

Incomplete information
look for good solution
Competitive ratio
possibly exponential time
online TSP, Knapsack,. ..

Paging, Ski rental, ...
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I Traveling Salesman T
Given G = (V,V x V), find simple cycle C = (v1,V2,...,Vn, V1)
suchthatn = [V|and }_, ,)cc d(u,V) is minimized.
Applications:

a drilling printed circuit boards

a the analysis of the structure of crystals (Bland and
Shallcross 87)

the overhauling of gas turbine engines (Panteet al. 87)
material handling in a warehouse (Ratliff & Rosenthal 81)
cutting stock problems (Garfinkel 77)

clustering of data arrays (Lenstra and Rinooy Kan 75)
sequencing of jobs on a single machine (Gilmore and
Gomory 64)

a assignment of routes for planes of a specified fleet (Boland
et al. 94)
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It is NP-hard to approximate the general TSP within any factor

Proof.
Reduction from Hamilton Cycle ... O

Hamilton Cycle Problem:
Given a graph decide whether it contains a simple cycle visiting
all nodes
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We want to find a Hamilton Cycle in G = (V,E).
Consider G’ = (V,V x V) and the weight function

1 if(u,v)€E
an else
Suppose G has a Hamilton cycle.
Then there is a Hamilton cycle of weight n in G’
— an a-approx. algorithm delivers one with weight < an

If there is no Hamilton cycle in G, every Hamilton Cycle in G’
has weight > an +n — 1> an.
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Proof (continued)

Assume that there exists an a-approximation algorithm for TSP.
Decision algorithm: Run a-approx TSP on G’

Solution has weight < an — Hamilton path exists

Else there is no Hamilton cycle. [e.g. Vazirani Theorem 3.6] [
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I Metric TSP A\‘(IT

G is undirected and obeys the triangle inequality
Vu,v,w eV :d(u,w) <d(u,v)+d(v,w)

Metric completion Consider any connected undirected graph
G = (V, E) with weight function ¢ : E — R_.. Define

d(u,v) := shortest path distance from u to v

Example: (undirected) street graphs — distance table
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I 2-Approximation by MST AIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The total weight of an MST <
The total weight of any TSP tour

Algorithm;
T:=MST(G) Il weight(T) <opt
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I 2-Approximation by MST AIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The total weight of an MST <
The total weight of any TSP tour

Algorithm;
T:=MST(G) Il weight(T) <opt
T’:=T with every edge doubled I weight(T") <2opt
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I 2-Approximation by MST AIT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The total weight of an MST <
The total weight of any TSP tour

Algorithm;

T:=MST(G) Il weight(T) <opt
T’:=T with every edge doubled I weight(T") <2opt
T":= EulerTour(T’) Il weight(T”) < 2opt
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I 2-Approximation by MST A\‘("

The total weight of an MST <
The total weight of any TSP tour

Algorithm;

T:=MST(G) Il weight(T) <opt
T’:=T with every edge doubled I weight(T") <2opt
T":= EulerTour(T’) Il weight(T”) < 2opt
output removeDuplicates(T") Il shortcutting

Exercise: Implementation in time O(m + nlogn) where m is
number of edges before metric completion
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I Example A\KIT

input  weight: 1 2
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I Example

input  weight: 1 2

MST
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I Example A\KIT

input  weight: 1 2 doubled MST

MST
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I Example A\‘(IT

input  weight: 1 2 doubled MST
3

MST Euler tour
12131415161
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I Example A\‘(IT

input  weight: 1 2 doubled MST output
3
6
3 2 4
6 weight
10
2 4
MST Euler tour
12131415161
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I Example A\‘(IT

input  weight: 1 2 doubled MST output
3 3
1 6 6
2 4 3 2 4
6 weight
10
2 4
MST Euler tour
12131415161

optimal weight: 6

— 21. April 2010 14/32



I Proof of Lemma 2 AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The total weight of an MST <
The total weight of any TSP tour

Let T denote the optimal TSP tour

remove one edge from T makes T lighter
now T is a spanning tree

which is no lighter than the MST O

General Technique: Relaxation
here: a TSP path is a special case of a spanning tree
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I More on TSP A\‘("

Practically better 2-approximations, e.g. lightest edge first
Relatively simple yet unpractical 3/2-approximation

PTAS for Euclidean TSP

Guinea pig for just about any optimization heuristics

Optimal solutions for practical instances. Rule of thumb:
If it fits in memory it can be solved.

[http:// ww. t sp. gat ech. edu/ concorde. ht m ]
lines of code is six digit number

m TSP-like applications are usually more complicated
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http://www.tsp.gatech.edu/concorde.html

I Online TSP A\‘(IT

a Metric space

a Algorithms move with speed at most 1
m Requests appear over time

m Future requests are unknown

a Minimize finishing time (makespan)
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| Online TSP KIT

a What is the worst that can happen to an online algorithm?

Algorithm is at location X

Request occurs somewhere very far away from it, at Y
Optimal solution is to serve it immediately

No further requests arrive

Algorithm still needs to move to Y : high competitive ratio
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I Online TSP A\‘(IT

a However...

a The optimal solution must have had enough time to travel
to Y before the request arrives

m It started at the origin, like the online algorithm
m Idea: do not move “too far” from the origin
a Close enough = within a factor of time elapsed
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Algorithm Return Home (RH) A\‘("

(Lipmann, 2003)
a Whenever a new request arrives, return to O at full speed

a In O, calculate optimal tour for all requests that appeared
so far

a Follow this tour at maximum speed such that distance to O
is at most (v/2 — 1)t at time t, for all t
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Return Home has a competitive ratio of v/2 + 1.

Proof.

Lett be the time at which the last request arrives.
Clearly OPT > t.
If RH does not slow down after time t, it needs time at most

t+ (V2 — 1)t + OPT < (V2 +1)OPT)

DA
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Return Home has a competitive ratio of v/2 + 1.

Proof.

Lett be the time at which the last request arrives.
Clearly OPT > t.
If RH does not slow down after time t, it needs time at most

t+ (V2 — 1)t + OPT < (V2 +1)OPT)

Else, let the last request for which RH slows down be a distance
x from the origin. RH serves it at time x /(v2 — 1) = (v2 + 1)x.

D QC
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Return Home has a competitive ratio of v/2 + 1.

Proof.

Lett be the time at which the last request arrives.
Clearly OPT > t.
If RH does not slow down after time t, it needs time at most

t 4+ (V2 — 1)t + OPT < (V2 + 1)OPT)

Else, let the last request for which RH slows down be a distance
x from the origin. RH serves it at time x /(v2 — 1) = (v2 + 1)x.
RH serves remainder of tour (Ty) at full speed. We have

OPT = x + Tx and RH is ready at time

(V2 +1)x + Ty < (V24 1)OPT
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I Remarks about RH A\‘("

Uses exponential time to calculate optimal tour
Nevertheless, leaves O immediately after arriving there
Theoretical result

More reasonable: use some approximation algorithm in O
Competitive ratio increases

Time for serving requests should be much longer than time
needed to calculate approximate tour
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I Steiner Trees AT

[C. F Gauss 187?7]

Given G = (V, E), with positive edge weights cost : E — R
V = R UF, i.e., Required vertices and Steiner vertices

find a minimum cost tree T C E that connects all required
vertices

Yu,v € R : T contains a u-v path

THE network design problem
weight: 1 2
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I Metric Steiner Trees A\‘("

Find Steiner tree in complete graph with triangle inequality
Yu,v,w €V :d(u,w) <d(u,v)+d(v,w)

Easier?
No!
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Approx-lmatlon Factor Preserving AT
Reduction

Steiner Tree of G? ~» Metric Steiner Tree of G'?

weight: 1 2
Complete the graph G. @

Yu,v € V : cost(u,v) :=

shortest path distance between u and v

we only add edges. Hence, OPT (G’) < OPT(G).

Now consider any Steiner tree I’ C G'.

We construct a Steiner tree | C G with cost(l) < cost(l’):
replace edges — paths

remove edges from cycles
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I Examples A\‘(IT

From Metric Steiner Tree to Steiner Tree
weight: 1 2

Y
K+ [-]el
I
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I 2-Approximation by MST IT
Given metric graph G = (RUF,E) weight: 1 2
Find MST T of subgraph Ggr mduced
by R

Theorem 4: cost(T) < 20PT ><:

Proof:

consider optimal solution T* (cost(T*) = OPT))
double edges of T*

find Euler tour B (cost(B) = 20PT)

<
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I 2-Approximation by MST IT
Given metric graph G = (RUF,E) weight: 1 2
Find MST T of subgraph Ggr mduced
Theorem 4: cost(T) < 20PT

Proof:

consider optimal solution T* (cost(T*) = OPT))
double edges of T*

find Euler tour B (cost(B) = 20PT)

use shortcuts to obtain Hamilton cycle H B
(cost(H) < cost(B) = 20PT).

drop heaviest edge. Now H is a spanning tree of Gg

<

1S
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I 2-Approximation by MST IT
Given metric graph G = (RUF,E) weight: 1 2
Find MST T of subgraph Ggr mduced
Theorem 4: cost(T) < 20PT

Proof:

consider optimal solution T* (cost(T*) = OPT))
double edges of T*

find Euler tour B (cost(B) = 20PT)

use shortcuts to obtain Hamilton cycle H B
(cost(H) < cost(B) = 20PT).

drop heaviest edge. Now H is a spanning tree of Gg

cost(MST) < cost(H) < cost(B) = 20PT H

<
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I Tight Example A\‘("

weight: 1 1.9999

O

G T MST
cost(T*) = 4,cost(MST) = 6.
More general:
IR| =n — cost(T*) =n, cost(MST) = (2 —¢)(n — 1)
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I More on Steiner trees A\‘("

a Complicated Approximation down to 1.39
[Jaroslaw et al. 2010]

a Optimal solutions for large practical instances.
[PhD Polzin,Daneshmand, 2003, Dortmund, Mannheim,
MPII-SB]

a Many applications: multicasting in networks, VLSI
design(?), phylogeny reconstruction
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I Directed Steiner Trees

Theorem 4

uuuuuuuuuuuuuuuuuuuuuuuuuu

It is hard to approximate the directed Steiner tree problem
within a factor In [R]|.

Proof by approximation preserving reduction from the set
covering problem

21. April 2010
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I The Set Covering Problem

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Given universe U, subsets S = {S;, ..., Sk}, cost function
c:S—N

Find minimum cost S’ C S such that U S=U

Ses’
It is hard to approximate the set covering problem within a
factor In |U|.

[Feige 98]

Do
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Approx_lmatlon Preserving A&AT
Reduction:
Directed Steiner Tree from Set

Covering

o
(G0 O
U 6 6 & @

:{r}USUU
={(r,S):S €S} cost c(S)
U{(S,u):SeS,ucs} cost 0.
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